Pharmaceutical Organic Chemistry-1

Chapter-1: Introduction

Organic Chemistry: Definition

- The word Organic can be a biological or chemical term, in biology it means anything that is living or has lived. The opposite is Non-Organic.
- o Organic Chemistry is unique in that it deals with vast numbers of substances, both natural and synthetic.

مطاط ورق The clothes, the petroleum products, the paper, rubber, wood, plastics, paint, cosmetics, insecticides, and drugs بلاستيك plastics, paint, cosmetics, insecticides, and drugs

- o But, from the chemical makeup of organic compounds, it was recognized that one constituent common to all was the element carbon.
 - Organic chemistry is defined as the study of carbon/hydrogencontaining compounds and their derivatives.

موجود في The Uniqueness of Carbon

مجموعة رابعة

- What is unique about the element carbon?
- Why does it form so many compounds?
 - ? The answers lie
 - The structure of the carbon atom.
 - ➤ The position of carbon in the periodic table.
- These factors enable it to form strong bonds with
 - other carbon atoms
 - > and with other elements (hydrogen, oxygen, nitrogen,

بنية ذرة

 Each organic compound has its own characteristic set of physical and chemical properties which depend on the structure of the molecule.

3

1-introduction.pdf

133% 급 < 4/51 > Periodic Table of the Elements VIIIA Atomic Number --He IVA VIIIA IIA Flectrons per shell. --Ĺi В N Be 0 Ne Beryllium State of matter (color of name) Subcategory in the metal-metallaid-nonmetal trend (color of background) 26,180 GAS LIQUID SOLID UNKNOWN Alkali metals Lanthanides Metalloids III Unknown chemical properties Alkaline earth metals Actinides Reactive nonmetals Transition metals Post-transition metals Noble gases: Si Na Αl S CL Ma Ar 586con 28.085 24-4 IIIB IVB VB VIB VIIB VIIIB VIIIB VIIIB IB IIB 22 30 K 2661 Ca Sc Ti Cr Co Ni Cu Zn Ga Se Br Kr Fe Ge As Μn Calcium Rb Zr Nb Rh Sb Υ Mo Tc Ru Pd Ag Cd In Sn Te П Xe 100 Title 100 Ti 101.29 Cs W Τι Pb Po Ba Hf Re 0s Ir Bi Rn Ta Au Hg At Thelium 204.38 Tungetee 183.84 24-9-0-0-0 Demium 190.23 2-8-32-3-1 110.02 110.02 2-8-9-9-9 Hafnium 178.47 2-6-9-33-9-2 200.9F 3-6-9-32-9-2 (120) 14-9-01-9-0 ۴̈́r 1118 Rf Db Sg Bh Mt Nh Fι Ts Hs Ds Rg Cn Mc Og Lv 89-103 Dy Sm Ce Pr Nd Pm Eu Gd Tb Ho Er Yb La Tm Lu

> Grop Coloum =8

Th

Ac

Pa

U

Period Raw=7

Cm

Bk

Cf

Es

Fm

Md

Lr

Nο

Am


Pu

Nρ

Organic compounds are compounds containing carbon

Organic compounds are compounds containing carbon

- Atoms to the left of carbon give up electrons.
- Atoms to the right of carbon accept electrons.
- Carbon shares electrons.

Atomic Structure يسار بتفقد الالكترونات

الكربون تشاركي ب

atom تىعتە

عشان هيك شحنتها موجبة

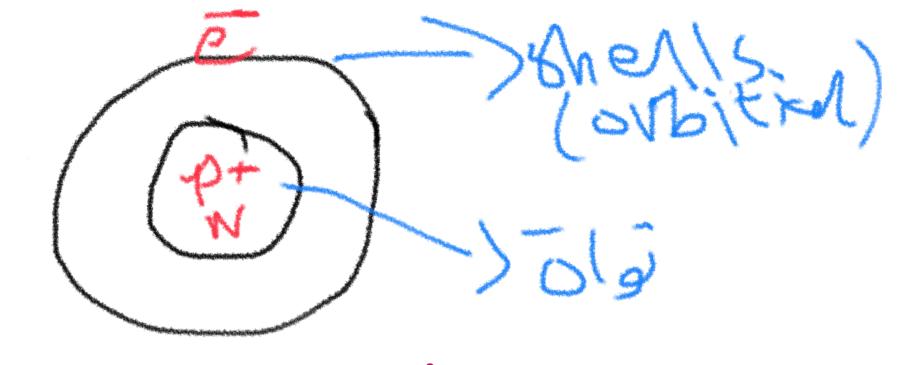
o Atoms consist of three main particles: neutrons (have no charge), ما لها protons (positively charged) and electrons (negatively charged). شحنة

