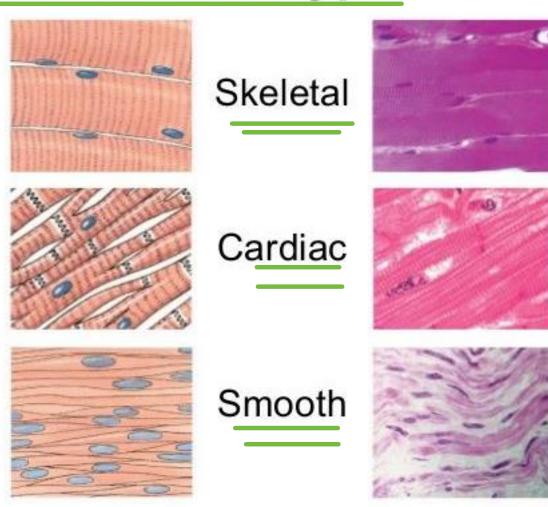


Objectives

1. Discuss ultrastructure of muscle cells.


2. Describe molecular mechanism of contraction.

(Pages 292-308 of the reference)

General Overview

The three types of muscular tissue are skeletal, cardiac, and smooth.

Muscle Tissue Types

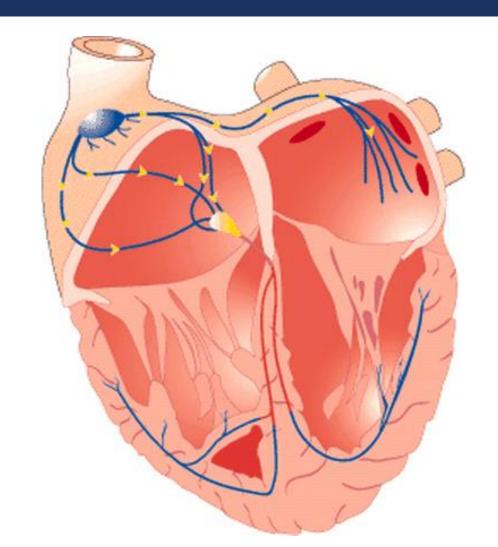
SKELETAL MUSCLE TISSUE

- Skeletal muscle tissue is so named because most skeletal muscles move the bones of the skeleton. Alternating light and dark protein bands (striations) are seen when the tissue is examined with a microscope.

 when the tissue is examined with a microscope.

 when the tissue is examined with a microscope.

 when the tissue is examined with a microscope.
- Skeletal muscle tissue works <u>mainly in a voluntary manner</u>. Its activity can be consciously controlled by neurons (nerve cells) that are part of the somatic (voluntary) division of the nervous system. الموعية. يمكن التحكم في نشاطها بشكل واعي عن طريق الخلايا العصبية (الخلايا العصبية) التي تشكل جزءًا من التقسيم الجسدي (الطوعي) للجهاز العصبية.
- Most skeletal muscles also are <u>controlled subconsciously</u> to some extent. For example, your <u>diaphragm</u> continues to alternately contract and relax without conscious control so that you don't stop breathing. Also, you <u>do</u> not need to consciously think about contracting the skeletal muscles that maintain your posture or stabilize body positions.


كما يتم التحكم في معظم العضلات الهيكلية لا شعوريًا إلى حد ما. على سبيل المثال، يستمر الحجاب الحاجز في الانقباض والاسترخاء بالتناوب دون تحكم واعي، بحيث لا يتوقف التنفس. كذلك، لستَ بحاجةٍ للتفكير بوعى في انقباض العضلات الهيكلية التي تحافظ على وضعيتك أو تُثبّت وضعيات جسمك.

CARDIAC MUSCLE TISSUE

لا يتم التحكم في الانقباضات والاسترخاء المتناوبين للقلب بشكل واعي. بل ينبض القلب لأنه يحتوي على جهاز تنظيم ضربات قلب طبيعي يبدأ كل انقباضة.

- The alternating contraction and relaxation of the heart is not consciously controlled. Rather, the heart beats because it has a natural pacemaker that initiates each contraction.
- This built-in rhythm is termed autorhythmicity. Several hormones and neurotransmitters can adjust heart rate by speeding or slowing the pacemaker.

يُطلق على الإيقاع الداخلي اسم الإيقاع الذاتي. يمكن للعديد من الهرمونات والناقلات العصبية ضبط معدل ضربات القلب عن طريق تسريع أو إبطاء جهاز تنظيم ضربات القلب.

SMOOTH MUSCLE TISSUE

تقع في جدران الهياكل الداخلية المجوفة، مثل الأوعية الدموية، والممرات الهوائية، ومعظم الأعضاء في تجويف البطن والحوض.

It is located in the walls of hollow internal structures, such as blood vessels, airways, and most organs in the abdominopelvic cavity.

عادةً ما يكون عمل العضلات الملساء لا إراديًا، وبعضها، مثل العضلات التي تدفع الطعام عبر الجهاز الهضمي، لديه إيقاع ذاتي.

The action of smooth muscle is usually involuntary, and some smooth muscle tissue, such as the muscles that propel food through your gastrointestinal tract, has autorhythmicity.

FUNCTIONS OF MUSCULAR TISSUE

- 1. <u>Producing body movements</u> (movements of the whole body, and localized movements).
- 2. <u>Stabilizing body positions</u> (such as standing or sitting, neck muscles hold your head upright).
- 3. Storing and moving substances within the body (storage is accomplished by sustained contractions of ringlike bands of smooth muscle called sphincters (i.e., gastrointestinal tract). Contraction and relaxation of smooth muscle in the walls of blood vessels help adjust blood vessel diameter and thus regulate the rate of blood flow.
- 4. <u>Generating heat</u> (As muscular tissue contracts, it produces heat, a process known as thermogenesis (maintaining normal body temperature)).

