

DR. AMJAAD ZUHIER ALROSAN

LECTURE 4, PART (1)- SYMPATHETIC VERSUS PARASYMPATHETIC RESPONSES.

Objectives

1. Compare the somatic and autonomic nervous systems.

2. Discuss ANS neurotransmitters and receptors.

3. Distinguish sympathetic versus parasympathetic responses.

(Pages 524-540 of the reference).

General Overview

SOMATIC NERVOUS SYSTEM (SNS) (CONSCIOUSLY CONTROLLED)

معلومات معادة من (3)، عما

- 1. Sensory neurons that convey information to CNS from somatic receptors in the head, body wall, and limbs and from receptors for the special senses of vision, hearing, taste, and smell.
- 2. Motor neurons that conduct impulses from the CNS to skeletal muscles only.

AUTONOMIC NERVOUS SYSTEM (ANS) (INVOLUNTARY)

- 1. Sensory neurons that convey information to CNS from autonomic sensory receptors, located primarily in blood vessels, muscles, the nervous system, and the visceral organs such as the stomach and lungs.
- 2. Motor neurons that conduct nerve impulses from the CNS to smooth muscle, cardiac muscle, and glands.

Note: The motor part of the ANS consists of two branches, the sympathetic division and the parasympathetic division.

AUTONOMIC NERVOUS SYSTEM (ANS) (INVOLUNTARY)

Unlike skeletal muscle, tissues innervated by the ANS often function to some extent even if their nerve supply is damaged.

على عكس العضلات الهيكلية، غالبًا ما تعمل الأنسجة التي يُغذيها الجهاز العصبي اللاإرادي إلى حد ما حتى في حالة تلف إمدادها العصبي.

For examples,

- أَنْ لَهُ تَوْصَحَ لَلْمَا فِينَ مِعْلَ الْمُعْمَاء (النيرطوعية) المسؤولة عنها (NS) Antonomic (NS) 1- The heart continues to beat when it is removed for transplantation يستمر القلب في النبض عند إزالته لزرعه في شخص آخر into another person.
- 2- Smooth muscle in the lining of the gastrointestinal tract contracts تنقبض العضلات الملساء في بطانة الجهاز الهضمي بشكل منتظم من تلقاء نفسها rhythmically on its own.
- تُنتج الغدد بعض الإفرازات في غياب سيطرة الجهاز العصبي اللاإرادي. 3- Glands produce some secretions in the absence of ANS control.

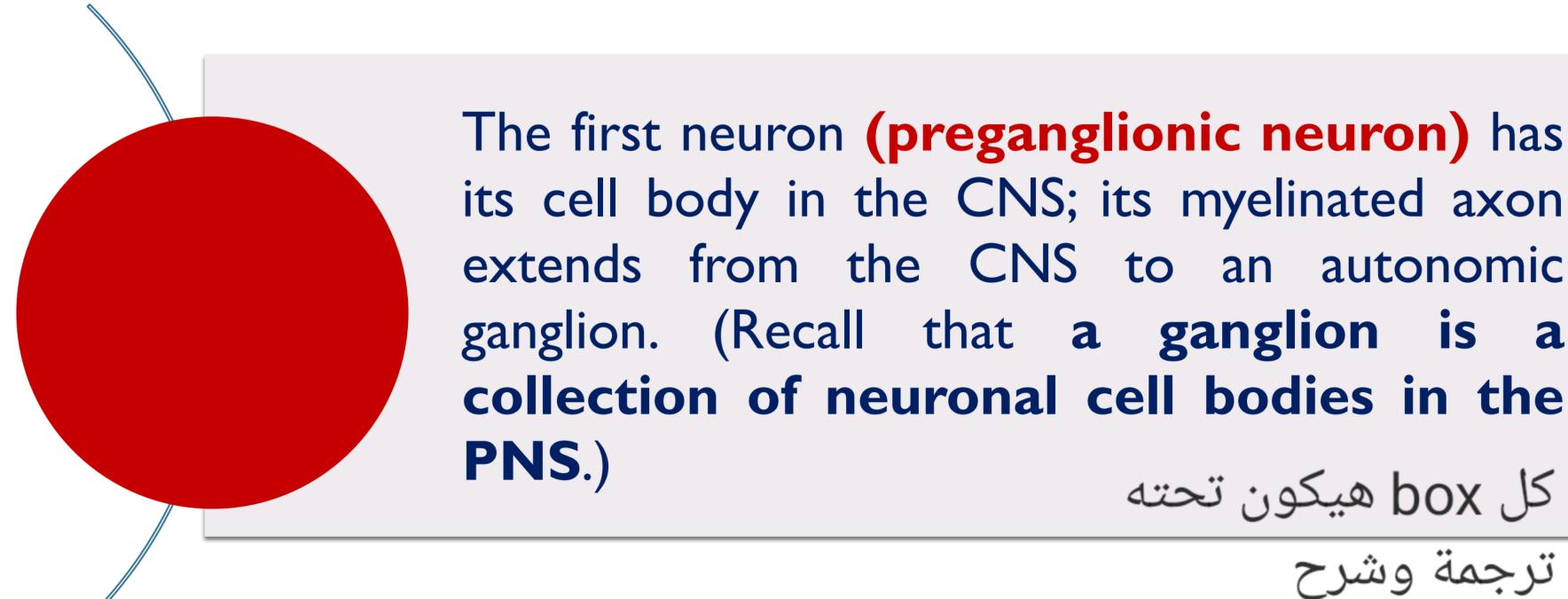
AUTONOMIC NERVOUS SYSTEM (ANS) (INVOLUNTARY)

• Myelinated somatic motor neuron extends from the central nervous system (CNS) all the way to the skeletal muscle fibers in its motor unit.

يمتد العصبون الحركي الجسدي المياليني من الجهاز العصبي المركزي (CNS) وصولًا إلى ألياف العضلات الهيكلية في وحدته الحركية.

• Unlike somatic output (motor), the output part of the ANS has two divisions: the sympathetic division and the parasympathetic division.

على عكس المسار الوارد الجسدي (الحركي)، ينقسم الجزء الوارد أو efferent pathway من الجهاز العصبي اللاإرادي إلى قسمين: القسم الودي والقسم الغير ودي


AUTONOMIC NERVOUS SYSTEM (ANS) (INVOLUNTARY)

In some organs, nerve impulses from one division of the ANS stimulate the organ to increase its activity (excitation), and impulses from the other division decrease the organ's activity (inhibition).

هون بحكيلك مثال اذا السيال العصبي حفز الاستجابة sympathetic رح يزيد معدل ضربات القلب HR ..أما لو حفز parasympathetic رح يقل معدل ضربات القلب

لزيادة نشاطه (الإثارة)، بينما تُخفّض النبضات من القسم الآخر نشاطه (التثبيط).

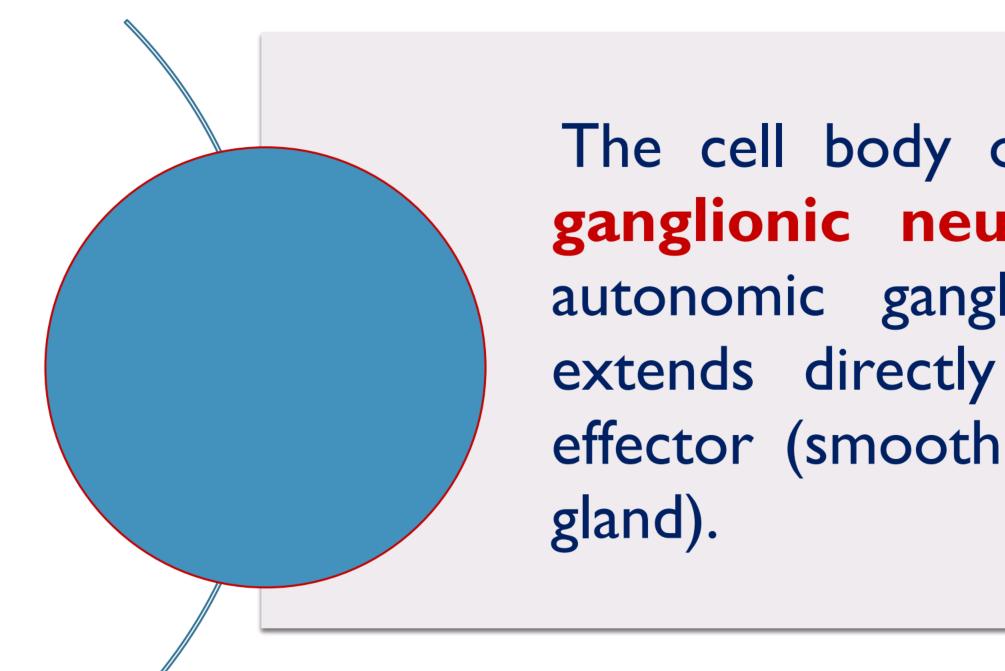
For example, an increased rate of nerve impulses from the sympathetic division increases heart rate, and increased rate of nerve impulses from parasympathetic division decreases heart rate.

The first neuron (preganglionic neuron) has its cell body in the CNS; its myelinated axon extends from the CNS to an autonomic ganglion. (Recall that a ganglion is a collection of neuronal cell bodies in the

الترجمة:

العصبون الأول (العصبون قبل العقدي preganglionic neuron) يكون جسمه الخلوي موجودًا في الجهاز العصبي المركزي (CNS)، ويمتد محوره المُغلف بالمايلين من الجهاز العصبي المركزي إلى عقدة ذاتية autonomic ganglion.

(تذكّر أن العقدة ganglion هي تجمع لأجسام الخلايا العصبية في الجهاز العصبي الطرفي PNS).


الشرح:

في الجهاز العصبي الذاتي (autonomic nervous system)، أول عصب يشارك في نقل الإشارة من الدماغ أو الحبل الشوكي يسمى العصبون قبل العقدي.

مكان جسمه الخلوي: داخل الـ CNS (يعني داخل الدماغ أو الحبل الشوكي).

يمتد منه محور مغطى بمادة المايلين (حتى تكون الإشارة سريعة).

هذا المحور يوصل الإشارة إلى عقدة عصبية موجودة في الجهاز العصبي الطرفي (PNS)، وهي مثل محطة وسيطة بين العصب الأول والعصب الثاني.

The cell body of the second neuron (post ganglionic neuron) is also in that same autonomic ganglion; its unmyelinated axon extends directly from the ganglion to the effector (smooth muscle, cardiac muscle, or a gland).

الترجمة:

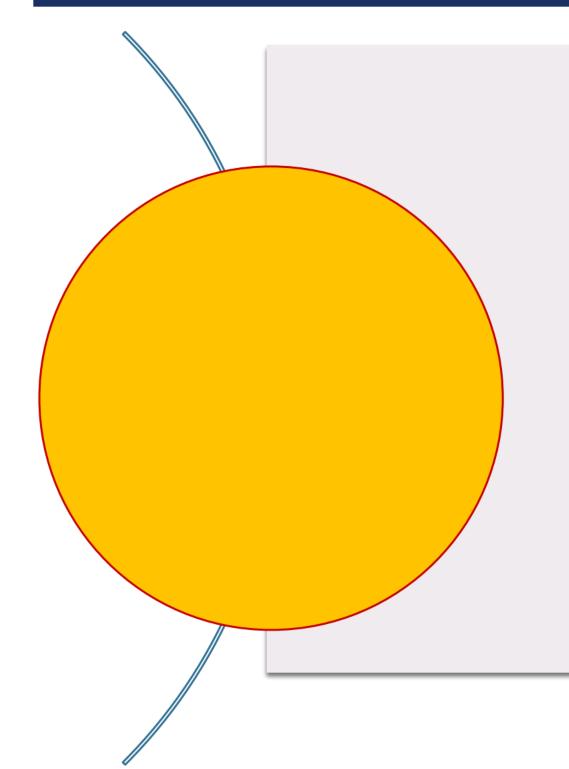
جسم الخلية للعصبون الثاني (العصبون بعد العقدي – postganglionic neuron) يوجد أيضًا في نفس العقدة الذاتية. ويمتد محوره غير المُغلف بالمايلين مباشرةً من العقدة إلى العضو المؤثر (مثل العضلة الملساء، أو عضلة القلب، أو غدة).