- ا اخل نواة . Neutrons and protons are found in the nucleus.
- > Electrons are found outside the nucleus. こし

كلما بعدت عن نواة زادت طاقة

Electrons are distributed around the nucleus in علفة متتالية successive shells (principal energy levels). مستويات طاقة رئيسية

o Atom is electrically neutral. متعادلة


i.e. Number of electrons = Number of protons

Atomic number of an element is the number of protons.

عدد الالكترون في ذرة متعادلة يعني الالكترونات بتكون بتساوي البروتونات

Atoms = nucleous + shells

P+N

الالكترونات قادرة ع حركة من و الى ذرات و هون قصدي عن اللكترونات المدار الاخير يعني ابعد واحد عن ذرة

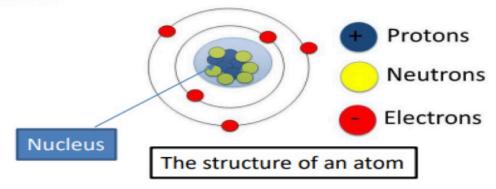
valence = Grop number electron

e Peroid number of shells

سرح کام smaller number atomic number Larg number-mæss number EX: 8016 ~> M.N A.N.C. P=A.N=8. E-8 aid buts lo là y N= M-N-A-N=16-8=8 F= U.A M.N=9 でラマーネー2

(Mg) 23/+2 10/0 1.N=10

M. N= 20 R-10


شحنات مختلفة بتتجاذب

Bonding and Isomerism

1.1 How Electrons Are Arranged in Atoms ذرات في ذرات

- An atom is: the smallest particle of an element that retains all of the chemical
 properties of that element.

 اصغر جسيم في العنصر يحتفظ بجميع خصائص كميائية لذلك العنصر العنصر يحتفظ بجميع خصائص كميائية لذلك العنصر
 - An atom consists of negatively charged electrons, positively charged protons, and neutral neutrons

- Atomic number: numbers of protons in its nucleus and it's the number of electrons in the neutral atom.
- Mass number: the sum of the protons and neutrons of an atom.
 (Protons and neutrons are ~1837 times the mass of an e⁻)
- •Isotopes have the same atomic number but different mass numbers (¹²C and ¹³C) نظائر isotops عدد کتلی و نیترونات بختلفوا ین

8

مثال عندي ۲۰ الالكترون كيف رح shells يكونوا موزعين في **Atomic Structure** تركييب ذري عنالها الحالال الحال الحال

- The energy levels are designated by capital letters (K, L, M, N, ..) or whole numbers (n).
 کل مستوی بتحمل عدد ______ سعة قصوی للغلاف
- The maximum capacity of a shell = 2n² electrons.

n = number of the energy level.

بدنا نلاحظ احنا بنجكي عن shells هاي اكبر سعة لئلها بس orbetal اكبر سعة لئلها!

For example, the element carbon (atomic number 6)

6 electrons are distributed about the nucleus as

Shell Number of electrons 0

يعني كل مدار رح يكون فيه ١٢الالكترون

Atomic Structure

الالكترون تكافىء

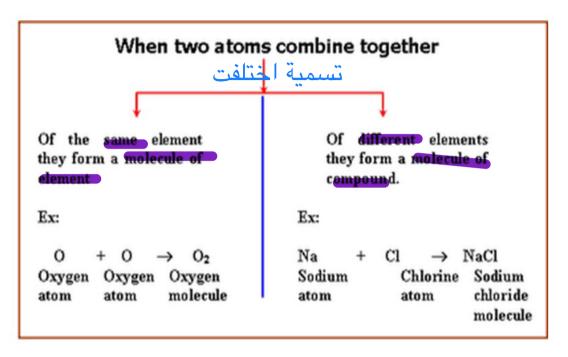
Valance Electrons: Electron-Dot

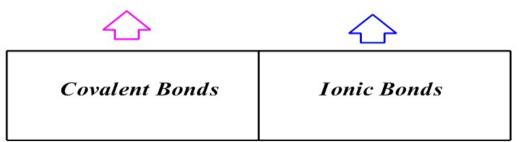
في المدار الاخير موجودة

- O Valance Electrons are those electrons located in the outermost energy level (the valance shell).
- Electron-dot structures

- ➤ The symbol of the element represents the core of the atom.
- ➤ The valance electrons are shown as dots around the symbol.