وظائف النسيج العضلي

١. إنتاج حركات الجسم (حركات الجسم كله وحركات موضعية).

[2. تثبيت أوضاع الجسم (مثل الوقوف أو الجلوس، حيث تُبقي عضلات الرقبة رأسك منتصبًا).

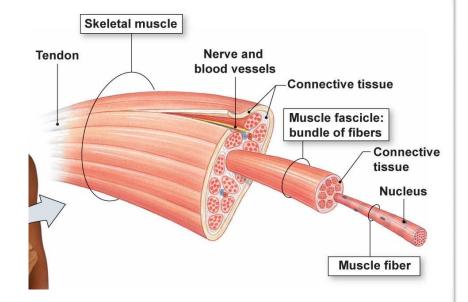
٣. تخزين ونقل المواد داخل الجسم (يتم التخزين عن طريق انقباضات مستمرة لأشرطة حلقية من العضلات الملساء تُسمى العضلات العاصرة (أي الجهاز الهضمي). يساعد انقباض وانبساط العضلات الملساء في جدران الأوعية الدموية على تعديل قطر الأوعية الدموية، وبالتالي تنظيم معدل تدفق الدم.

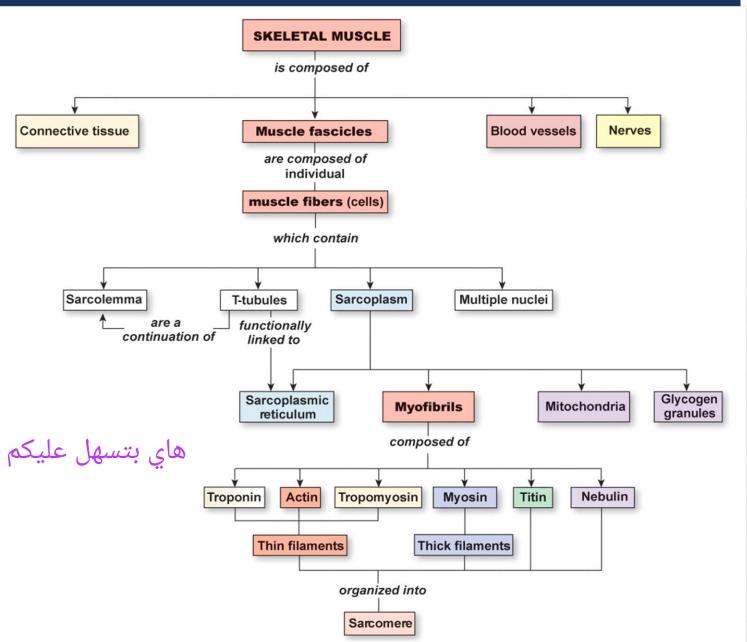
٤. توليد الحرارة (عندما تنقبض الأنسجة العضلية، فإنها تُنتج حرارة، وهي عملية تُعرف باسم التوليد الحراري (الحفاظ على درجة حرارة الجسم الطبيعية)).

PROPERTIES OF MUSCULAR TISSUE

- 1. <u>Electrical excitability</u> respond to certain stimuli by producing electrical signals called <u>action potentials (impulses)</u> (i.e., <u>autorhythmic electrical signals</u> arising in the muscular tissue itself, as in the heart's pacemaker or <u>chemical stimuli</u>, such as neurotransmitters released by neurons, hormones distributed by the blood, or even local changes in pH).
- 2. <u>Contractility</u> (ability of muscular tissue to contract forcefully when stimulated by an action potential).
- 3. Extensibility (ability of muscular tissue to stretch, within limits, without being damaged (i.e., smooth muscle in the stomach and cardiac muscle)).
- 4. <u>Elasticity</u> (ability of muscular tissue to return to its original length and shape after contraction or extension).

خصائص الأنسجة العضلية


١. تستجيب الاستثارة الكهربائية لمحفزات معينة عن طريق إنتاج إشارات كهربائية تُسمى جهود الفعل (النبضات) (أي الإشارات الكهربائية ذاتية الإيقاع التي تنشأ في النسيج العضلي نفسه، كما هو الحال في جهاز تنظيم ضربات القلب أو المحفزات الكيميائية، مثل النواقل العصبية التي تُطلقها الخلايا العصبية، والهرمونات التي يُفرزها الدم، أو حتى التغيرات الموضعية في درجة الحموضة).


٢. الانقباض (قدرة النسيج العضلي على الانقباض بقوة عند تحفيزه بجهد فعل).

٣. القابلية للتمدد (قدرة الأنسجة العضلية على التمدد، ضمن حدود، دون أن تتضرر (مثل العضلات الملساء في عضلة المعدة والقلب).

٤. المرونة (قدرة الأنسجة العضلية على العودة إلى طولها وشكلها الأصليين بعد الانقباض أو التمدد).

SKELETAL MUSCLE FUNCTIONAL ANATOMY

مكونات النسيج الضام

CONNECTIVE TISSUE COMPONENTS

- 1. <u>Subcutaneous layer or hypodermis</u> (which separates muscle from skin, is a pathway for nerves, blood vessels, and lymphatic vessels to enter and exit muscles).

