

PHYSIOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

DR. AMJAAD ZUHIER ALROSAN

LECTURE 12: RESPIRATORY SYSTEM

السلام عليكم و الرحمة
الله و بركاته حاولت اشرح
كل إشي بتحكيه دكتورة و
برضو في صور
بتساعدكم بإذن الله .
لا تنسوني من دعائكم .

Objectives

1. Discuss **structures of the respiratory system**.
2. Describe **pulmonary ventilation**.
3. Explore **lung volumes and capacities**.
4. Discuss **exchange of oxygen and carbon dioxide as well as transport of both**.
5. Describe **control of breathing**.
(Pages 856- 876 of the reference)

مكان تصنيع الاوكسجين ينقل الاوكسجين الى اعضاء او خلايا الجسم ، يستقبل ثاني اكسيد الكربون من خلايا الجسم

THE RESPIRATORY SYSTEM

يساهم الجهاز التنفسي في التوازن من خلال:

The respiratory system **contributes to homeostasis** by:

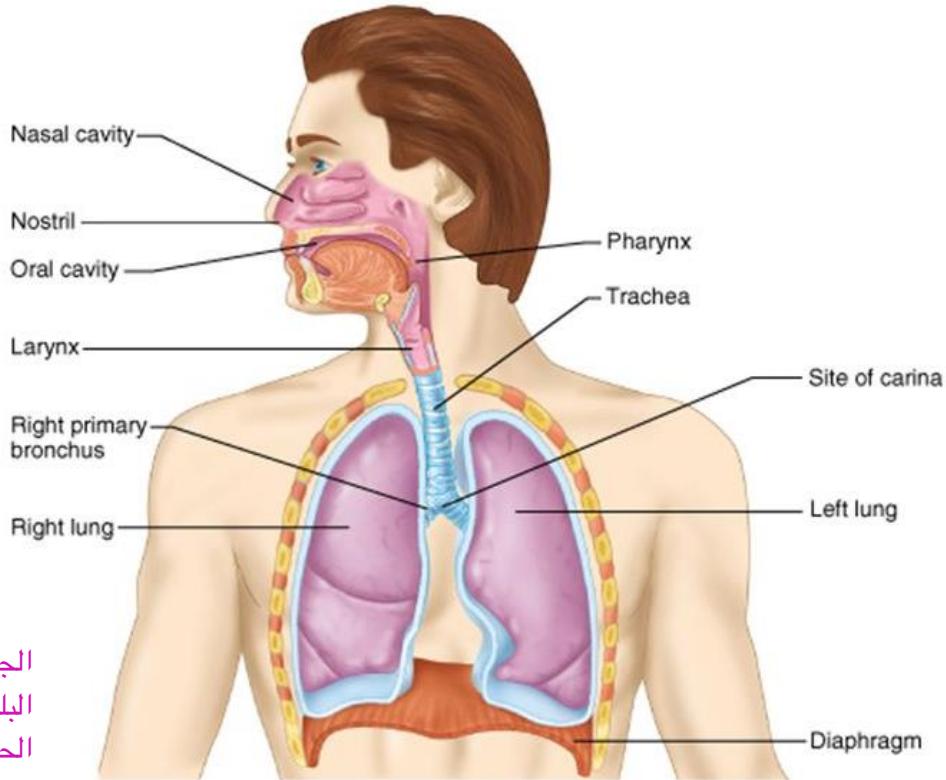
توفير تبادل الغاز: تناول O_2 للتسليم إلى الجسم الخلية وإزالة ثاني أكسيد الكربون الذي تنتجه خلايا الجسم.