كنقاط حول رمز


بتفتقر لتفاعل عشان اغلفة تكافؤ ممتلئة بالالكترون


n 1916 G.N. Lewis pointed out that:

هاي بالنسبة الديم الديم المجموعات الالكترون في جدول عبشارك الدوري دوري دوري الديم بكسب

The noble gases were stable elements and he described their lack of reactivity to their having their valence shells filled with electrons.

- > 2 electrons in case of helium. مستقر لاتو اصلا ما عنده غير ٢ الالكترون
- > 8 electrons for the other noble gases.
- o According to Lewis, بس ذرات تتفاعل مع بعضها بتحقق الاستقرار in interacting with one another atoms can achieve a greater degreey of stability gement of the valence electrons to acquire the outer-shell structure of the closest noble gas in the periodic table.

روابط بتزید stability و یقلل طاقة

A) Ionic

حدول دوري

- o Elements at the left of the periodic table give up their valance electrons and become +ve charged ions (cations).
- Elements at the right of the periodic table gain the electrons and become -ve charged ions (anions). كسب الالكترون
- كلما كانت مسافة اقل بين ذرتين كلما كانت رابطة اقوى o lonic bond

The electrostatic force of attraction between oppositely charged ions.

$$\mathbf{A}^{\times} + \mathbf{B}^{\times} \longrightarrow \mathbf{A}^{+} + \begin{bmatrix} \mathbf{B}^{\times} \\ \mathbf{B}^{\times} \end{bmatrix}$$
Electron donor Electron acceptor Cation Anion

The majority of ionic compounds are *inorganic substances*.

electrons; velonce

5

سالبية كهربائية قدرة ع جذب الالكترون Electronegativity Measures The Ability of An Atom To Attract **Electrons**

Increasing electronegativity

B) Covalent **Bonds**

Elements that are close to each other in the periodic table attain the تكوين stable noble gas configuration

by sharing valence electrons Covalent bond between them.

The chemical bond formed when two atoms share one pair of electrons.

 A shared electron pair between two atoms or single covalent bond, will be represented by a dash (-).

معظم ذرات بتصل الى استقرار اذا عندها A= v e

B) Covalent

methyl amime

Examplesds

chloromethane

ethanol

- **B)** Covalent
- Onds In molecules that consist of two like atoms;

عشان لا تروح الالكترونات الى ذرة محبة للالكترون اكثر من ذرة الاخرى يلى عاملة معها رابطة ، زي

the bonding electrons are shared equally اکسجین و کربون (both atoms have the same

O When two unike atoms,

the bonding electrons are no longer shared equally (shared unequally).

A) Polar Covalent

Bond

A bond, in which an electron pair is shared

➤ The more electronegative atom assumes a partial negative charge and the less electronegative atom assumes a partial positive charge.

$$C \longrightarrow O$$
 or $C \longrightarrow O$

B) Coordinate Covalent

زوج من الالكترون من نفس الذرة

- Bonds
 There are molecules in which one atom supplies both electrons to another atom in the formation of a covalent bond.
- For example;

Ammonia (Lewis base) يلي شاركت الالكترون

base The species that furnishes the electron pair to form a coordinate covalent bond.

يلي قبلت الالكترون (Lewis acid نام

The species that accepts the electron pair to complete its valance shell.

• Electrons are located in atomic orbitals (S, P, d, f).

جزء Orbital من shell

- Orbitals tell us the energy of the electron and the volume of space around the nucleus where an electron is most likely to be found.
- · Orbitals are grouped in shells .

Each orbital can hold a maximum of 2e⁻ and the two electrons have opposite spin

Table 1.1	Distribution of Electrons in the First Four Shells That Surround the Nucleus						
		First shell	Second shell	Third shell	Fourth shell		
Atomic orbitals		S	s, p	s, p, d	s, p, d, f		
Number of atomic orbitals		1	1, 3	1, 3, 5	1, 3, 5, 7		
Maximum number of electrons		2	8	18	32		

Valence electrons (VE) are located in the outermost shell. They are involved in chemical reactions.