 1. <u>Iddies resulted in the light of </u>
- 2. <u>Adipose tissue of the subcutaneous layer</u> (stores most of the body's triglycerides, serves as an insulating layer that reduces heat loss, and protects muscles from physical trauma).

 2. النسيج الدهني للطبقة تحت الجلد (يخزن معظم الدهون الثلاثية في الجسم، ويعمل كطبقة عازلة تقلل من فقدان الحرارة، وتحمي العضلات من الصدمات الجسدية).
- 3. <u>Fascia</u> (is a dense sheet or broad band of irregular connective tissue that lines the body wall and limbs and supports and surrounds muscles and other organs of the body.).

 ق. اللفافة (هي طبقة كثيفة أو شريط عريض من النسيج الضام غير المنتظم الذي 3.

ح. اللقافة (هي طبقة حتيقة أو شريط غريض من النسيج الضام غير المنتظم الذي يبطن جدار الجسم والأطراف، ويدعم ويحيط بالعضلات وأعضاء الجسم الأخرى).

الإمداد العصبي والدم NERVE AND BLOOD SUPPLY

العضلات الهيكلية مُزودة جيدًا بالأعصاب والأوعية الدموية.

- Skeletal muscles are well supplied with nerves and blood vessels.
- بشكل عام، يرافق كل عصب يخترق العضلة الهيكلية شريان ووريد أو وريدان.
- Generally, an artery and one or two veins accompany each nerve that penetrates a skeletal muscle.

 | Penetrates a skeletal muscle | Penetrates a skeleta
- The neurons that stimulate skeletal muscle to contract are somatic motor neurons. Each somatic motor neuron has a threadlike axon that extends from the brain or spinal cord to a group of skeletal muscle fibers.
- The axon of a somatic motor neuron typically branches many times, each branch extending to a different skeletal muscle fiber.

 The axon of a somatic motor neuron typically branches many times, each branch extending to a different skeletal muscle fiber.

 The axon of a somatic motor neuron typically branches many times, each along the properties of the p
- The blood capillaries bring in oxygen and nutrients and remove heat and the waste products of muscle metabolism.

تحمل الشعيرات الدموية الأكسجين والمغذيات، وتزيل الحرارة وفضلات عملية التمثيل الغذائى للعضلات.

MICROSCOPIC ANATOMY OF A SKELETAL I STATE OF

لأن كل ليفة عضلية هيكلية تنشأ أثناء التطور الجنيني من اندماج مئة أو أكثر من خلايا الأديم المتوسط الصغيرة التي تُسمى الخلايا العضلية، فإن كل ليفة عضلية هيكلية ناضجة تحتوي على مئة نواة أو أكثر.

Because each skeletal muscle fiber arises during embryonic development from the fusion of a hundred or more small mesodermal cells called myoblasts, each mature skeletal muscle fiber has a hundred or more nuclei.

• Once fusion has occurred, the muscle fiber loses its ability to undergo cell division. Thus, the number of skeletal muscle fibers is set before you are born, and most of these cells last a lifetime.

بمجرد حدوث الاندماج، تفقد الألياف العضلية قدرتها على الانقسام الخلوي. وبالتالي، يتم تحديد عدد ألياف العضلات الهيكلية قبل الولادة، ومعظم هذه الخلايا تدوم مدى الحياة.

MICROSCOPIC ANATOMY OF A SKELETAL MUSCLE FIBER

الساركولينما هو الغشاء البلازمي للخلية العضلية.

Sarcolemma is the plasma membrane of a muscle cell.

- الأنابيب المستعرضة (T tubules)، وهي أنفاق تمتد من السطح باتجاه مركز كل ليفة عضلية.
- <u>Transverse (T) tubules</u> which are tunnels in <u>from</u> the surface toward the center of each muscle fiber.

تنتقل جهود الفعل العضلية على طول غشاء الساركوليما وعبر الأنابيب T، منتشرةً بسرعة في جميع أنحاء الألياف

- Muscle action potentials travel along the sarcolemma and through the T tubules, quickly spreading throughout the muscle fiber.
- Sarcoplasm is the cytoplasm of a muscle fiber which includes a substantial amount of glycogen, which is a large molecule composed of many glucose molecules. In addition, the sarcoplasm contains a red-colored protein called myoglobin. It binds oxygen molecules that diffuse into muscle fibers and releases oxygen when it is needed by the mitochondria for ATP production.

MICROSCOPIC ANATOMY OF A SKELETAL MUSCLE FIBER

اللِّيَيْفات العضلية، العضيات الانقباضية للعضلات الهيكلية.

نظام مملوء بالسوائل من الأكياس الغشائية يسمى الشبكة الهيولية العضلية (SR) يحيط بكل ليف عضلى.

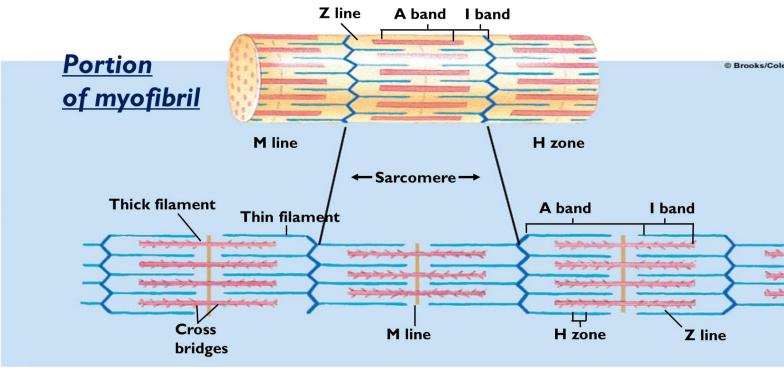
- Myofibrils, the contractile organelles of skeletal muscle.
- Fluid-filled system of membranous sacs <u>called the sarcoplasmic reticulum</u> (SR) encircles each myofibril.
- In a relaxed muscle fiber, the sarcoplasmic reticulum stores calcium ions. Release of calcium ions from the sarcoplasmic reticulum triggers muscle contraction.