الشرح:

العصب الثاني في السلسلة يسمى العصبون بعد العقدي.

مكان جسمه الخلوي: داخل نفس العقدة العصبية اللي وصلها العصب الأول.

يمتد منه محور بدون مايلين (يعني الإشارة بتمشي أبطأ شوي).


هذا المحور يروح مباشرة إلى العضو الهدف (effector)، مثل:

العضلات الملساء (في الأمعاء، الأوعية الدموية...)

عضلة القلب

الغدد (مثل الغدد العرقية أو اللعابية)

نستنتج أن الaxon بعد العقدي الموصول بالعضو دائما غير مغطى بال myelin sheath

Alternatively, in some autonomic pathways, the first motor neuron extends to specialized cells called chromaffin cells in the adrenal medullae (inner portions of the adrenal glands) rather than an autonomic ganglion. Chromaffin cells secrete the neurotransmitters epinephrine and norepinephrine (NE).

الترجمة:

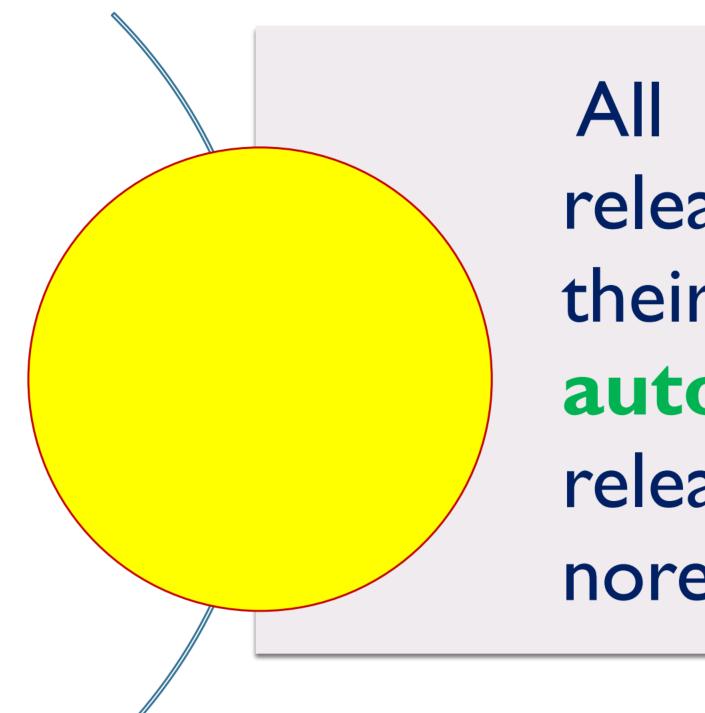
في بعض المسارات الذاتية (autonomic pathways)، يمتد العصبون الحركي الأول إلى خلايا متخصصة تُسمى خلايا الكروموفين chromaffin cells في نُخاع الغدة الكظرية (الجزء الداخلي من الغدة الكظرية) بدلاً من أن ينتهي في عقدة عصبية.

تقوم خلايا الكروموفين بإفراز النواقل العصبية الإبينفرين (الأدرينالين) والنورإبينفرين (النورأدرينالين).

الشرح:

في بعض الحالات الخاصة، ما في عقدة عصبية حقيقية بين العصب الأول والعضو الهدف. العصب الأول يروح مباشرة إلى نخاع الغدة الكظرية (adrenal medulla).

هناك، يرتبط مع خلايا خاصة اسمها chromaffin cells.


هاي الخلايا تعتبر نسخة معدّلة من العصبون بعد العقدي، ووظيفتها أنها تفرز هرمونات/نواقل عصبية في الدم:

وخلوا فبالكم أنه هذا واحد من الأسباب أن sympathetic response بيضل تأثيره على الجسم أكثر من parasympathetic

Epinephrine (Adrenaline)

Norepinephrine (Noradrenaline)

وهي مسؤولة عن استجابة القتال أو الهروب (fight or flight).

All somatic motor neurons release only acetylcholine (ACh) as their neurotransmitter, but autonomic motor neurons release either ACh or norepinephrine (NE).

الترجمة:

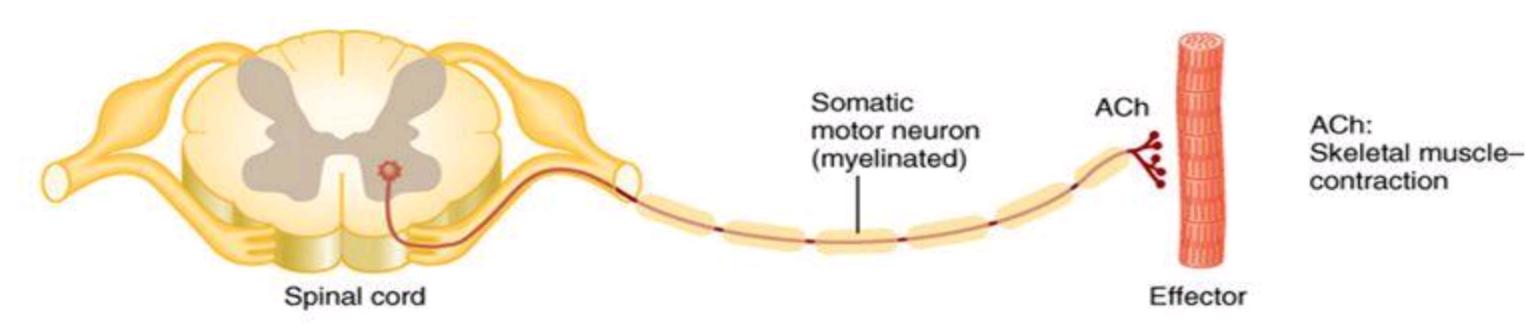
جميع العصبونات الحركية الجسمية (somatic motor neurons) تُفرز فقط الأسيتيل كولين (ACh) كناقل عصبي،

بينما العصبونات الحركية الذاتية (autonomic motor neurons) تُفرز إما أسيتيل كولين (ACh) أو نورإبينفرين (NE).

الشرح:

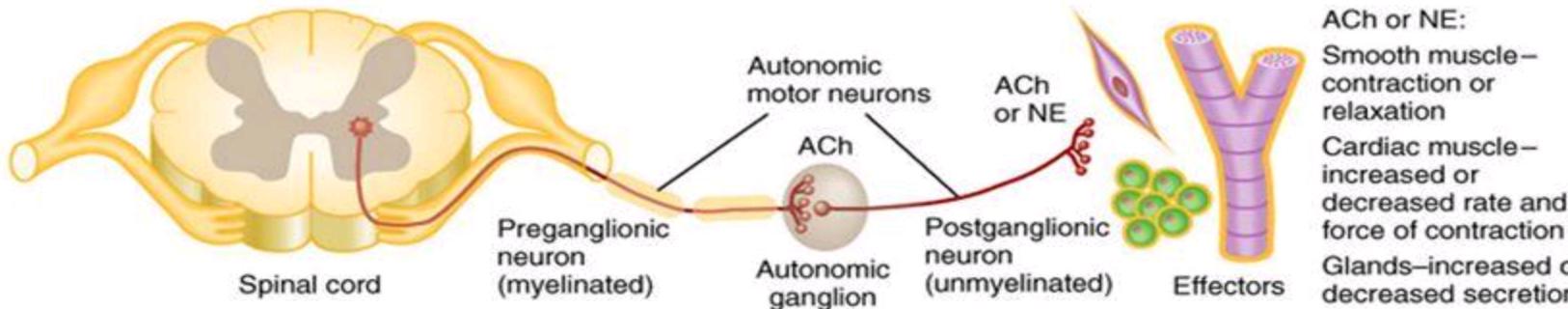
الجهاز العصبي الجسدي (somatic): مسؤول عن التحكم الإرادي بالعضلات (مثل عضلات البيد والرجل).

→ كل الأعصاب فيه تستخدم نفس الناقل العصبي: ACh فقط.


الجهاز العصبي الذاتي (autonomic): مسؤول عن الوظائف اللاإرادية (القلب، الأمعاء، الغدد...).

→ الأعصاب فيه ممكن تفرز:

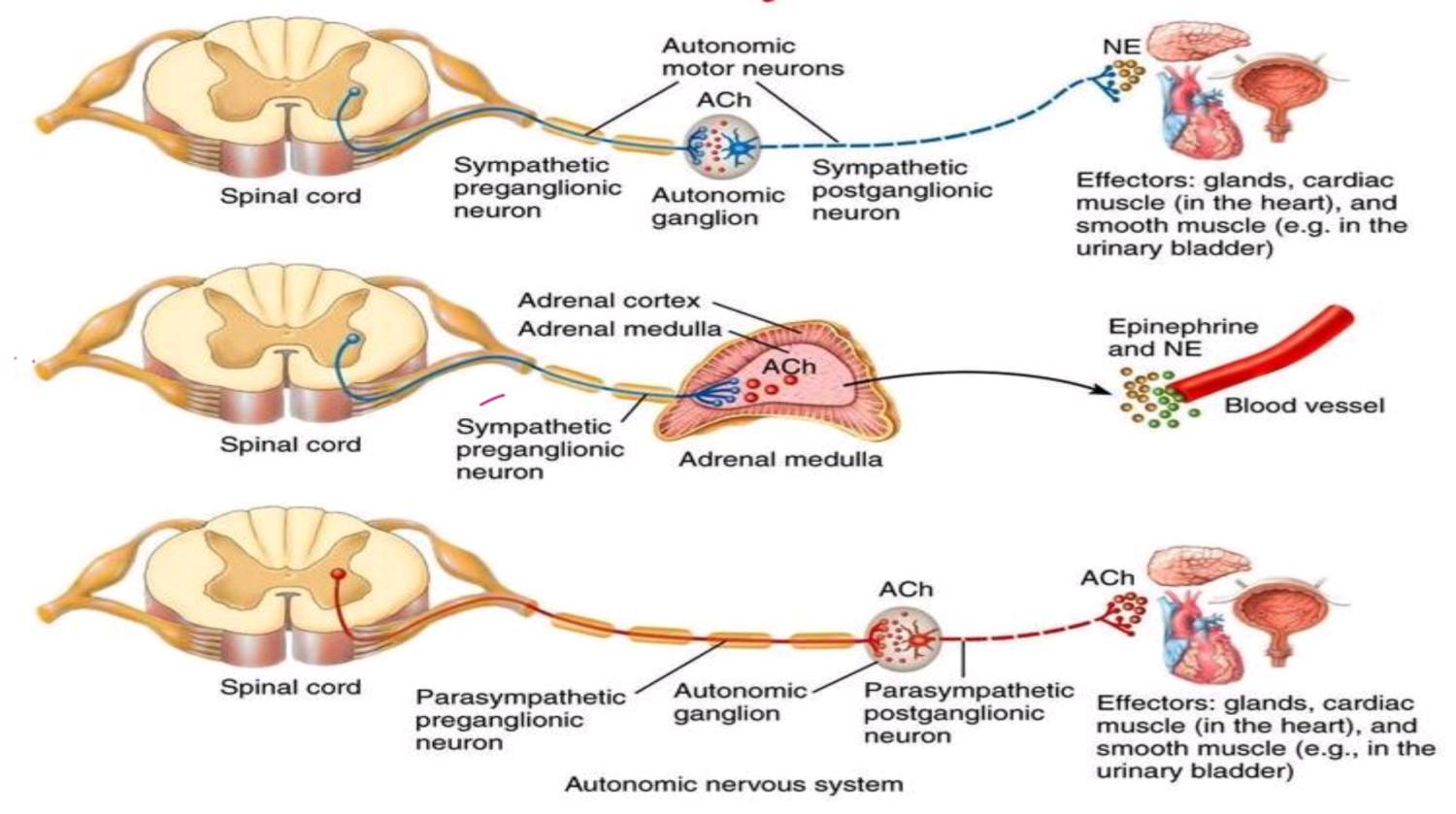
ACh (عادة في القسم الباراسمباثاوي)