VE = Group number

VE Lewis symbol of atom

Examples: 1 H: 1 I

*O: 8 O: 1 S² 2 S² 2 P⁴

6C: 4 C: $^{$

Group	- 1	II	III	IV	V	VI	VII	VIII
	н٠							He:
	Li•	Be·	·B·	٠ċ٠	- N :	• ::	: F:	: Ne
	Na ·	Mg ·	· Al ·	·Si·	·P:	·s:	: Cl :	: Ar :

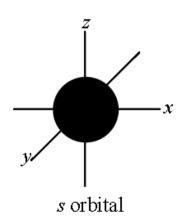
The number of covalent bonds that an atom can form with other atoms.

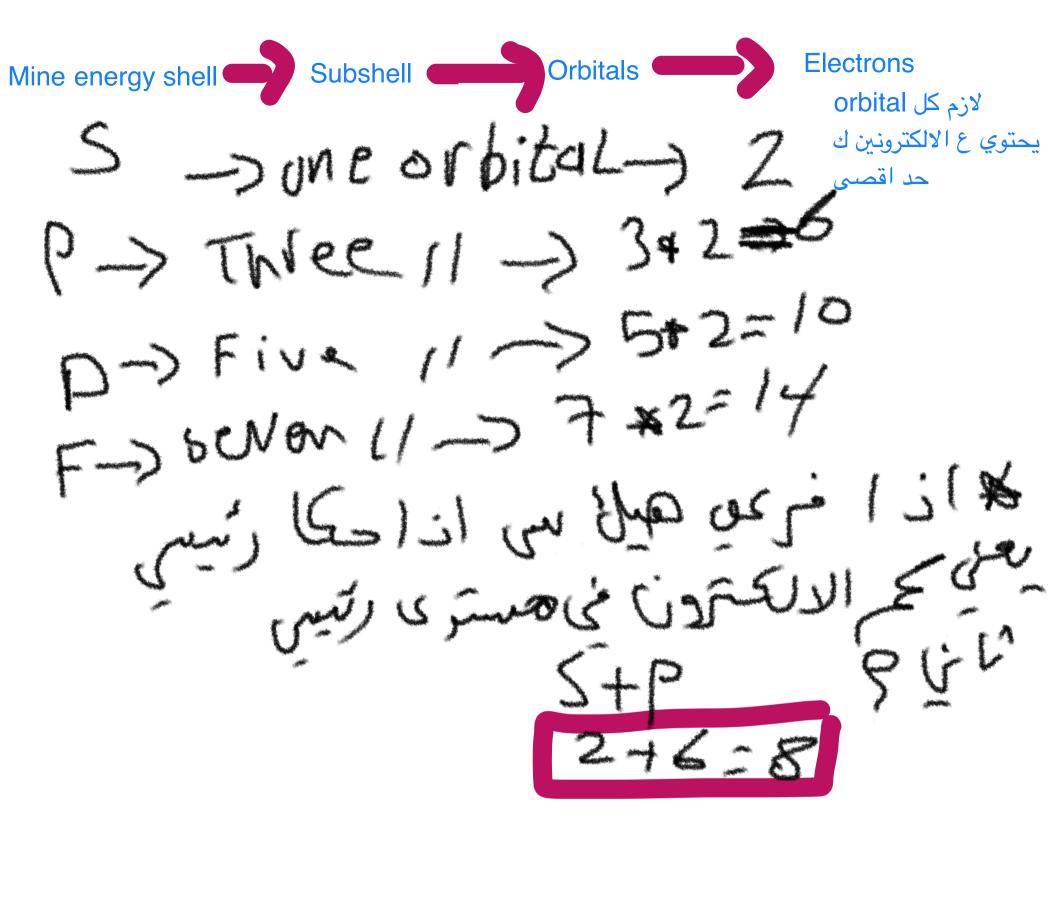
i.e. the covalence number is equal to the number of electrons needed to fill عدد تساهمي =عدد الالكترون في غلاف تكافؤ its valance shell.