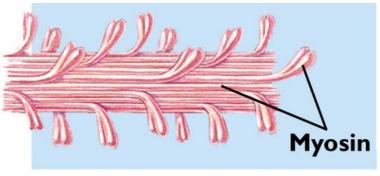
في الألياف العضلية المسترخية، تخزن الشبكة الساركوبلازمية أيونات الكالسيوم. يؤدي إطلاق أيونات الكالسيوم من الشبكة الساركوبلازمية إلى انقباض العضلة.

MICROSCOPIC ANATOMY OF A SKELETAL MUSCLE FIBER

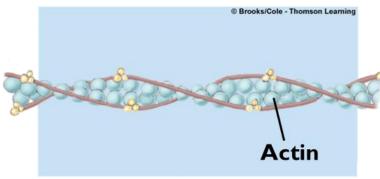
• Within myofibrils are smaller protein structures called <u>filaments</u> or <u>myofilaments</u>. They are arranged in compartments called <u>sarcomeres</u>. The plate-shaped regions of dense protein material called <u>Z discs</u> separate one sarcomere from the next. Thus, a sarcomere extends from one Z disc to the next Z disc

يوجد داخل اللييفات العضلية هياكل بروتينية أصغر تسمى الخيوط أو الخيوط العضلية. يتم ترتيبها في مقصورات تسمى القسيمات العضلية. المناطق على شكل صفيحة من مادة بروتينية كثيفة تسمى أقراص Z تفصل قسيمًا عضليًا عن الآخر. وهكذا، يمتد القسيم العضلي من قرص Z إلى القرص Z التالي


• Thin filaments are 8 nm in diameter and 1–2 μm long and composed mostly of the <u>protein actin</u>, while <u>thick filaments</u> are 16 nm in diameter and 1–2 μm long and composed mostly of the <u>protein myosin</u>.


يبلغ قطر الخيوط الرقيقة 8 نانومتر وطولها 1-2 ميكرومتر وتتكون في الغالب من بروتين الأكتين، في حين يبلغ قطر الخيوط السميكة 16 نانومتر وطولها 1-2 ميكرومتر وتتكون في الغالب من بروتين الميوسين.

مهم نعرف موقع کل نطاق


اللييفات العضلية مُرتبة في نمط متكرر، وهي القسيمات العضليه

- The myofibrils are organized into a repetitive pattern, the sarcomere.
- Myosin: thick filament.
- **Actin**: thin filament.
- Bands formed by pattern: A and I and H bands.
 - **Z** line: area of attachment of the actin fibers.
 - M line: Myosin fiber centers.

Thin filament

MUSCLE PROTEINS

1-<u>Contractile proteins</u> generate force during muscle contractions.

2-Regulatory proteins help switch the contraction process on and off.

2- تساعد البروتينات التنظيمية على تفعيل وإيقاف عملية الانقباض.

3-Structural proteins keep the thick and thin filaments in the proper alignment, give the myofibril elasticity and extensibility.

و تحافظ البروتينات الهيكلية على محاذاة الخيوط السميكة والرفيعة وقابلية للتمدد.

الميوسين هو البروتين الحركي الموجود في الأنواع الثلاثة من الأنسجة العضلية ويشكل خيطًا سميكًا يتكون من ذيل ورأسين للميوسين.

CONTRACTILE PROTEINS

Myosin is the motor protein in all three types of muscle tissue and makes up thick filament, which consists of a tail and two myosin heads.

تقوم البروتينات الحركية بسحب الهياكل الخلوية المختلفة لتحقيق الحركة (تقلصات العضلات) عن طريق تحويل الطاقة الكيميائية الموجودة في ATP إلى طاقة ميكانيكية للحركة، أي إنتاج القوة.

• Motor proteins pull various cellular structures to achieve movement (muscle contractions) by converting the chemical energy in ATP to the mechanical energy of motion, that is, the production of force.

يتم تثبيت الخيوط الرفيعة على أقراص Z. المكون الرئيسي لها هو بروتين الأكتين. يوجد على كل جزيء أكتين موقع ربط للميوسين، حيث يمكن أن يتصل رأس الميوسين أثناء تقلص العضلات.

• Thin filaments are anchored to Z discs. Their main component is the protein <u>actin</u>. On each actin molecule is a myosin-binding site, where a myosin head can attach during muscle contraction.

هما التروبوميوسين والتروبونين، اللذان يساعدان على تفعيل وإيقاف عملية انقباض العضلات.

REGULATORY PROTEINS

• They are **tropomyosin** and **troponin**, that help switch muscle contraction process on and off.

في العضلات المسترخية، يتم منع الميوسين من الارتباط بالأكتين لأن خيوط التروبوميوزين تغطي مواقع ربط المنيوزين على الأكتين. يتم تثبيت خيوط التروبوميوزين بدورها في مكانها بواسطة جزيئات التروبونين.

In relaxed muscle, myosin is blocked from binding to actin because strands of tropomyosin cover the myosin binding sites on actin. The tropomyosin strands in turn are held in place by troponin molecules.