NE (عادة في القسم السمباثاوي)

Comparison of Somatic and Autonomic Nervous Systems

(a) Somatic nervous system

Copyright @ 2005 John Wiley & Sons, Inc. All rights reserved.



contraction or relaxation Cardiac muscleincreased or

force of contraction Glands-increased or decreased secretions

(b) Autonomic nervous system

ANS Motor Pathways

SYMPATHETIC DIVISION

القسم الودي

Is often called the fight-or-flight division.

يُسمى عادةً قسم القتال أو الهروب

Result in increased alertness and metabolic activities in order to prepare the body for an emergency situation (i.e. rapid heart rate, faster breathing rate, dilation of the pupils). يؤدي إلى زيادة اليقظة والأنشطة الأيضية لتهيئة الجسم لحالات الطوارئ (مثل

تسارع ضربات القلب، وتسارع التنفس، واتساع حدقة العين).

PARASYMPATHETIC DIVISION

القسم غير الودي

Is often referred to as the **rest-and-digest division** because its activities conserve and restore body energy during times of rest or digesting a meal.

يُشار إليه غالبًا بقسم الراحة والهضم لأن أنشطته تحافظ على طاقة

الجسم وتستعيدها أثناء الراحة أو هضم الطعام.

Conserves energy and replenishes nutrient stores.

يحافظ على الطاقة ويعيد ملء مخزون العناصر

لغذائية

- Although both the sympathetic and divisions parasympathetic concerned with maintaining homeostasis, they do so in dramatically different ways.

على الرغم من أن كلا الجهازين العصبيين الودي واللاودي يُعنى بالحفاظ على التوازن الداخلي، إلا أنهما يقومان بذلك بطرق مختلفة تمامًا.

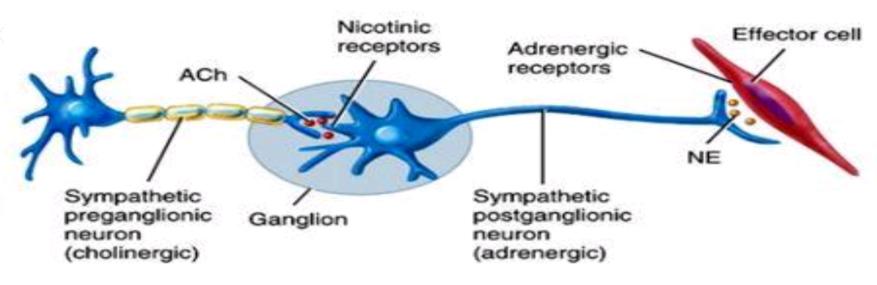
ANS NEUROTRANSMITTERS AND RECEPTORS

نصنف الخلايا العصبية اللاإرادية، بناءً على الناقل العصبي الذي تُنتجه وتُطلقه، إلى ::خلايا تنتج acetylcholine adrenaline

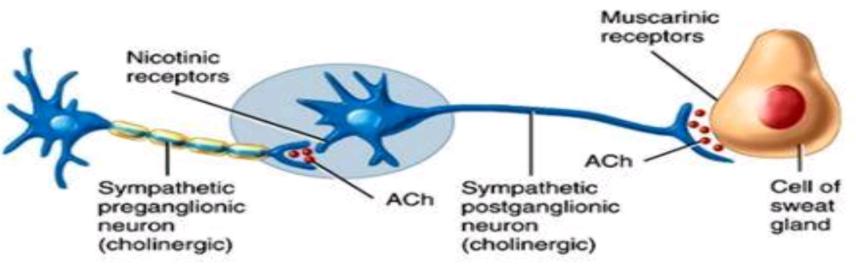
Based on the neurotransmitter they produce and release, autonomic neurons are classified as either cholinergic or adrenergic.

مستقبلات النواقل العصبية هي بروتينات غشائية متكاملة تقع في الغشاء البلازمي للخلية العصبية ما بعد المشبكية أو الخلية المؤثرة.

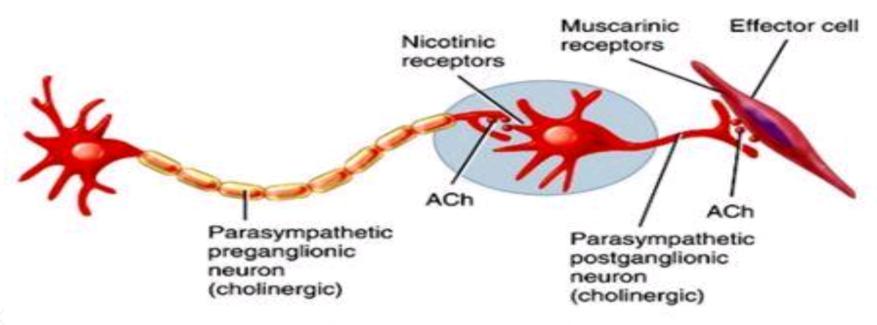
The receptors for the neurotransmitters are integral membrane proteins located in the plasma membrane of the postsynaptic neuron or effector cell.


- Cholinergic neurons release the neurotransmitter acetylcholine (ACh).
- In the ANS, the cholinergic neurons include (1) all sympathetic and parasympathetic preganglionic neurons, (2) sympathetic postganglionic neurons that innervate most sweat glands, and (3) all parasympathetic postganglionic neurons.

ACh is stored in synaptic vesicles and binds with specific cholinergic receptors, integral membrane proteins in the postsynaptic plasma membrane.


The two types of cholinergic receptors, both of which bind ACh, are nicotinic receptors and muscarinic receptors.

Cholinergic release acetylcholine; adrenergic neurons release norepinephrine. Cholinergic receptors (nicotinic or muscarinic) and adrenergic receptors are integral membrane proteins located in the plasma membrane of a postsynaptic neuron or an effector cell.


Cholinergic and Adrenergic Neurons in the Autonomic Nervous System

(a) Sympathetic division-innervation to most effector tissues

(b) Sympathetic division-innervation to most sweat glands

(c) Parasympathetic division

الخلايا العصبية

الكولينية تطلق الناقل العصبى أستيل كولين .(ACh)

في الجهاز العصبي الذّاتي (ANS)، تشمل الخلايا العصبية الكولينية (1) جميع الخلايا العصبية الودية ونظيرة الودية قبل العقدية، (2) الخلايا العصبية الودية بعد العقدية التى تُعصِّب الغدد العرقية، و (3) جميع الخلايا العصبية نظيرة

الودية بعد العقدية.

Cholinergic neurons release the neurotransmitter .acetylcholine (ACh)

In the ANS, the cholinergic

preganglionic neurons, (2)

postganglionic neurons

.postganglionic neurons

that innervate sweat

neurons include (1) all

sympathetic and

parasympathetic

sympathetic

glands, and (3) all

parasympathetic

تُسمى الخلايا العصبية التي تستخدم الأستيل کولین (Acetylcholine) کناقل عصبی (مادة كيميائية تنقل الإشارات) باسم "الخلايا العصبية الكولينية" (Cholinergic neurons).

يحدد هذا الجزء أماكن وجود الخلايا العصبية الكولينية داخل الجهاز العصبي الذاتي (Autonomic Nervous System - ANS) وهو النظام الذي يتحكم في وظائف الجسم اللاإرادية. يشمل: (1) جميع الخلايا العصبية "قبل العقدية" (التي تأتي قبل العقدة العصبية) سواء في الجهاز الودي (Sympathetic) أو نظير الودي (Parasympathetic). **(2)** الخلايا العصبية "بعد العقدية" (التي تأتي بعد العقدة العصبية) الخاصة بالجهاز الودى التي تذهب تحديدًا إلى الغدد العرقية. (3) جميع الخلايا العصبية "بعد العقدية" الخاصة بالجهاز نظير الودي.

الشريحة الثانية:

الجملة العربية

بعد المشبكي.

يُخزَّن أستيل كولين (ACh) في الحويصلات المشبكية ويرتبط ببروتينات مستقبلات كولينية محددة، وهي بروتينات غشائية مدمجة في الغشاء البلازمي

النوعان من المستقبلات الكولينية، وكلاهما يرتبط بـ أستيل كولين (ACh)، هما مستقبلات النيكوتين والمستقبلات المسكارينية.

ACh is stored in synaptic vesicles and binds with specific cholinergic receptors, integral membrane proteins in the postsynaptic plasma

الجملة الإنجليزية الأصلية

.membrane

The two types of cholinergic receptors, both of which bind ACh, are nicotinic receptors and muscarinic receptors.

الشرح

يُوضِّح هذا الجزء آلية عمل الأستيل كولين: يتم تخزينه أولاً في أكياس صغيرة تسمى "الحويصلات المشبكية" داخل الخلية العصبية، وعند إطلاقه، يرتبط ببروتينات خاصة تسمى "المستقبلات الكولينية" الموجودة على غشاء الخلية العصبية المستقبلة للإشارة (الغشاء البلازمي بعد المشبكي) ليُحدث تأثيره.