Element	Number of	Number of electrons			
Cova	lence				
	valence electrons	in filled valence shell			
numk	per				
Н	1	2	1		
C	4	8	4		
N	5	8	3		
0	6	8	2		
F, CI, Br, I	7	8	1		
N	lumber of v e		Covalencenu		

Bonds

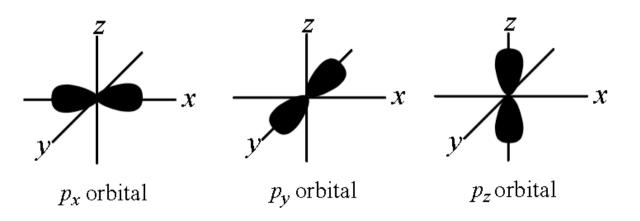
Atomic


Orbitals

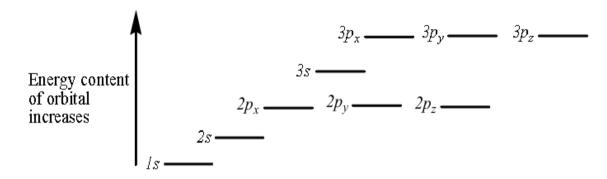

- An atomic orbital represents a specific region in space in which an electron is most likely to be found.
- Atomic orbitals are designated in the order in which they are filled by the letters s, p, d, and f.
 - Examples: K shell has only one 1s orbital.

L shell has one 2s and three 2p $(2p_x, 2p_y)$

and 2p_z). کرویة


 An s orbital is spherically shaped electron cloud with the atom's nucleus and its center.

Atomic Orbitals


- A p orbital is a dumbbell-shaped electron cloud with the nucleus between the two lobes.
- Each p orbital is oriented along one of three perpendicular coordinate axes (in the x, y, or z direction).

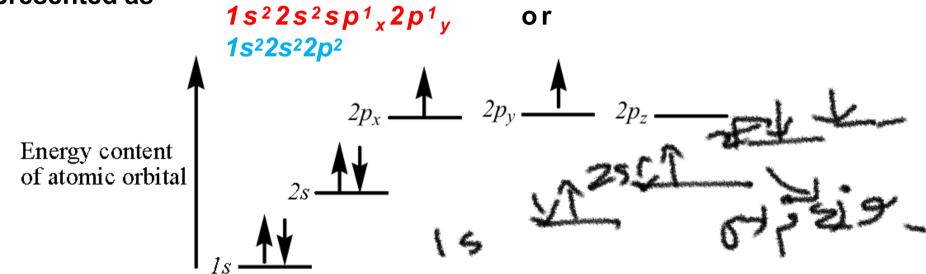
Atomic

Orbitals

An energy level diagram of atomic orbitals.

- When filling the atomic orbitals, keep in mind that
 - (1) An atomic orbital contain no more 2
 - بنبلش في مدار اقل طاقة Electrons fill orbitals of lower energy

No orbital is filled by 2 electrons until all the orbitals of equal energy have at least one electron. بنوزع واحد واحد بعدين بنخليهم اثنين

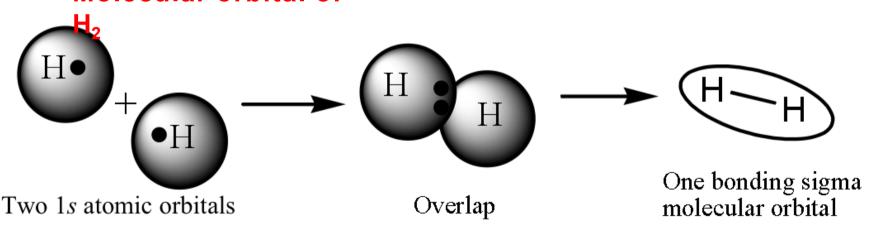

18, 15, 25, 2pt, 353 3+8 # propose ~> 2+6=8

هذا عشان اعرف موقعها في جدول

مجموعة ثامنة صف ٣

Atomic Orbitals

 The electronic configuration of carbon (atomic number 6) can be represented as


Energy level diagram for carbon.

Molecular

Orbitals

- A covalent bond consists of the overlap between two atomic orbitals to form a molecular orbital.
- Example:

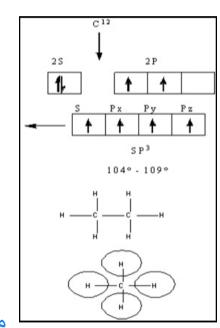
Molecular orbital of

Molecular Orbitals

- o Sigma bonds (σ bonds) can be formed from
 - ➤ The overlap of two s atomic orbitals.
 - ➤ The end-on overlap of two p atomic orbitals.
 - ➤ The overlap of two an s atomic orbital with a p atomic orbital.
- o pi bonds (π bonds) can be formed from the side-side overlap between two p atomic orbitals.