> عندما ترتبط أيونات الكالسيوم بالتروبونين، فإنه يخضع لتغيير في الشكل، وهذا التغيير يحرك التروبوميوزين بعيدًا عن مواقع ربط الميوسين على الأكتين ويبدأ تقلص العضلات لاحقًا عندما يرتبط الميوسين بالأكتين.

• When calcium ions bind to troponin, it undergoes a change in shape; this change moves tropomyosin away from myosin-binding sites on actin and muscle contraction subsequently begins as myosin binds to actin.

STRUCTURAL PROTEINS

- They contribute to the alignment, stability, elasticity, and extensibility of myofibrils.
 انها تساهم في محاذاة واستقرار ومرونة وقابلية تمدد الليبفات العضلية.
- Several key structural proteins are titin, α-actinin, myomesin, nebulin, and dystrophin.
 العدید من البروتینات الهیکلیة الرئیسیة هي التیتین، والاکتینین، والمیومیسین، والنیبولین، والدیستروفین.
- Titin is the third most plentiful protein in skeletal muscle (after actin and myosin), it has a huge size. It accounts for much of the elasticity and extensibility of myofibrils.

 وبعد الاكتين والميوسين)، وهو ضخم الحجم. وهو المسؤول عن جزء كبير من مرونة وقابلية تمدد الليفات العضلية.
- Titin probably helps the muscle return to its resting length after a muscle has contracted or been stretched, and it may help prevent overextension of muscles; thereby helping to stabilize thick filament position.

ربما يساعد التيتين على عودة العضلة إلى طولها الطبيعي بعد انقباضها أو تمددها، وقد يساعد على منع فرط تمددها، مما يُساعد على تثبيت وضعية الخيوط السميكة.

CONTRACTION AND RELAXATION OF SKELETAL MUSCLE FIBERS

- Scientists were surprised to see that the lengths of the thick and thin filaments were the same in both relaxed and contracted muscle. It had been thought that muscle contraction must be a folding process, somewhat like closing an accordion. Instead, researchers discovered that skeletal muscle shortens during contraction because the thick and thin filaments slide past one another. The model describing this process is known as the sliding filament mechanism.

انقباض واسترخاء ألياف العضلات الهيكلية

تفاجأ العلماء برؤية أن أطوال الخيوط السميكة والرفيعة متساوية في كل من العضلات المسترخية والمتقلصة. كان يُعتقد أن انقباض العضلات عملية طي، تشبه إلى حد ما إغلاق آلة الأكورديون. بدلاً من ذلك، اكتشف الباحثون أن العضلات الهيكلية تقصر أثناء الانقباض لأن الخيوط السميكة والرفيعة تنزلق فوق بعضها البعض. يُعرف النموذج الذي يصف هذه العملية باسم آلية انزلاق الخيوط.

THE SLIDING FILAMENT MECHANISM

آلية انزلاق الخيوط

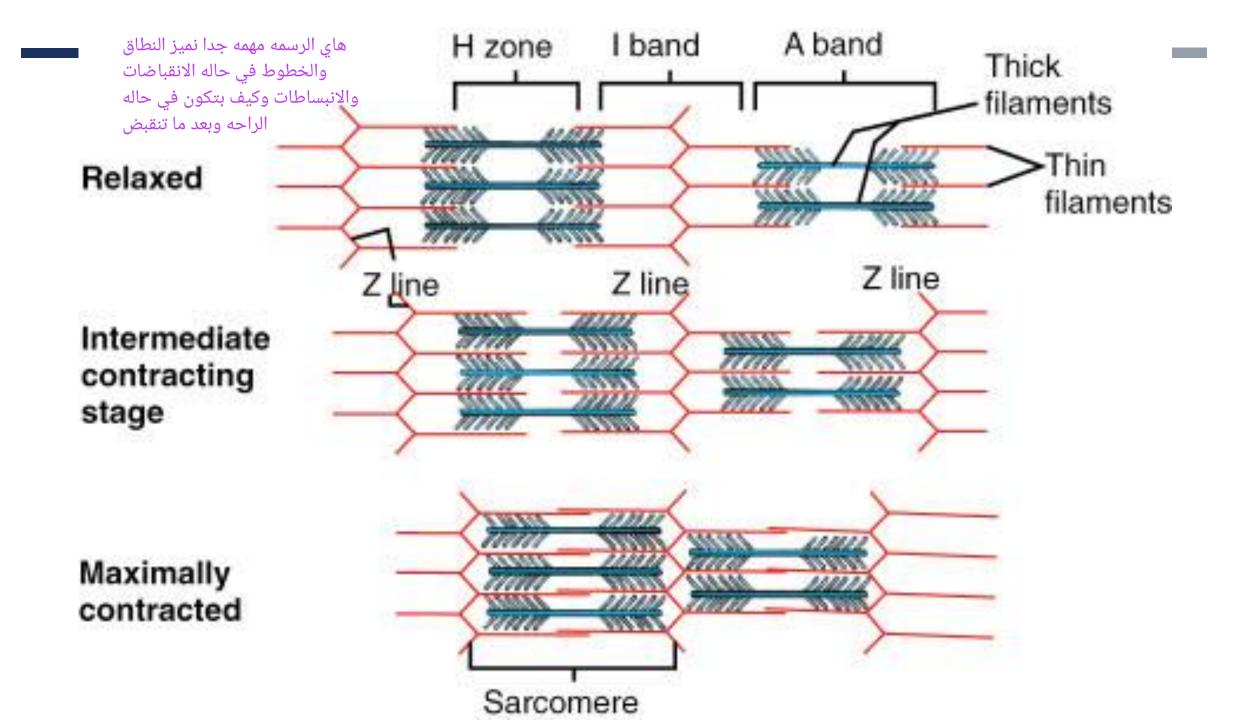
يحدث انقباض العضلات بسبب التصاق رؤوس الميوسين بالخيوط الرفيعة عند طرفي الساركومير وسيرها عليها، متبوعًا بما يلي:

 Muscle contraction occurs because myosin heads attach to and "walk" along the thin filaments at both ends of a sarcomere, followed by:

1- سحب الخيوط الرفيعة تدريجيًا نحو الخط M.