يحدد هذا الجزء نوعي المستقبلات الكولينية التي يرتبط بها الأستيل كولين (ACh)، وهما: "مستقبلات النيكوتين" (Nicotinic receptors) و "المستقبلات المسكارينية" (Muscarinic

الشرح	الجملة الإنجليزية الأصلية	الجملة العربية
هذا يلخص عمل نوعين رئيسيين من الخلايا العصبية في الجهاز العصبي الذاتي: الخلايا الكولينية تطلق الأستيل كولين (ACh)، بينما الخلايا "الأدرينالية" (Adrenergic neurons) تطلق الناقل العصبي "النورإبينفرين" (Norepinephrine)، وهو ناقل عصبي مرتبط بالاستجابة الودية.	Cholinergic neurons release acetylcholine; adrenergic neurons release neurons release .norepinephrine	الخلايا العصبية الكولينية تطلق الأستيل كولين؛ الخلايا العصبية الأدرينالية تطلق النورإبينفرين.
هذا الجزء يصف طبيعة وموقع جميع المستقبلات المذكورة: هي عبارة عن بروتينات مُدمجة في الغشاء (membrane proteins وتوجد على الغشاء البلازمي للخلية المستقبلة (سواء كانت خلية عصبية أخرى أو خلية هدف كخلية عضلية أو غدة، والتي تُسمى "خلية مؤثّرة").	Cholinergic receptors (nicotinic or muscarinic) and adrenergic receptors are integral membrane proteins located in the plasma membrane of a postsynaptic neuron or an .effector cell	المستقبلات الكولينية (النيكوتينية أو المسكارينية) والمستقبلات الأدرينالية هي بروتينات غشائية مدمجة تقع في الغشاء البلازمي لخلية عصبية بعد مشبكية أو خلية مُؤثِّرة.
٥		
		الشريحة الرابعة:
7	الجملة الإنجليزية الأصلية الشرح	الجملة العربية
هو عنوان القسم، ويشير إلى المحور الذي حوله الشرح، وهو دور الخلايا العصبية التي خدم الأستيل كولين أو النورإبينفرين في از العصبي الذاتي (ANS).	Adrenergic Neurons in یدور the Autonomic Nervous	الكولينية والأدرينالية في الجهاز العصبي

Activation of nicotinic receptors by ACh causes depolarization and thus excitation of the postsynaptic cell, which can be a postganglionic neuron, an autonomic effector, or a skeletal muscle fiber.

ال acetylcholine بيعمل تنشيط وتحفيز لل acetylcholine بيعمل تنشيط excitation للخلية أو عضو الاستجابة

أما في muscarinic receptors فيعمل ال acetylcholine على تنشيط أو تثبيط

الخلية أو عضو الاستجابة اللي بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الله بتكون موجودة على سطحه وهذا يعتمد على نوع الخلية الله بتكون موجودة على سطحه وهذا يعتمد على نوع الله بتكون موجودة على سطحه وهذا يعتمد الله بتكون موجودة على سطحه وهذا يعتمد الله بتكون موجودة على الله بتكون الله بتكون الله بتكون الله بتكون الله بتكون الله بتكون اله بتكون الله بتكون الله بتكون الله بتكون الله بتكون الله بتكون ال sometimes causes <u>depolarization</u> (excitation) and sometimes causes hyperpolarization (inhibition), depending on which particular cell bears the muscarinic receptors.

ال acetylcholine يؤثر بالجسم لوقت أقل من ال adrenergic neurotransmitters وفي أسباب عدة ومنها أنه هناك انزيم يحطم الاستيل كولين بسرعة أكبر من انزيمات تحطيم الادرينالين

Because acetylcholine is quickly inactivated by the enzyme acetylcholinesterase (AChE), effects triggered by cholinergic neurons are brief.

- Adrenergic neurons release norepinephrine (NE), also known as noradrenalin. https://doi.orepinephrine الا بمكان تأثيره الادرينالين لا يختلف عن هرمون norepinephrine الا بمكان تأثيره
- Most sympathetic postganglionic neurons are adrenergic. neuron that innervate sweat glands ما عدا للخلايا المغذية الغدد العرقية
- Like ACh, NE is stored in synaptic vesicles and released by exocytosis.

 ك acetylcholine هرمون الادرينالين يخزن في حويصلات ويتكرر عبر الاخراج الخلوي
- Molecules of NE diffuse across the synaptic cleft and bind to specific adrenergic receptors on the postsynaptic membrane, causing either excitation or inhibition of the

effector cell.

جزيء norepinephrine ينتشر عبر الشق المشبكي ويرتبط على المستقبلات على الخلية البعد العقدة مما يسبب تنشيط أو تثبيط الخلية أو عضو الاستجابة

- Adrenergic receptors bind both norepinephrine and epinephrine.

ترتبط المستقبلات الأدرينالية بكل من النورإبينفرين والإبينفرين.

- The two main types of adrenergic receptors are alpha (α) receptors and beta (β) receptors, which are found on <u>visceral effectors</u> innervated by most sympathetic postganglionic axons.

النوعان الرئيسيان من المستقبلات الأدرينالية هما مستقبلات ألفا (أ) ومستقبلات بيتا (β)، والتي توجد على المؤثر عليه (العضو)الحشوية التي تغذيها معظم محاور عصبية ما بعد العقدية الودية. العرقية sweat glands

تُصنف هذه المستقبلات إلى أنواع فرعية: α1، α2، β1، β2، و33، بناءً على الاستجابات المحددة التي تُثيرها، وارتباطها الانتقائي بالأدوية التي تُنشِّطها أو تُثبِّطها. على الرغم من وجود بعض الاستثناءات، فإن تنشيط مستقبلات

a1 و31 يُنتج عادةً إثارة، بينما يُؤدي تنشيط مستقبلات a2 و32 إلى تثبيط الأنسجة المُفعّلة.

These receptors are further classified into subtypes— $\alpha 1$, $\alpha 2$, $\beta 1$, $\beta 2$, and $\beta 3$ — based on the specific responses they elicit and by their selective binding of drugs that activate or block them. Although there are some exceptions, activation of $\alpha 1$ and $\beta 1$ receptors generally produces excitation, and activation of and α2 and β2 receptors causes inhibition of effector $\alpha 1 \& \beta 1$ تحفيز العضو (مثل زيادة ضربات القلب أو انقباض الأوعية) tissues.

 $\alpha 2 \& \beta 2$ تثبيط العضو (مثل ارتخاء الأوعية أو توسع القصبات)

- Norepinephrine stimulates alpha receptors more strongly than beta receptors; epinephrine is a potent stimulator of both alpha and beta receptors.

 α receptors یمیل لتفعیل \rightarrow Noradrenaline \rightarrow Adrenaline \rightarrow ینشط کلا النوعین \rightarrow Adrenaline

- Compared to ACh, norepinephrine lingers in the synaptic cleft for a longer time. Thus, effects triggered by adrenergic neurons typically are longer lasting than those triggered by cholinergic neurons.

AChE الأستيل كولين يُزال بسرعة من الفجوة المشبكية بواسطة إنزيم AChE

المسيل تولين يرال بسرعه من الفجوه المشبكية بواسطة إثريم AChE، بينما النورإبينفرين يبقى فترة أطول قبل أن يُزال أو يُعاد امتصاصه، لذلك تأثيره (مثل زيادة ضربات القلب أو توسع الحدقة) يستمر مدة أطول

RECEPTOR AGONISTS AND ANTAGONISTS

- A large variety of drugs and natural products can selectively activate or block specific cholinergic or adrenergic receptors.

تستطيع مجموعة كبيرة ومتنوعة من الأدوية والمنتجات الطبيعية تنشيط أو حجب مستقبلات كولينية أو أدرينية محددة بشكل انتقائي.

- An **agonist** is a substance that binds to and **activates** a **receptor**, in the process mimicking the effect of a natural neurotransmitter or hormone.

المنبه هو مادة ترتبط بمستقبل وتنشطه، محاكيةً في ذلك تأثير ناقل عصبى طبيعى أو هرمون.

- An **antagonist** is a substance that binds to and blocks a receptor, thereby preventing a natural neurotransmitter or hormone from exerting its effect.

أو الهرمون من ممارسة تأثيره.

SYMPATHETIC RESPONSES

During physical or emotional stress and various emotions, the sympathetic division dominates the parasympathetic division.

اثناء التوتر يهيمن الجزء على sympathetic على parasympathetic

- High sympathetic tone favors body functions that can support vigorous physical activity and rapid عند درجة sympathetic عالي يعزز هذا الجزء النشاطات التي production of ATP.
- At the same time, the sympathetic division reduces body functions that favor the storage of energy.

FIGHT-OR-FLIGHT RESPONSE (SOME EXAMPLES)

تتسع حدقتا العينين

☐ The pupils of the eyes dilate.

أمثلة على الاستجابة sympathetic

يزداد معدل ضربات القلب، وقوة انقباض القلب، وضغط الدم.

- ☐ Heart rate, force of heart contraction, and blood pressure increase.
 - تتوسع المجاري الهوائية، مما يسمح بحركة أسرع للهواء داخل الرئتين وخارجهما.
- □ The airways dilate, allowing faster movement of air into and out of the lungs.

 the lungs.

 the lungs.

 abovement of air into and out of air into air into and out of air into air int
- □Blood vessels that supply organs involved in exercise or fighting off danger—skeletal muscles, cardiac muscle, liver, and adipose tissue—dilate, allowing greater blood flow through these tissues.
- □ Release of glucose by the liver increases blood glucose level.

The effects of sympathetic stimulation are longer lasting and more widespread than the effects of parasympathetic stimulation for three reasons:

تدوم تأثيرات التحفيز الودي لفترة أطول وأكثر انتشارًا من تأثيرات التحفيز الباراسمبثاوي لثلاثة أسباب:

- 1. Sympathetic postganglionic axons diverge more extensively; as a result, many tissues are activated simultaneously. متناعد المحاور العصبية الودية بعد العقدية بشكل كبير؛ ونتيجة لذلك، يتم simultaneously. تنشيط العديد من الأنسجة في وقت واحد.
- 2. Acetylcholinesterase quickly inactivates acetylcholine, but norepinephrine lingers in the synaptic cleft for a longer period.

 2. Acetylcholinesterase quickly inactivates acetylcholine, acetylcholine, but norepinephrine lingers in the synaptic cleft for a longer period.

The effects of sympathetic stimulation are longer lasting and more widespread than the effects of parasympathetic stimulation for three reasons:

يُكثّف الإبينفرين والنورإبينفرين المُفرزان في الدم من نخاع الغدة الكظرية ويُطيلان الاستجابات الناتجة عن النورإبينفرين المُنبعث من المحاور العصبية الودية بعد العقدية. تنتشر هذه الهرمونات المنقولة بالدم في جميع أنحاء الجسم، مُؤثرةً على جميع الأنسجة التي تحتوي على مستقبلات ألفا وبيتا. مع مرور الوقت، يتم تدمير النورإبينفرين والنورابينفرين المنقولين بالدم بواسطة إنزيمات الكبد

3. Epinephrine and norepinephrine secreted into the blood from the adrenal medullae intensify and prolong the responses caused by NE liberated from sympathetic postganglionic axons. These blood-borne hormones circulate throughout the body, affecting all tissues that have alpha and beta receptors. In time, blood-borne NE and epinephrine are destroyed by enzymes in the liver.