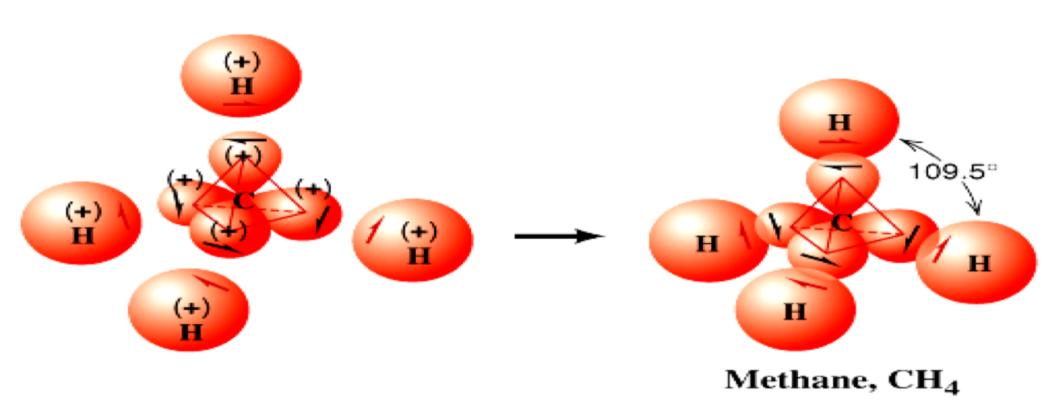
Bond Energy and Bond Length

A molecule is more stable than the isolated constituent atoms.


This stability is apparent in the release of energy during the formation of the molecular bond.

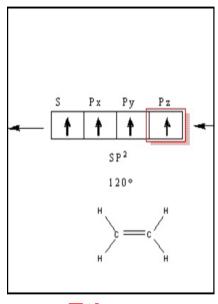
- الماقة يلي بتنتج بس اكون رابطة بين اثنتين (Heat of formation (bond energy)
 - The amount of energy released when a bond is formed.
- ماقه یلی بحتاجها o Bond dissociation energy
 - The amount of energy that must be absorbed to break
- Bond length

The distance between nuclei in the molecular structure.



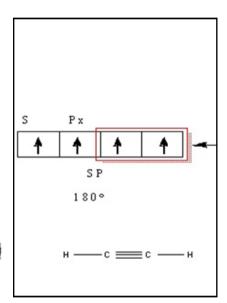
- In the case of **alkanes** sp^3 , the three 2p orbitals of the carbon atom are combined with its 2s orbital to form four new orbitals called " sp^3 " hybrid orbitals.
- Four hybrid orbitals were required since there are four atoms attached to the central carbon atom.
- Notice that no change occurred with the 1s orbital.
- Regular tetrahedron with all H-C-H bond angles of 109.5°.


Methan e


Hybridization (Alkanes sp

الماتين (Alkenes *sp*²) Hybridization (Alkenes *sp*²)

- In the case of alkenes sp^2 , the 2s orbital is combined with only two of the 2p orbitals (since we only need three hybrid orbitals for the three groups, thinking of groups as atoms and nonbonding pairs) forming three hybrid orbitals called sp^2 hybrid orbitals.
- The other *p*-orbital remains unhybridized and is at right angles to the trigonal planar arrangement of the hybrid o Phitalsgonal planar arrangement has bond angles of



Ethene (Ethylen

Hybridization (Alkynes *sp*)

- one of the 2p orbitals to yield two sp hybrid orbitals.
- The two hybrid orbitals will be arranged as far apart as possible from each other with the result being a linear arrangement.
- The two unhybridized *p*-orbitals stay in their respective positions (at right angles to each other) and perpendicular to the linear molecule (180°).