- 1- Progressively pulling the thin filaments toward the M line.
- **2-** As the thin filaments slide inward, the **I band** and **H zone** narrow and eventually disappear altogether when the muscle is maximally contracted. However, the width of the **A band** and the individual lengths of the thick and thin filaments remain unchanged.

. 2- مع انزلاق الخيوط الرفيعة إلى الداخل، تضيق المنطقة | والمنطقة H، ثم تختفيان تمامًا عند أقصى انقباض للعضلة. ومع ذلك، يبقى عرض المنطقة A وأطوال الخيوط السميكة والرفيعة دون تغيير.


THE SLIDING FILAMENT MECHANISM

3-Since the thin filaments on each side of the sarcomere are attached to Z discs, when the thin filaments slide inward, the Z discs come closer together, and the sarcomere shortens.

٣- بما أن الخيوط الرفيعة على جانبي الساركومير متصلة بأقراص Z، فعندما تنزلق الخيوط الرفيعة إلى الداخل، تقترب أقراص Z من بعضها، ويقصر الساركومير.

4- Shortening of the sarcomeres causes shortening of the whole muscle fiber, which in turn leads to shortening of the entire muscle.

Shortening of the sarcomeres causes shortening of the whole in turn leads to shortening of the entire muscle.

THE CONTRACTION CYCLE

دورة الانقباض

Contraction cycle consists of four steps:

- 1. ATP hydrolysis. ATP
- 2. Attachment of myosin to actin to form cross-bridges.
- 3. Power stroke. قوط القدرة. 3.
- 4. Detachment of myosin from actin. انفصال الميوسين عن الأكتين.

ATP HYDROLYSIS

- The **myosin head** includes an **ATP-binding site** and an **ATPase**, an enzyme that hydrolyzes ATP into ADP (adenosine diphosphate) and a phosphate group.
- Notice that the products of ATP hydrolysis—ADP and a phosphate group—are still attached to the myosin head.

يتضمن رأس الميوسين موقعًا لربط ATP وإنزيم ATPase، وهو إنزيم يُحلل ATP إلى ADP (أدينوزين ثنائي الفوسفات) ومجموعة فوسفات - لا تزال متصلة برأس الميوسين.

ATTACHMENT OF MYOSIN TO ACTIN TO FORM CROSS-BRIDGES

The energized myosin head attaches to the myosin-binding site on actin and releases the previously hydrolyzed phosphate group.

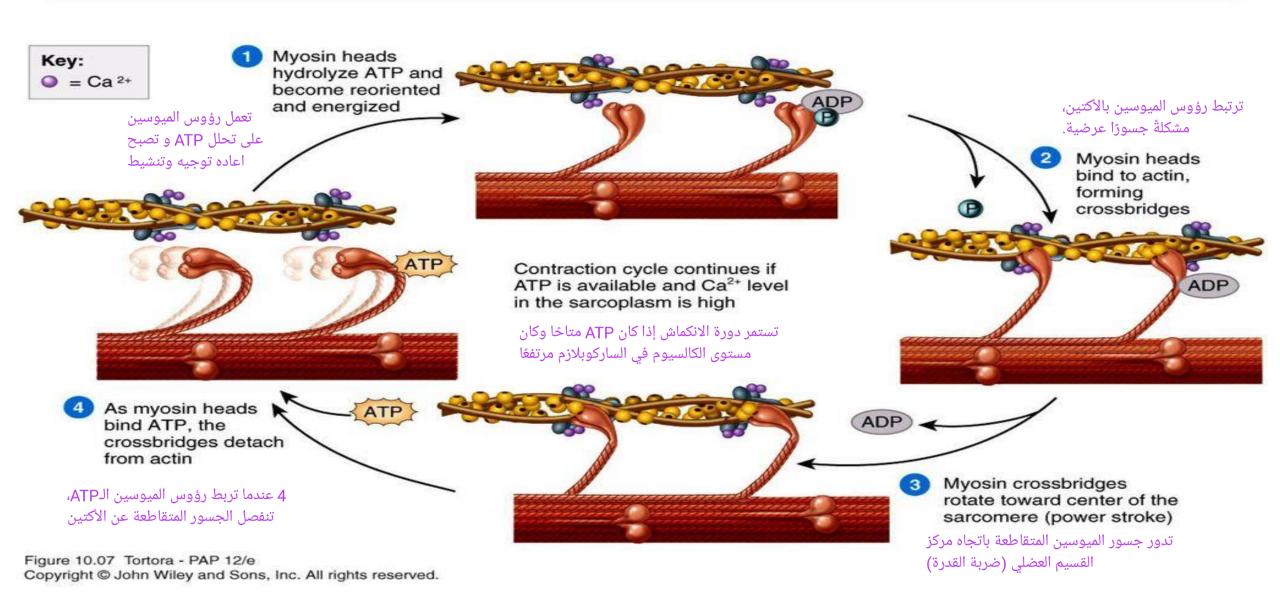
رببط راس الميوسين المنشط بموقع اربباط الميوسين على الأكتين ويُطلق مجموعة الفوسفات المُحلِّلة سابقًا.