Sympathetic Response

تأثيرات sympathetic response

Vaso = Blood vessel (وعاء دموي) Vasoconstriction → Vasoconstriction Vasodilation

Increase HR Heart vate

Increase RR respiratory rate

- Increase metabolic rate
- Increase fat & glycogen breakdown
- Pupillary dilation
- Smooth muscle vasoconstriction
- Skeletal & cardiac muscle vasodilation
- Decrease GI activity
- Bronchial relaxation

زيادة معدل ضربات القلب

زيادة معدل التنفس

زيادة معدل الأيض

زبادة تحلل الدهون والجليكوجين

اتساع حدقة العين

انقباض الأوعية الدموية في العضلات الملساء

توسع الأوعية الدموية في العضلات الهيكلية والقلبية

انخفاض نشاط الجهاز الهضمي

استرخاء الشعب الهوائية

PARASYMPATHETIC RESPONSES

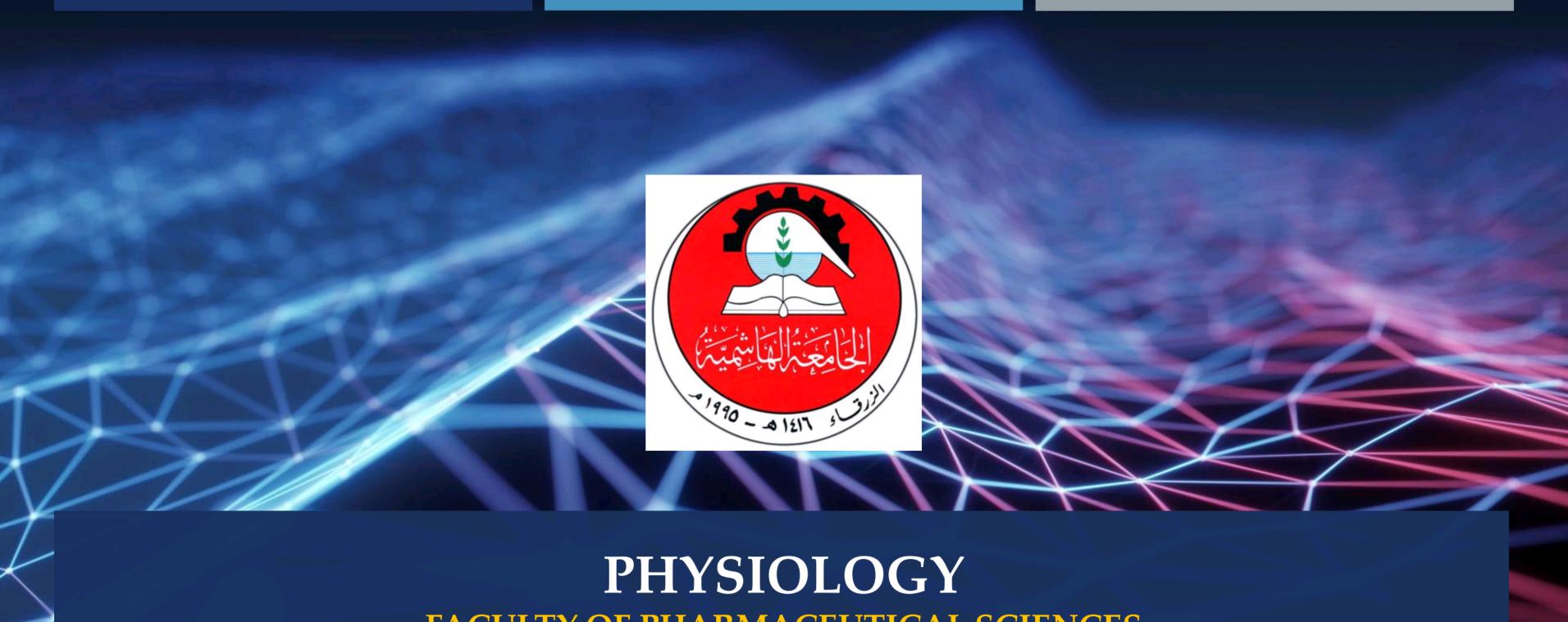
- Parasympathetic responses support body functions that conserve and restore body energy during times of rest and recovery.

 تدعم الاستجابات اللاودية وظائف الجسم التي تحافظ على طاقة الجسم وتستعيدها خلال فترات الراحة والاستشفاء
- In the quiet intervals between periods of exercise, parasympathetic impulses to the digestive glands and the smooth muscle of the gastrointestinal tract predominate over sympathetic impulses.

 over sympathetic impulses.

 liaction between periods of exercise, parasympathetic impulses between periods of exercise, parasympathetic impulses between periods of exercise, parasympathetic impulses to the digestive glands and the smooth muscle of the gastrointestinal tract predominate over sympathetic impulses.
- This allows energy-supplying food to be digested and absorbed.

REST-AND-DIGEST (SOME EXAMPLES)


□**Increasing SLUDD responses**, which include: salivation (S), lacrimation (L), urination (U), digestion (D), and defecation (D).

يعمل ال parasympathetic على زيادة معدل SLUDd تحفيز عمليات إفراز اللعاب والدموع وعمليات الإخراج والتبول والهضم

"Three decreases", which include: decreased heart rate, decreased diameter of airways (bronchoconstriction), and decreased diameter (constriction) of the pupils. تقليل معدل ثلاث :ضربات القلب،المجاري الهوائية،حدقة العين

Table 8–5 FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM

Organ	Sympathetic Response	Parasympathetic Response
Heart (cardiac muscle)	Increase rate	Decrease rate (to normal)
Bronchioles (smooth muscle)	Dilate	Constrict (to normal)
Iris (smooth muscle)	Pupil dilates	Pupil constricts (to normal)
Salivary glands	Decrease secretion	Increase secretion (to normal)
Stomach and intestines (smooth muscle)	Decrease peristalsis	 Increase peristalsis for normal digestion
Stomach and intestines (glands)	Decrease secretion	 Increase secretion for normal digestion
Internal anal sphincter	 Contracts to prevent defecation 	Relaxes to permit defecation
Urinary bladder (smooth muscle)	Relaxes to prevent urination	Contracts for normal urination
Internal urethral sphincter	Contracts to prevent urination	Relaxes to permit urination
Liver	Changes glycogen to glucose	None
Pancreas	Secretes glucagon	Secretes insulin and digestive enzymes
Sweat glands	Increase secretion	• None
Blood vessels in skin and viscera (smooth muscle)	Constrict	• None هون کل عضو وکیف تأثیر
Blood vessels in skeletal muscle (smooth muscle)	• Dilate	هون كل عضو وكيف تأثير نوع الاستجابة عليه None •
Adrenal glands	 Increase secretion of epineph- rine and norepinephrine 	• None

FACULTY OF PHARMACEUTICAL SCIENCES DR. AMJAAD ZUHIER ALROSAN

LECTURE 4, PART (2)- GENERATION AND CONDUCTION OF ACTION POTENTIAL.

Objectives

1. Discuss myelination.

2. Describe electrical signals in neurons.

(Pages 408-421 of the reference)

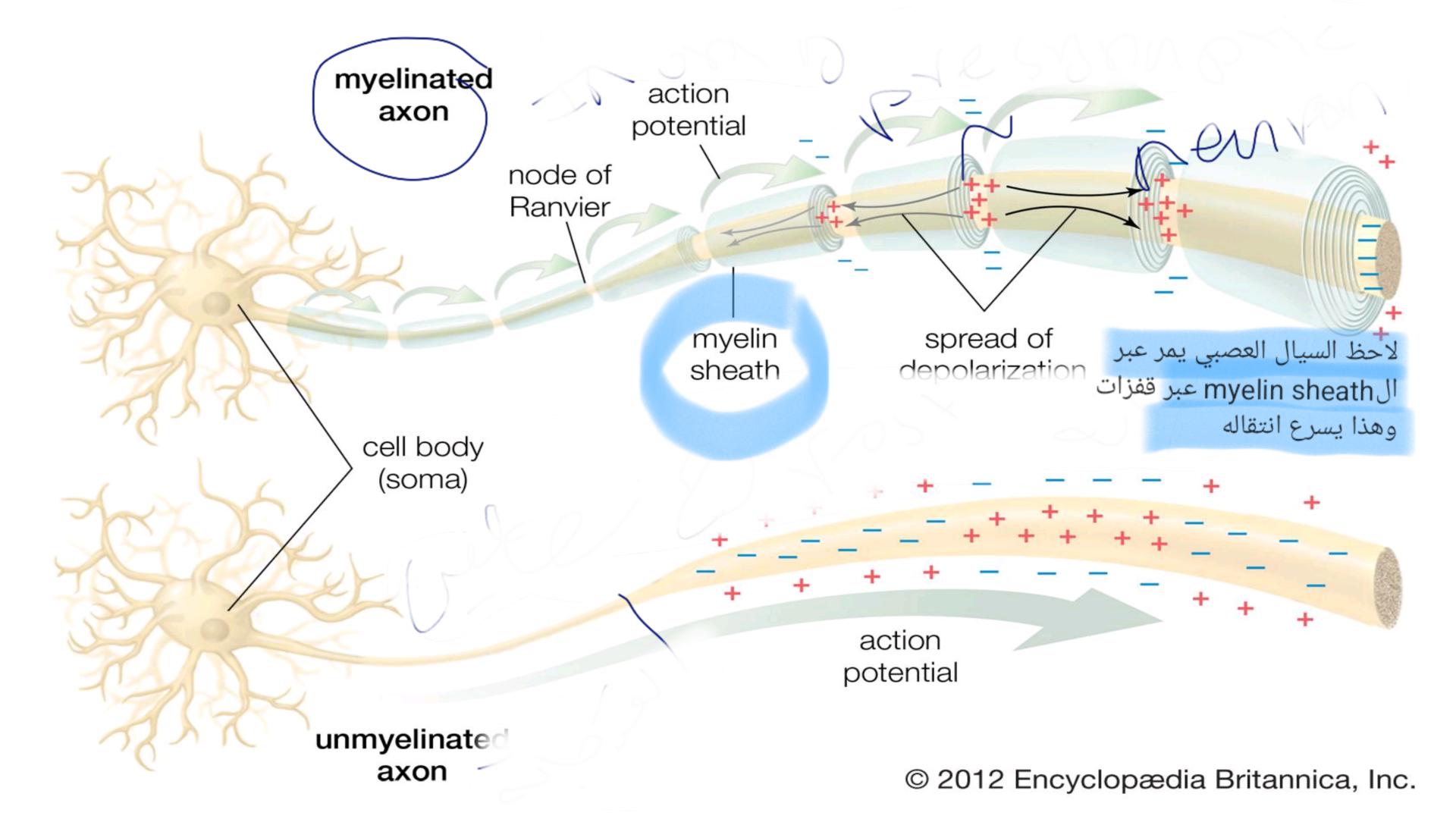
MYELINATION

- Axons surrounded by a multilayered lipid and protein covering, called the myelin sheath.

 عديط المحور العصبي ال axon بطبقات متعددة من البروتينات والليبيدات (الدهون) تغطيه اسمها myelin sheath
- The myelin sheath:

- تذكرعرفنا سابقا أنه هاي الاسطوانات المسؤول عن إنتاجها في CNS هي الخلايا oligodendrocyte وفي الجهاز PNS خلايا shewan
- 1. Insulates the axon of a neuron.

تعمل على عزل المحور العصبي


2. Increases the speed of nerve impulse conduction.

تعمل على تسريع انتقال السيال العصبي

MYELINATION

- Two types of neuroglia produce myelin sheaths: Schwann cells (in the PNS) and oligodendrocytes (in the CNS).

تذكرعرفنا سابقا أنه هاي الاسطوانات المسؤول عن إنتاجها في CNS هي الخلايا PNS خلايا oligodendrocyte وفي الجهاز PNS خلايا shewan

ELECTRICAL SIGNALS IN NEURONS

الإشارات الكهربائية في الخلايا العصبية

- Neurons communicate with one another using two types of electrical signals:

تتواصل الخلايا العصبية مع بعضها البعض باستخدام نوعين من الإشارات الكهربائية:

- 1. Graded potentials (for short- distance communication only). جهود متدرجة (للاتصال قصير المدى فقط).
- 2. Action potentials (for communication over long distances within the body).

 within the body).