Ethyne (Acetylen e)

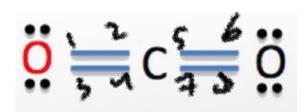
5 P 3	رابلهاماريو	75%.1 25%.5	109.5 Tetrahedral
5P2	いいいかり	331.5	Planer
SP	المؤديدة	50%P	Linear

كلما زادت نسبة pكلما زادت طاقة

سبحان الله الحمدلله لا إله إلا الله الله اكبر

Formal Charge

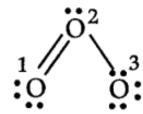
Formal Charge: is the net charge on each atoms of the molecule or ion. (which contain a covalent bond only)


How to calculate the Formal Charge (FC):

FC =
$$\frac{\text{Valence e}^{-}}{\text{in Free Atom}}$$
 - $\left(\frac{\text{Total}}{\text{Nonbonding e}^{-}} + \frac{\text{Bonding e}^{-}}{2}\right)$

Example: calculate the formal charge of CO2

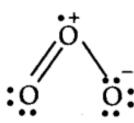
FC for
$$O = 6 - (4 + 4/2) = 0$$


FC for
$$C = 4 - (0 + 8/2) = 0$$

Example:

Formal Charg

Lewis structure of O₃ is

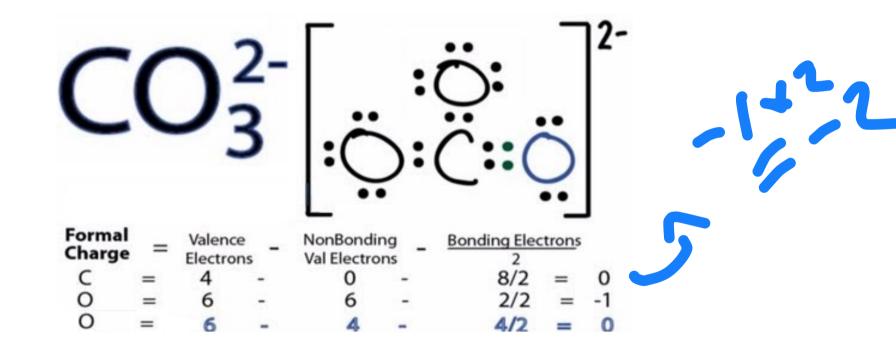


Formal charge on O(1) = 6 -
$$(4 + \frac{4}{2})$$
 = 0

Formal charge on O(2) =
$$6 - (2 + \frac{6}{2}) = + 1$$

Formal charge on O(3) = 6 -
$$(6 + \frac{2}{2}) = -1$$

Hence we represent O₃ along with formal charges as follows.

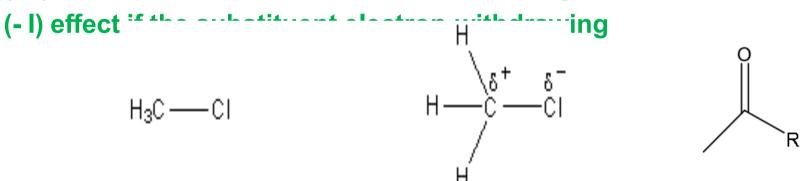

Formal Charg

Example:

$$\begin{bmatrix} \vdots \\ 0 & \overset{\circ}{N} \\ \vdots \\ 0 & 0 \end{bmatrix}^{-} \qquad \begin{bmatrix} \vdots \\ 0 & \overset{\circ}{N} \\ \vdots \\ 0 & 0 \end{bmatrix}^{-}$$
Formal charge: 0 0 -1 -1 0 0

Formal Charg

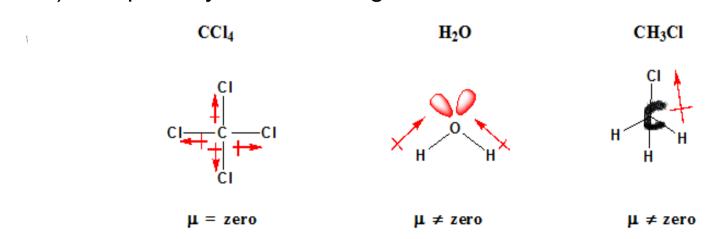
Example:


structures: ENI CO2 0 #-ve = 6+4+6=16 D'oraw: Wjacolojsbe · O - C - 2 .. Signal Strong of John Son Signal Strong Signal Strong Stro O = C = Obernes lide hor; 6) F. C 1) re = 18 1) re = 18 @ 0-0-0 3) 18-4=14 41:0-0-0: 5) 0=0-0

 $(C07)^{3}$ $(C07)^{3}$ (C07

لا حول و لا قوة إلا بالله

Inductive Effect


- o Inductive effect can be defined as the permanent displacement of electrons forming a covalent bond (sigma σ bonds) towards the more electronegative element or group.
- The inductive effect is represented by the symbol, the arrow pointing towards the more electronegative element or group of elements.
 - (+ I) effect if the substituent electron-donating