POWER STROKE

During the power stroke, the site on the cross-bridge where ADP is still bound opens. As a result, the cross-bridge rotates and releases the ADP. The cross-bridge generates force as it rotates toward the center of the sarcomere, sliding the thin filament past the thick filament toward the M line.

أثناء شوط الطاقة، يتم فتح الموقع الموجود على الجسر المتقاطع حيث لا يزال ADP مرتبطًا. ونتيجة لذلك، يدور الجسر المتقاطع ويطلق ADP. يولد الجسر المتقاطع القوة أثناء دورانه باتجاه مركز القسيم العضلي، مما يؤدي إلى انزلاق الخيط الرفيع عبر الخيط السميك باتجاه الخط M.

DETACHMENT OF MYOSIN FROM ACTIN

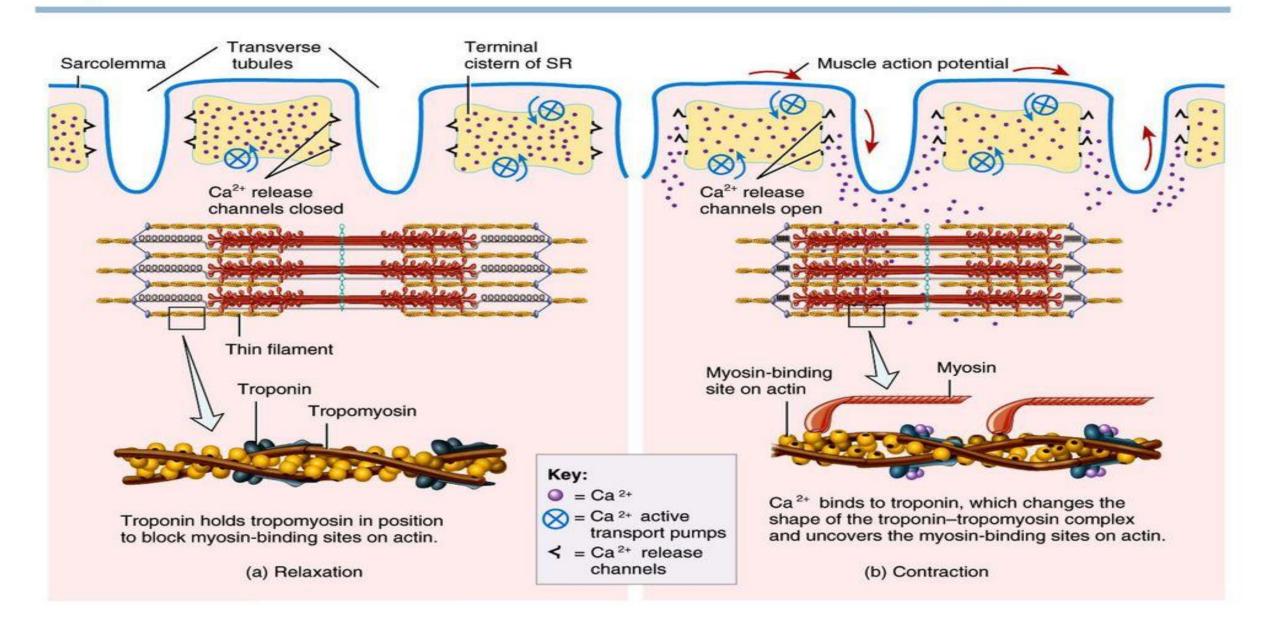

At the end of the power stroke, the cross-bridge remains firmly attached to actin until it binds another molecule of ATP. As ATP binds to the ATP binding site on the myosin head, the myosin head detaches from actin.

THE CONTRACTION CYCLE

Each of the 600 cross-bridges in one thick filament attaches and detaches about five times per second.

كل جسر من الجسور المتقاطعة الـ ٦٠٠ في خيط سميك واحد يتصل وينفصل حوالي خمس مرات في الثانية.

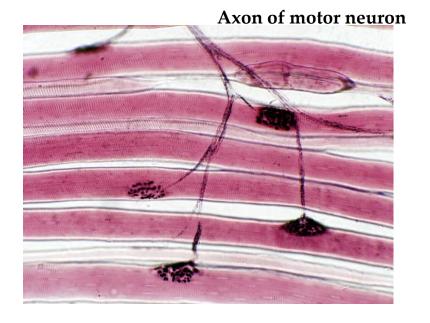
Figure 10.6 The Contraction Cycle


EXCITATION-CONTRACTION COUPLING

The events just described are referred to collectively as excitation-contraction coupling, as they are the steps that connect excitation (a muscle action potential propagating along the sarcolemma and into the T tubules) to contraction (sliding of the filaments).

اقتران الإثارة والانقباض

يُشار إلى الأحداث الموصوفة مجتمعةً باسم اقتران الإثارة والانقباض، لأنها الخطوات التي تربط الإثارة (جهد فعل عضلي ينتشر على طول غشاء الساركوليما وداخل الأنابيب T) بالانقباض (انزلاق الخيوط).


Figure 10.7 Excitation — Contraction Coupling

المشبك: وصلة وظيفية بين خلية عصبية وخلية أخرى.

Synapse: A functional connection between a neuron and another cell.