- Graded potentials and nerve and muscle action potentials are involved in the relay of sensory stimuli, integrative functions such as perception, and motor activities.

تلعب الجهود المتدرجة /وجهود الفعل العصبية والعضلية دورًا في نقلُ المنبهات الحسية،

والوظائف التكاملية كالإدراك، والأنشطة الحركية.

Example (for writing)

التالي مثال توضيحي عن تكامل الوظيفي بين كلا الجهتين (electrical signals) وهو الكتابة عند لمس القلم، ينشأ جهد متدرج في مستقبل حسي على جلد الأصابع

1. As you touch the pen, a graded potential develops in a sensory receptor in the skin of the fingers.

sensory receptor in the skin of the fingers.

'Y يُحفّز هذا الجهد المتدرج محور العصبون الحسي لتشكيل جهد فعل عصبي، ينتقل على طول المحور إلى الجهاز العصبي

٢. يُحفِّز هذا الجهد المتدرج محور العصبون الحسي لتشكيل جهد فعل عصبي، ينتقل على طول المحور إلى الجهاز العصبي المركزي، ويؤدي في النهاية إلى إطلاق ناقل عصبي عند نقطة تشابك عصبي مع عصبون بيني

2. The graded potential triggers the axon of the sensory neuron to form a nerve action potential, which travels along the axon into the CNS and ultimately causes the release of neurotransmitter at a synapse with an interneuron.

يُحفّز الناقل العصبي العصبون لتشكيل جهد متدرج في تشعباته وجسم الخلية

3. The neurotransmitter stimulates the interneuron to form a graded potential in its dendrites and cell body.

استجابةً للجهد المتدرج، يُشكّل محور العصبون بيني جهد فعل عصبي. ينتقل جهد الفعل العصبي على طول المحور، مما يؤدي إلى إطلاق ناقل عصبي عند نقطة التشابك العصبي التالية مع عصبون بيني آخر

4. In response to the graded potential, the axon of the interneuron forms a nerve action potential. The nerve action potential travels along the axon, which results in neurotransmitter release at the next synapse with another interneuron.

النقطة الخامسة ترجمتها هون 💡

. تتكرر عملية إطلاق الناقل العصبي عند المشبك، متبوعةً بتكوين جهد متدرج، ثم جهد فعل عصبي، مع تنشيط العصبونات الداخلية في الأجزاء العليا من الدماغ (مثل المهاد والقشرة المخية). بمجرد تنشيط العصبونات الداخلية في القشرة المخية، الٰجزّء الخارجي من الدماغ، يُحدث الإدراك، ويمكنك الشعور بسطح القلم الأملس وهو يلامس أصابعك.

ملاحظة: الإدراك، وهو الإدراك الواعي بالإحساس، هو في الأساس وظيفة من وظائف القشرة المخية.

5. This process of neurotransmitter release at a synapse followed by the formation of a graded potential and then a nerve action potential occurs over and over as interneurons in higher parts of the brain (such as the thalamus and cerebral cortex) are activated. Once interneurons in the cerebral cortex, the outer part of the brain, are activated, perception occurs and you are able to feel the smooth surface of the pen touch your fingers.

Note: Perception, the conscious awareness of a sensation, is primarily a function of the cerebral cortex.

6. A stimulus in the brain causes a graded potential to form in the dendrites and cell body of an upper motor neuron, a type of motor neuron that synapses with a lower motor neuron farther down in the CNS in order to contract a skeletal muscle. The graded potential subsequently causes a nerve action potential to occur in the axon of the upper motor neuron, followed by neurotransmitter release.

يُسبب مُحفِّزٌ في الدماغ تكوُّن جهدٍ مُتدرِّجٍ في التغصنات وجسم الخلية العصبية الحركية العليا، وهي نوعٌ من الخلايا العصبيا الحركية التي تتشابك مع خليةٍ عصبيةٍ حركيةٍ سفليةٍ في الجهاز العصبي المركزي لتقلص العضلات الهيكلية. يُسبِّب هذا الجهد المُتدرِّج لاحقًا حدوث جهد فعلٍ عصبيٍّ في محور الخلية العصبية الحركية العليا، يليه إطلاقُ ناقلٍ عصبيٍّ. 7. The neurotransmitter generates a graded potential in a lower motor neuron, a type of motor neuron that directly supplies skeletal muscle fibers. The graded potential triggers the formation of a nerve action potential and then release of the neurotransmitter at neuromuscular junctions formed with skeletal muscle fibers that control movements of the fingers.

يُولِّد الناقل العصبي جهدًا مُتدرِّجًا في الخلية العصبية الحركية السفلى، وهي نوعٌ من الخلايا العصبية الحركية التي تُغذِّي ألياف العضلات الهيكلية مباشرةً. يُحفِّز هذا الجهد المُتدرِّج تكوين جهد فعلٍ عصبيٍّ، ثم إطلاقُه عند الوصلات العصبية العضلية المُشكَّلة مع ألياف العضلات الهيكلية التي تتحكم في حركات الأصابع 8. The neurotransmitter stimulates the muscle fibers that control finger movements to form muscle action potentials. The muscle action potentials cause these muscle fibers to contract, which allows you to write with the pen.

يُحفِّز الناقل العصبي ألياف العضلات التي تتحكم في حركات الأصابع لتكوين جهد فعل عضلي. تُسبِّب جهود فعل العضلات انقباض هذه الألياف العضلية، مما يُمكِّنك من الكتابة بالقلم.

THE PRODUCTION OF POTENTIALS

The production of graded potentials and action potentials depends on two basic features of the plasma membrane of يعتمد إنتاج الجهود المتدرجة وجهود الفعل على خاصيتين أساسيتين excitable cells: للغشاء البلازمى للخلايا القابلة للإثارة

- 1. The existence of a resting membrane potential. وجود جهد راحة:اي وجود فرق جهد بين داخل الخلية وخارجها
- 2. The presence of specific types of ion channels.

وجود قنوات الايونية تتحكم بحركة الأيونات داخل وخارج الخلية

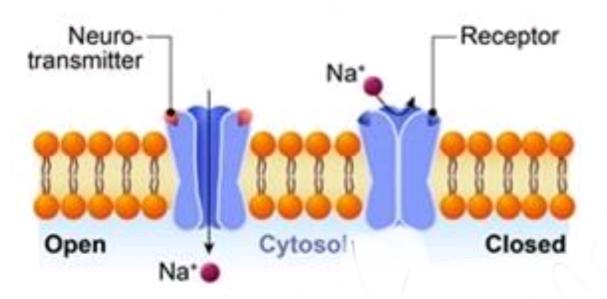
RESTING MEMBRANE POTENTIAL

- The membrane potential, an electrical potential difference (voltage) across the membrane. This voltage is termed the resting membrane potential.

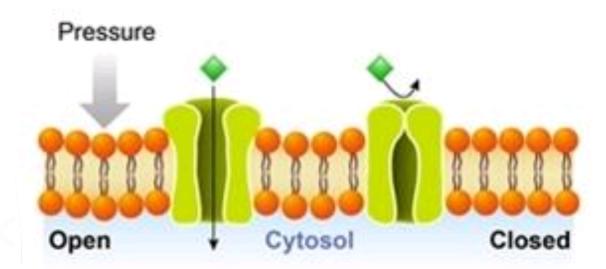
فرق الجهد الكهربائي بين داخل الخلية وخارجها هو جهد راحة الخلية

- This looks like voltage stored in a battery; you connect the positive and negative terminals of a battery with a piece of wire, electrons will flow along the wire. This flow of charged particles is called current.

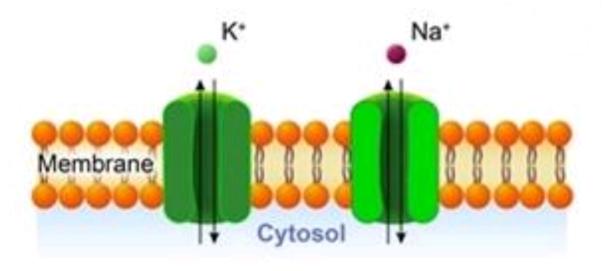
هذا الجهد مثل الجهد الموجود في البطارية عند وصل الجزء السالب والموجب بسلك ما يؤدي الى تدفق الالكترونات في السلك والتدفق هذا يسمى تيار كهربائي

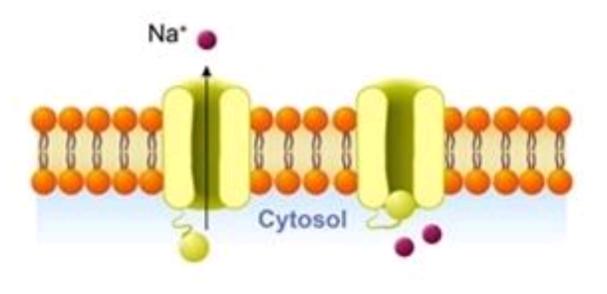

The types of ion channels:

أنواع قنوات الأيونات في الغشاء البلازمي


- 1. Leak channels.
- 2. Ligand-gated channel.
- 3. Mechanically-gated channel.
- 4. Voltage-gated channel.

ION CHANNEL


Ligand-gated


Mechanically-gated

Always open

Voltage-gated

Leak channels:

تتبدل عشوائيًا بين الوضعين المفتوح والمغلق.

Randomly alternate between open and closed positions.

تحتوى الأغشية البلازمية على قنوات تسرب أيونات البوتاسيوم أكثر بكثير

من قنوات تسرب أيونات الصوديوم. The plasma membranes have many more potassium ion leak channels than sodium ion leak channels.

 Leak channels are found in nearly all cells, including the dendrites, cell bodies, and axons of all types of neurons.

توجد قنوات التسرب في جميع الخلايا تقريبًا، بما في ذلك التغصنات، وأجسام الخلايا، والمحاور العصبية لجميع أنواع الخلايا العصبية.

Ligand-gated channel:

- Opens and closes in response to the binding of a ligand (chemical) stimulus (a ligand can be including neurotransmitters (i.e. acetylcholine), hormones, and particular ions).

 ثفتح وتُغلق استجابةً لارتباط مُحفِّز انها الأستيل كولين)، وهرمونات، وأيونات الربيطة الناقل عصبية (مثل الأستيل كولين)، وهرمونات، وأيونات مُحددة).
- Ligand-gated channels are located in the dendrites of some sensory neurons, such as pain receptors, and in dendrites and cell bodies of interneurons and motor dendrites and cell bodies of interneurons and motor like and like

Mechanically-gated channel:

لا يحتاج ناقل عصبي

• It opens or closes in response to mechanical stimulation in the form of vibration (such as sound waves), touch, pressure, or tissue stretching.

تنفتح أو تُغلق استجابةً للتحفيز الميكانيكي على شكل اهتزاز (مثل الموجات الصوتية)، أو لمس، أو ضغط، أو تمدد الأنسجة.

 They are found in auditory receptors in the ears, in receptors that monitor stretching of internal organs, and in touch receptors and pressure receptors in the skin.

توجد هذه القنوات في المستقبلات السمعية في الأذنين، وفي المستقبلات التي تراقب تمدد الأعضاء الداخلية، وفي مستقبلات اللمس ومستقبلات الضغط في الجلد.