Electron-donating substituents (+I): -CH₃, -C₂H₅,.... Electron-withdrawing substituents (-I): -NO₂, -CN, -SO₃H, COOH, COOR, NH₂, OH, OCH₃

Bond Polarity and Dipole Moment (µ)

- o Dipole moment (depends on the inductive effect). تقتطآب لحظي
- A bond with the electrons shared equally between two atoms is called a nonpolar bond like in Cl-Cl and C-C bond in ethane.
- A bond with the electrons shared unequally between two different elements is called a polar bond.
- O The bond polarity is measured by its dipole moment (μ).
- Dipole moment (μ) defined to be the amount of charge separation ($+\delta$ and $-\delta$) multiplied by the bond length.

polar solish

polar comford

Polar bond

o 65. C=0 non Palar

Classification According to Functional Group

مش حفظ و لا إشبى منها

A functional group is an arrangement of atoms with distinctive **physical** and **chemical** properties.

	Structure	Class of compound	Specific example	Common name of the specific example
A. Functional groups that are a part of the molecular framework		alkane	СН ₃ —СН ₃	ethane, a component of natural gas
H,c)c=c(alkene	CH ₂ =CH ₂	ethylene, used to make polyethylene
	-c=c-	alkyne	нс=сн	acetylene, used in welding
		arene		benzene, raw material for polystyrene and phenol
B. Functional groups containing oxygen				
1. With carbon-oxyger single bonds	п — с —он	alcohol	CH ₃ CH ₂ OH	ethyl alcohol, found in beer, wines, and liquors
هتم ۸		ether	CH ₃ CH ₂ OCH ₂ CH ₃	diethyl ether, once a common anesthetic

Table 1.6 continued				
	Structure	Class of compound	Specific example	Common name of the specific example
2. With carbon-oxygen double bonds*	—d—н	aldehyde	CH ₂ =0	formaldehyde, used to preserve biological specimens
		ketone	снэсснэ	acetone, a solvent for varnish and rubber cement
3. With single and double carbon—oxygen bonds	_сон	carboxylic acid	он он	acetic acid, a component of vinegar
	-e-o-d-	ester	о сн₃с—осн₃сн₃	ethyl acetate, a solvent for nail polish and model airplane glue
Functional groups ontaining nitrogen**	-¢-NH2	primary amine	CH ₃ CH ₂ NH ₂	ethylamine, smells like ammonia
	-c=N	nitrile	CH ₂ =CH-C=N	acrylonitrile, raw materia for making Orlon
. Functional group with xygen and nitrogen	_C-NH ₂	primary amide	н—С—мн,	formamide, a softener for paper
. Functional group with alogen	–× CI	alkyl or aryl halide	CH ₃ CI	methyl chloride, refrigerant and local anesthetic
Functional groups ontaining sulfur	-ф-ян	thiol (also called mercaptan)	CH ₃ SH	methanethiol, has the odor of rotten cabbage
	-ç-s-ç-	thioether (also called	(CH ₂ =CHCH ₂) ₂ S	diallyl sulfide, has the odor of garlic

Functional Groups

Functional Group is a reactive portion of an organic molecule, an atom, or a group of atoms that confers on the whole molecule its characteristic properties.

Class	General formula	Functional group	Specific
Alkane	RH	C – C (single bond)	H_3C-CH_3
Alkene	$R - CH = CH_2$	C = C (double bond)	$H_2C = CH_2$
Alkyne	R−C≡CH	c≡c (triple bond)	нс≡сн
Alkyl halide	RX	-X (X = F, Cl, Br, I)	H ₃ C - Cl
Alcohol	R – OH	-OH	H ₃ C - OH
Ether	R – O –R'	- C- O - C -	$H_3C - O - CH_3$
Aldehyde	O R-Ç-H	—ё_н ё_н	о н–с–н , н₃с-с–н
Ketone	O R-C-R	-ç-ë-ç-	O H₃C−C−CH₃
Carboxylic acid	О R-С-ОН	' о ' —ё-он	О Н-С-ОН, Н₃С-С-ОН
Ester	0 r -c-or	0 —Ü-OR	O H-C-OCH ₃
			О Н₃С-С-ОСН₃
Amine	R-NH ₂	$ -$ NH $_2$	$H_3C - NH_2$