- **❖** Two types of synapses:
- 1. Electrical synapse.
- 2. Chemical synapse, i.e., neuromuscular junction.

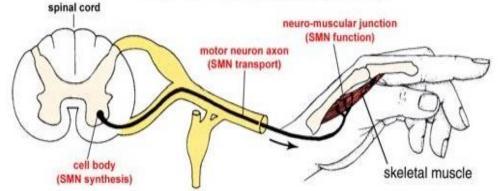
Neuromuscular junction

NEUROMUSCULAR JUNCTION

هو الوصل (المشبك) بين العصب (الخلية العصبية الحركية) والخلية العضلية (الألياف العضلية).

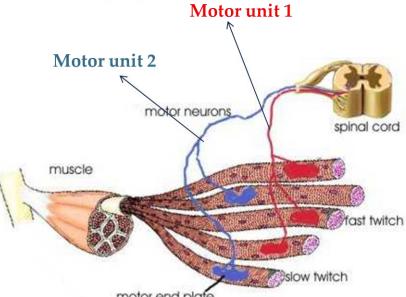
- Is the junction (synapse) between a nerve (motor neuron) and a muscle cell (muscle fiber).

- العصبون الحركى هو العصب الذي يعصب الألياف العضلية.


- Motor neuron is the neuron that innervates a muscle fiber.
- Motor unit: single motor neuron and the muscle fibers it innervate.

- الوحدة الحركية : خلية عصبية حركية واحدة والألياف العضلية التي تعصبها.

- As axon approaches muscle, it divides into many terminal branches and loses its myelin sheath.


- Each of these axon terminal forms special junction, a **neuromuscular junction** with one of the many cells that form the whole muscle.

عندما يقترب المحور العصبي من العضلة، فإنه ينقسم إلى العديد من الفروع الطرفية ويفقد غمد المايلين الخاص به.

تشكل كل من هذه النهايات المحورية وصلة خاصة، وهي وصلة عصبية عضلية مع إحدى الخلايا العديدة التي تشكل العضلة بأكملها.

1_تصل النبضة العصبية إلى الطرف المحوري للخلية العصبية الحركية، وتُحفز إطلاق الأستيل كولين (ACh).

2_يتوزع ACh عبر الشق التشابكي، ويرتبط بمستقبلاته في اللوحة الطرفية الحركية، ويطلق إمكانات عمل العضلات (AP).

3_يُدمر الأستيل كولينستراز في الشق المشبكي ACh، لذا لا ينشأ جهد فعل عضلي آخر. ACh هو عصبون حركي. ينشأ ما لم يُطلق من جديد.

4_يفتح جهد الفعل العضلي المتحرك على طول الأنبوب المستعرض قنوات إطلاق الكالسيوم في غشاء الشبكة الساركوبلازمية (SR)، مما يسمح لأيونات الكالسيوم بالتدفق إلى الساركوبلازم.

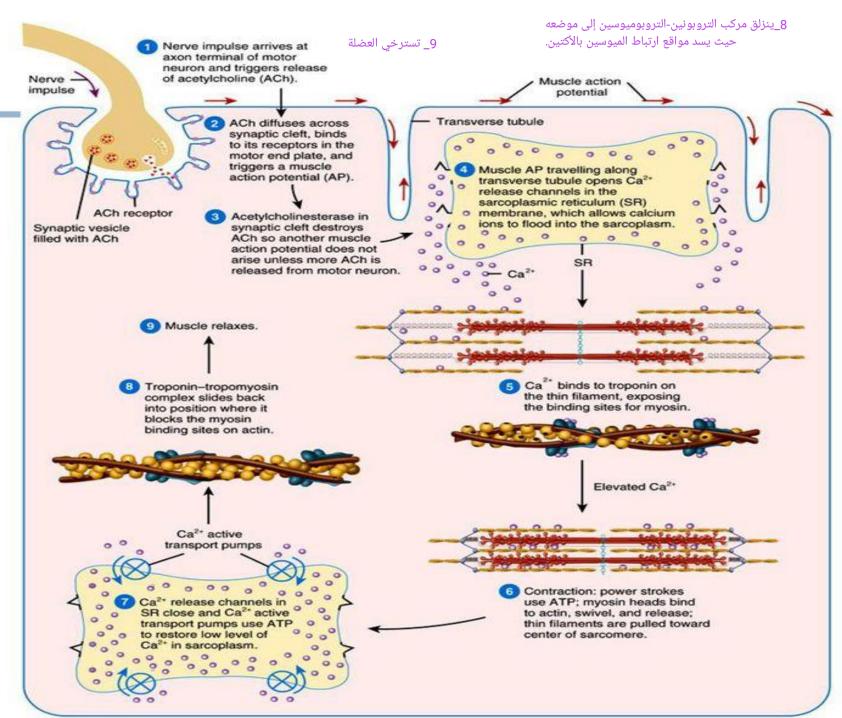

5_يرتبط الكالسيوم بالتروبونين على الخيط الرقيق، كاشفًا مواقع ارتباط الميوسين.

Figure 10.10

Summary of the Events of Contraction and Relaxation in a Skeletal Muscle Fiber

6_الانقباض: تستخدم ضربات القوة ATP، وترتبط رؤوس الميوسين بالأكتين، ثم تدور، ثم تنطلق: خيوط رفيعة تُسحب نحو مركز الساركومير.

Ca القريبة ومضخات النقل النشطة SR تستخدم قنوات الإطلاق في SR القريبة ومضخات النقل الساركوبلازم. ATP

THANK YOU

AMJADZ@HU.EDU.JO