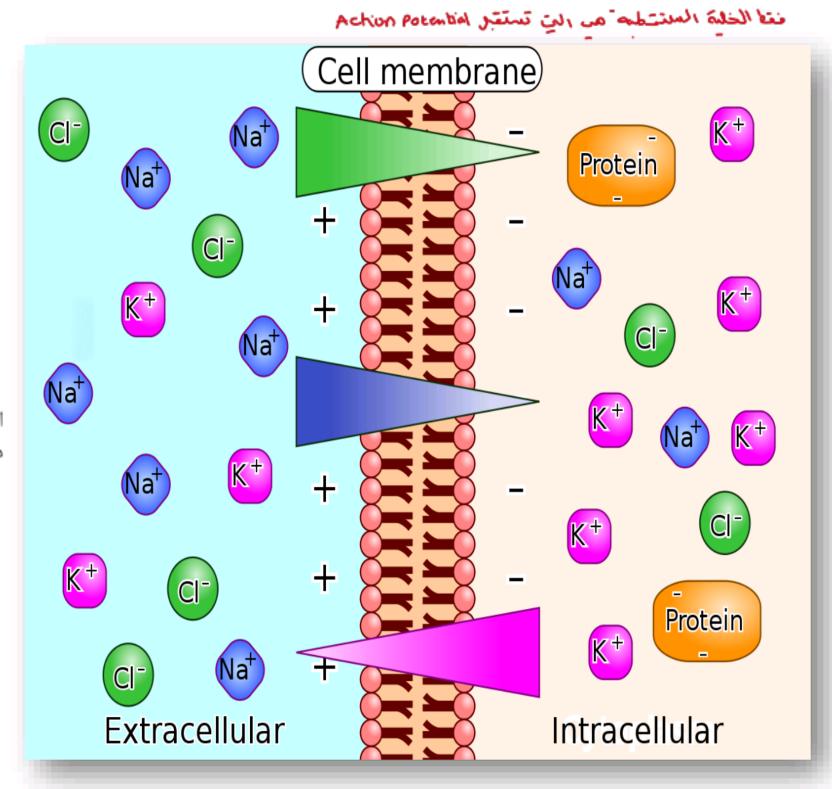
Voltage-gated channel:

• It opens in response to a change in membrane potential (voltage). القناة تفتح استجابة لتغير في فرق الجهد في الخلية

• They participate in the generation and conduction of action potentials in the axons of all types of neurons.

يساهم في إنتاج ونقل جهد الفعل في المحور العصبي في جميع انواع الخلايا العصبية

جهد الراحة للخلية الطبيعية 70- Resting Membrane Potential


تُعتبر الخلية التي تُظهر جهدًا غشائيًا مستقطبة

• A cell that exhibits a membrane potential is said to be polarized.

ثلاث عوامل تؤثر على هذا الجهد
Three factors that contribute to the resting membrane potential:

التوزيع غير المتساوي للأيونات في السائل خارج الخلوي والسيتوزول: مع ازدياد خروج أيونات البوتاسيوم الموجبة، يصبح الجزء الداخلي من الغشاء سالبًا بشكل متزايد، والجزء الخارجي موجبًا بشكل متزايد.

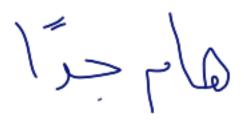
1. Unequal distribution of ions in the ECF and cytosol: as more and more positive potassium ions exit, the inside of the membrane becomes increasingly negative, and the outside of the membrane becomes increasingly positive.

polavization resting state

Resting Membrane Potential

2. <u>Inability of most anions to leave the cell:</u> They cannot follow the potassium cations out of the cell because they are attached to nondiffusible molecules such as ATP and large proteins.

عدم قدرة معظم الأنيونات على مغادرة الخلية: فهي لا تستطيع متابعة الأيونات الموجبة البوتاسيوم خارج الخلية لارتباطها بجزيئات غير قابلة للانتشار مثل ATP والبروتينات الكبيرة.


تحافظ هذه المضخة على جهد الراحة للخلية وهو -70

3. <u>Electrogenic nature of the Na–K ions ATPases</u>: The small inward Na ions leak, and outward K ions leak are offset by the Na–K ions ATPases (sodium–potassium pumps). However, they expel three Na ions each two K ions imported electrogenic, which means they contribute to the negativity of the resting membrane potential (it is very small: only -3 mV of the total -70 mV resting membrane potential in a typical neuron).

الطبيعة الكهروكيميائية لمضخات ATPases لأيونات الصوديوم والبوتاسيوم: تتسرب أيونات الصوديوم الصغيرة إلى الداخل، وتتسرب أيونات البوتاسيوم إلى الخارج بواسطة مضخات ATPases لأيونات الصوديوم والبوتاسيوم. ومع ذلك، فإنها تطرد ثلاثة أيونات صوديوم لكل أيونين بوتاسيوم مستوردين كهربائيا، مما يعني أنها تساهم في سلبية جهد الغشاء الساكن (وهو صغير جدا: 3 مللي فولت فقط من إجمالي جهد الغشاء الساكن -70 مللي فولت في الخلية العصبية النموذجية).

Comparison of Graded Potentials

and Action Potentials

جهد الفعل المتدرج

.1 1. لا يصل المنبه إلى مستوى العتبة.

2. يُسبب المنبه تغيرًا موضعيًا

Graded Rotential distance

. 🗲 في جهد الغشاء. Stimulus causes local change in membrane 3. يتلاشى على مسافة قصيرة.

4. يمكن جمعه.

It dies down over short 5. لا يخضع لقانون الكل أو لا شيء. distance.

- Can be summated.
- Does not obey all or none law.

Action Potential

 Stimulus reaches threshold level therefore causes AP.

Stimulus causes depolarization to threshold level.

It is propagated

Can not be summated.

Obeys all or none law.

It can't be die completio stope

threshow

جهد الفعل بالخلية العصبية

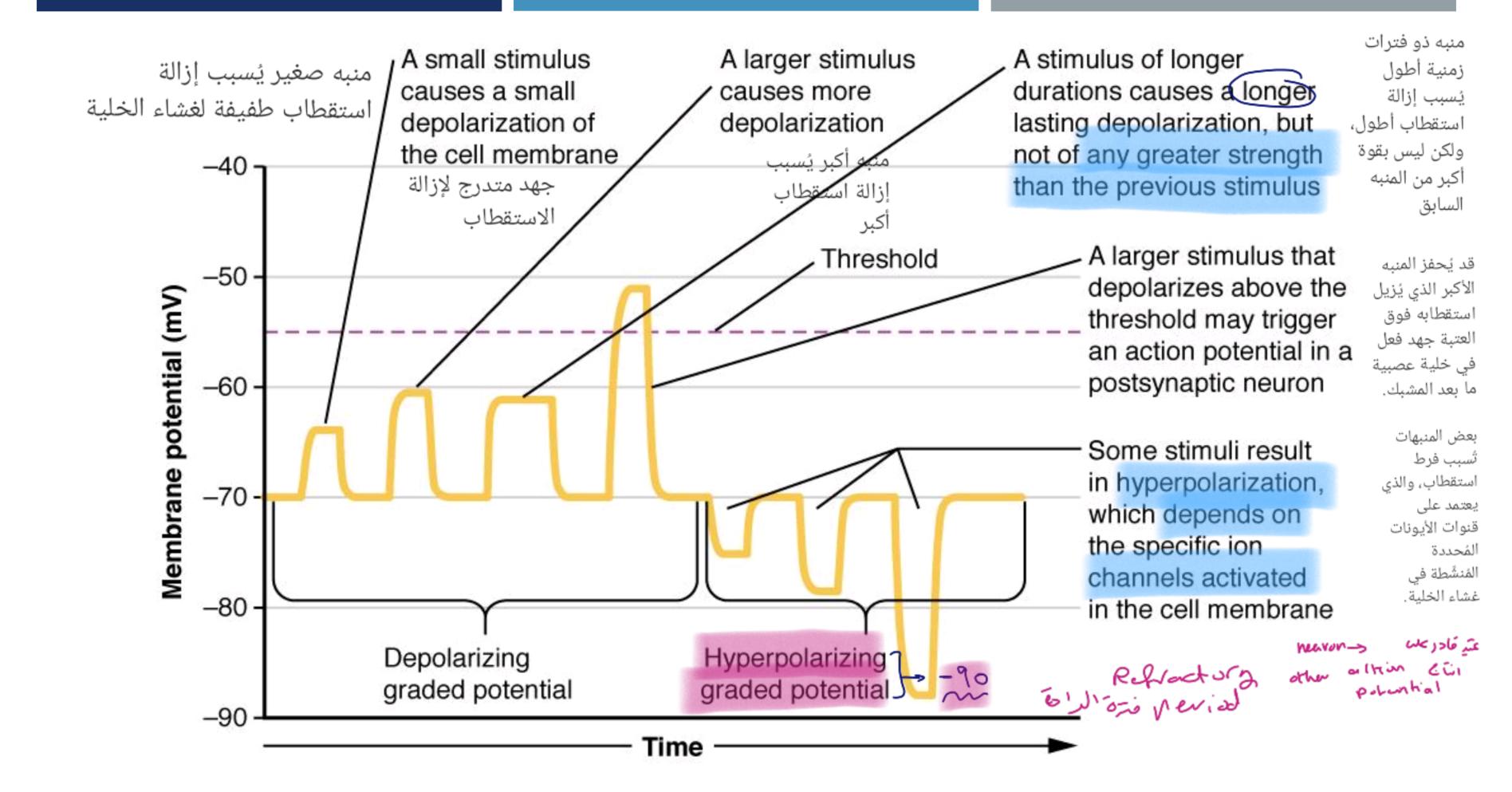
ىيتى ورة طوية

1. يصل المنبه إلى مستوى العتبة، وبالتالى يُسبب جهد الفعل.

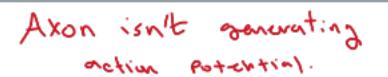
2. يُسبب المنبه إزالة

الاستقطاب إلى مستوى العتبة.

3. ينتشر.


4. لا يمكن جمعه.

5. يخضع لقانون الكل أو لا شيء.


Stimulus does not reach لىس بە أثر سىتە threshold level.

potential e.g. -70 to -60mv

It can be die

GRADED POTENTIALS

- The graded potential is a small deviation from the resting membrane potential that makes the membrane either more polarized (hyperpolarizing graded potential, inside more negative) or less polarized (depolarizing graded potential, inside less negative).

> الجهد المتدرج هو انحراف طفيف عن جهد الغشاء في حالة الراحة، مما يجعل الغشاء إما أكثر استقطابًا (جهد متدرج مفرط الاستقطاب، داخله أكثر سالبة) أو أقل استقطابًا (جهد متدرج مزيل الاستقطاب، داخله أقل سالبة).

- The graded potential occurs when a stimulus causes mechanically- gated or ligand-gated channels to open or close in an excitable cell's plasma membrane.

يحدث الجهد المتدرج عندما يتسبب مُحفِّز في فتح أو إغلاق قنوات ذات بوابات ميكانيكية أو ذات بوابات ربيطة في الغشاء البلازمي للخلية القابلة للإثارة.

GRADED POTENTIALS

- The graded potentials are useful for short-distance communication only (localized and dies after this distance). However, it can become stronger and last longer by summating with other graded potentials (summation is the process by which graded potentials add together). ومع ذلك، يمكن أن تصبح المحدوجة في الاتصالات قصيرة المدى فقط (موضعية وتموت بعد هذه المسافة). ومع ذلك، يمكن أن تصبح عهود متدرجة أخرى (الجمع هو العملية التي تتجمع بها الجهود المتدرجة).

يحدث الجهد المتدرج في التغصنات أو جسم الخلية العصبية استجابةً لناقل عصبي، ويُسمى جهدًا ما بعد المشبك.

- The graded potential occurs in the dendrites or cell body of a neuron in response to a neurotransmitter, it is called a postsynaptic potential.

تُسمى الجهود المتدرجة التي تحدث في المستقبلات الحسية والخلايا العصبية الحسية جهود المستقبلات وجهود المولدات.

- The graded potentials that occur in sensory receptors and sensory neurons are termed receptor potentials and generator potentials.

GENERATION OF ACTION POTENTIALS

- An action potential (AP) or impulse is a sequence of rapidly occurring events that decrease and reverse the membrane potential.

جهد الفعل (AP) أو النبضة هو سلسلة من الأحداث يتكون جهد الفعل من مرحلتين رئيسيتين: مرحلة السريعة التي تُقلل جهد الغشاء وتُعيده. إزالة الاستقطاب ومرحلة إعادة الاستقطاب.

(An action potential has two main phases: a depolarizing phase and a repolarizing phase. خلال مرحلة إزالة الاستقطاب، يُصبح جهد الغشاء السالب أقل سالبة، ويصل إلى الصفر، ثم يُصبح موجبًا. خلال مرحلة إعادة الاستقطاب، يُعاد جهد الغشاء السلط المناسبة المناس

الغشاء إلى حالة الراحة عند -70 ملى فولت. بعد مرحلة إعادة الاستقطاب، قد تأتي مرحلة فرط استقطاب لاحقة، حيث يصبح جهد الغشاء مؤقتًا أكثر سالبة من مستوى الراحة.

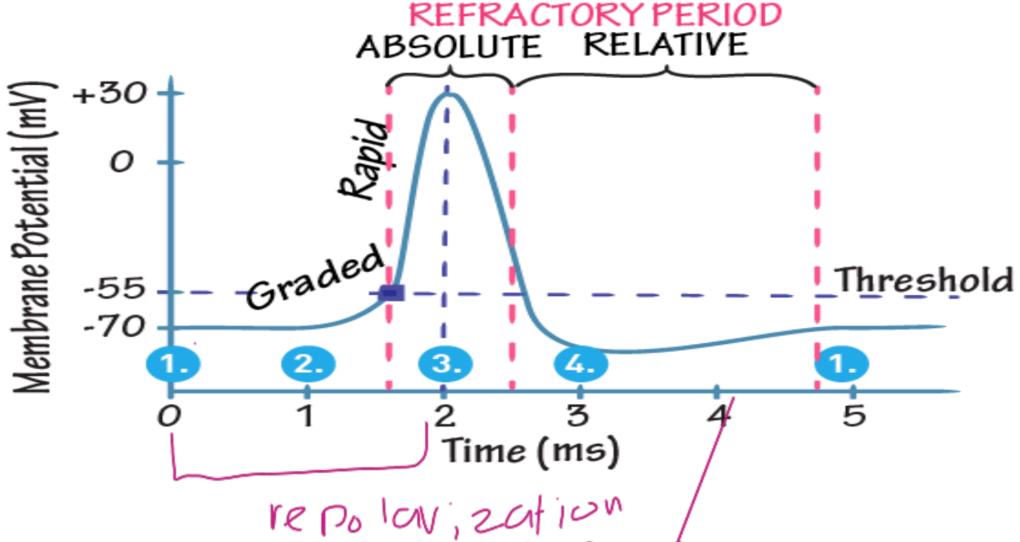
- During the depolarizing phase, the negative membrane potential becomes less negative, reaches zero, and then becomes positive. During the repolarizing phase, the membrane potential is restored to the resting state of -70 mV. Following the repolarizing phase there may be an afterhyperpolarizing phase, during which the membrane potential temporarily becomes more negative than the resting level.

ACTION POTENTIALS

- An action potential occurs in the membrane of the axon of a neuron when depolarization reaches a certain level termed the threshold.

يحدث جهد الفعل في غشاء محور الخلية العصبية عندما يصل الاستقطاب إلى مستوى معين يُسمى العتبة. قيمته -55

- An action potential will not occur in response to a subthreshold stimulus. However, an action potential will occur in response to a threshold stimulus, a stimulus that is just strong enough to depolarize the membrane to threshold. In other words, an action potential either occurs completely or it does not occur at all. This characteristic of an action potential is known as the all-or-none principle.


يحدث جهد فعل استجابةً لمنبه دون العتبة. ومع ذلك، يحدث جهد فعل استجابةً لمنبه عتبة، وهو منبه قوي بما يكفي لإزالة استقطاب الغشاء إلى العتبة. بمعنى آخر، إما أن يحدث جهد الفعل كليًا أو لا يحدث على الإطلاق. تُعرف هذه الخاصية لجهد الفعل بمبدأ الكل أو لا شيء.

ACTION POTENTIALS

- Several action potentials will form in response to a suprathreshold stimulus. Each of the action potentials caused by a suprathreshold stimulus has the same amplitude (size) as an action potential caused by a threshold stimulus.

تتشكل عدة جهود فعل استجابةً لمنبه فوق العتبة. كل جهد فعل ناتج عن منبه فوق العتبة له نفس سعة (حجم) جهد الفعل الناتج عن منبه عتبة. اي نفس القوة لكل جهود الفعل

Action Potentials

- 1. Resting state All gated ion channels closed
- 2. Depolarization Na+ channels open, K+ channels closed
- 3. Repolarization Na+ channels inactivated, K+ channels open
- 4. Hyperpolarization Na+ channels reset and closed, K+ channels still open

DEPOLARIZING PHASE

- Inward movement of Na ions, the depolarizing phase of the action potential.

حركة أيونات الصوديوم إلى الداخل، وهي مرحلة إزالة الاستقطاب لجهد الفعل.

- This changes the membrane potential from -55 mV to يؤدي هذا إلى تغيير جهد الغشاء من -55 ملى فولت إلى +30 ملى فولت $+30 \,\mathrm{mV}$

لكل قناة من قنوات أيونات الصوديوم ذات البوابات الجهدية بوابتان منفصلتان: بوابة تنشيط وبوابة تعطيل - Each voltage-gated Na ions channel has two separate gates, an activation gate and an inactivation gate.

DEPOLARIZING PHASE

- In the resting state of a voltage-gated Na ions channel, the inactivation gate is open, but the activation gate is closed (Na ions cannot move into the cell through these channels).

في الحالة الاستراحية (resting state) لقناة الصوديوم الحساسة للجهد، تكون بوابة التعطيل (inactivation gate) مفتوحة، لكن بوابة التنشيط (activation gate) مغلقة، لذلك لا يمكن لأيونات الصوديوم أن تتحرك إلى داخل الخلية من خلال هذه القنوات

- At threshold, voltage-gated Na ions channels are activated, both the activation and inactivation gates in the channel are open and Na ions inflow begins (more channels open, Na ions inflow increases, the membrane depolarizes further). عند جهد العتبة (threshold)، تُفعَّل قنوات الصوديوم الحساسة للجهد، حيث تُفتح كل من بوابتي التنشيط والتعطيل، وتبدأ

أيونات الصوديوم بالدخول إلى داخل الخلية.

وكلما زاد عدد القنوات المفتوحة، زاد تدفق الصوديوم، مما يجعل الغشاء أكثر إزالةً للاستقطاب (أقل سالبية).

- However, the concentration of Na ions hardly changes because of the millions of Na ions present in the extracellular fluid.

مع ذلك، تركيز أيونات الصوديوم لا يتغير بشكل ملحوظ، وذلك بسبب وجود ملايين من أيونات الصوديوم في السائل خارج الخلية (extracellular fluid

REPOLARIZING PHASE

عند مستوى جهد العتبة، فإن إزالة الاستقطاب (depolarization) أيضًا تفتح قنوات البوتاسيوم الحساسة للجهد.

- At threshold level, depolarization also opens voltage-gated K ions channels.

عندما يقل تدفق أيونات الصوديوم إلى الداخل ويزداد خروج أيونات البوتاسيوم إلى الخارج، يتغير جهد الغشاء من +30 ملي فولت إلى الحالة الاستراحية (resting state).

- 70 ملي فولت، وتعود قنوات الصوديوم غير النشطة إلى الحالة الاستراحية (resting state).

الفتح البطيء لقنوات البوتاسيوم الحساسة للجهد، وإغلاق قنوات الصوديوم الحساسة للجهد التي الفتح البطيء لقنوان إلى مرحلة إعادة الاستقطاب من جهد الفعل.

- Slower opening of voltage-gated K ions channels and closing of

- Slower opening of voltage-gated K ions channels and closing of previously open voltage-gated Na ions channels produce the repolarizing phase of the action potential (Na ions inflow slows and accelerating K ions outflow, the membrane potential to change from +30 mV to -70 mV, inactivated Na ions channels to revert to the resting state).

AFTER-HYPERPOLARIZING PHASE

- During this phase, the voltage-gated K ions channels remain open and the membrane potential becomes even more negative (about -90 mV).

خلال هذه المرحلة، تبقى قنوات البوتاسيوم الحساسة للجهد مفتوحة، ويصبح جهد الغشاء أكثر سلبية (حوالي –90 ملي فولت).

- As the voltage-gated K ions channels close, the membrane potential returns to the resting level of - 70 mV.

وعندما تُغلق قنوات البوتاسيوم الحساسة للجهد، يعود جهد الغشاء إلى المستوى الاستراحي الطبيعي (–70 mV).

REFRACTORY PERIOD

- The period of time after an action potential begins during which an excitable cell cannot generate another action potential in response to a normal threshold stimulus is called the refractory period.

هي الفترة الزمنية التي تلي بدء جهد الفعل، والتي لا تستطيع فيها الخلية المثارة أن تولّد جهد فعل آخر استجابةً لمنبّه عادي، وتُسمى فترة الجموح (Refractory Period

- In contrast to action potentials, graded potentials do not exhibit a refractory period.

بخلاف جهود الفعل، فإن الجهود المتدرجة (graded) لا تمتلك فترة جموح.

PROPAGATION OF ACTION POTENTIALS

- In contrast to the graded potential, an action potential is not decremental (it does not die out, action potentials function in communication over long distances.). Instead, an action potential keeps its strength as it spreads along the membrane. This mode of conduction is called propagation.

على عكس الجهد المتدرج (graded potential)، فإن جهد الفعل (action potential) لا يتناقص (أي لا يضعف أو يختفي)، بل يعمل في نقل الإشارات لمسافات طويلة بدلاً من ذلك، فإن جهد الفعل يحافظ على قوته أثناء انتشاره على طول الغشاء وهذا النمط من الانتقال يُسمّى الانتشار (Propagation).

- The action potential regenerates over and over at adjacent regions of membrane from the trigger zone to the axon terminals. However, it cannot propagate back toward the cell body because any region of membrane that has just undergone an action potential is temporarily in the refractory period. ومن الفصل أن ينتشر عكس الاتجاه نحو جسم الخلية، لأن أي منطقة من الفشاء مرت لتوها بجهد فعل تكون مؤقفا في فترة الجموح (refractory period).

THANK YOU

AMJADZ@HU.EDU.JO