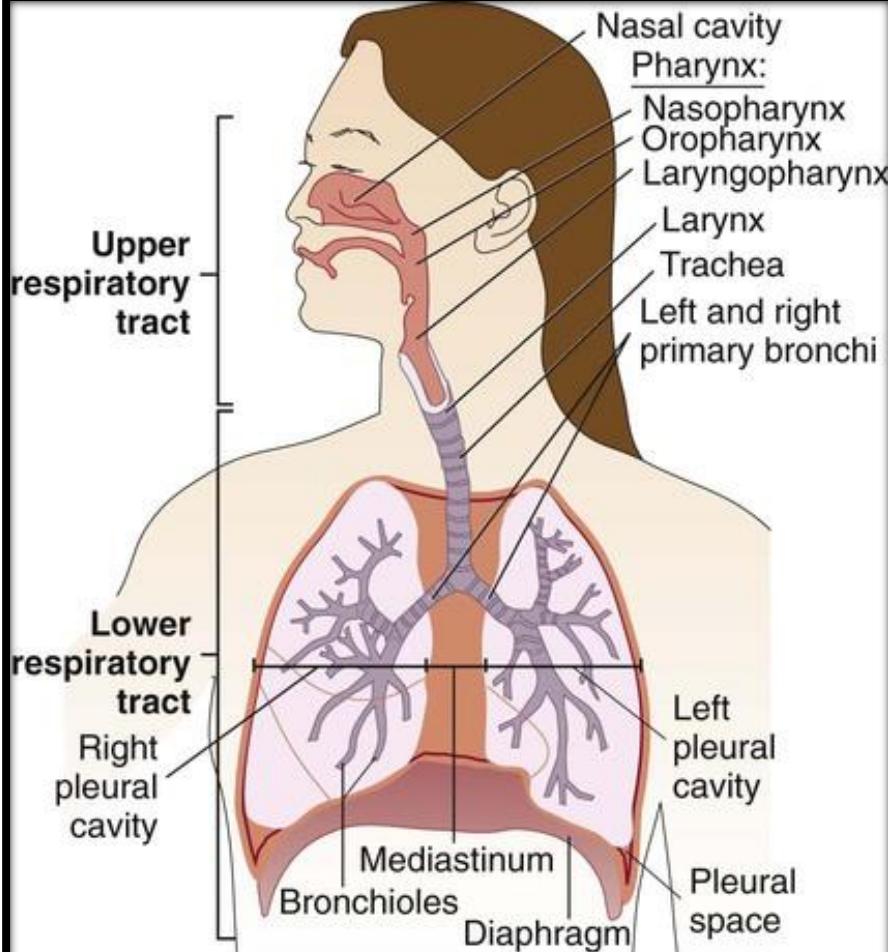
- Providing for **gas exchange**: intake of O_2 for delivery to body cells and removal of CO_2 produced by body cells.

المساعدة في تنظيم درجة الحموضة في الدم لسوائل الجسم.

- Helping in **regulating blood pH of body fluids**.

- Contains **receptors for sense of smell, filters inspired air produces vocal sounds (phonation), and excretes small amounts of water and heat**.

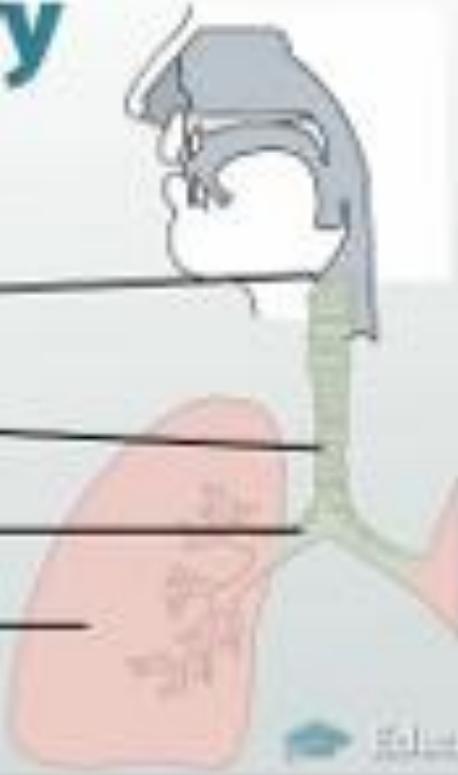

بخالص جسم من كمية الماء او حرارة زائدة عن طريق الهواء يلي بطلع بس اتنفس


يحتوي على مستقبلات لحاسة الشم، مرشحات مستوحاة ينتج الهواء أصواتا صوتية (صوتية)، ويفرز كميات صغيرة من الماء والحرارة

STRUCTURES OF THE RESPIRATORY SYSTEM

The upper respiratory system includes the nose, nasal cavity, pharynx, and associated structures; the lower respiratory system includes the larynx, trachea, bronchi, and lungs.

الجهاز التنفسى العلوي يتضمن النظام الأنف، تجويف الأنف، البلعوم، وما يرتبط به الهياكل؛ الأقل الجهاز التنفسى يشمل الحنجرة، القصبة الهوائية والشعب الهوائية، و الرئتين


Lower Respiratory System

larynx _____

trachea _____

bronchi _____

*alveoli
(in lungs)* _____

Pathway of Air/ O₂

- ❖ Nose – external nares → nasal cavity → internal nares
 - ↓
- ❖ Pharynx – nasopharynx → oropharynx → laryngopharynx
 - ↓
- ❖ Larynx – epiglottis → larynx
 - ↓
- ❖ Trachea – trachea
 - ↓
- ❖ Bronchi – primary bronchi → secondary bronchi → tertiary bronchi → bronchioles
 - ↓
- ❖ Lungs – alveoli → blood stream

PULMONARY VENTILATION

The **process of gas exchange** in the body, called **respiration**, has **three basic steps**:

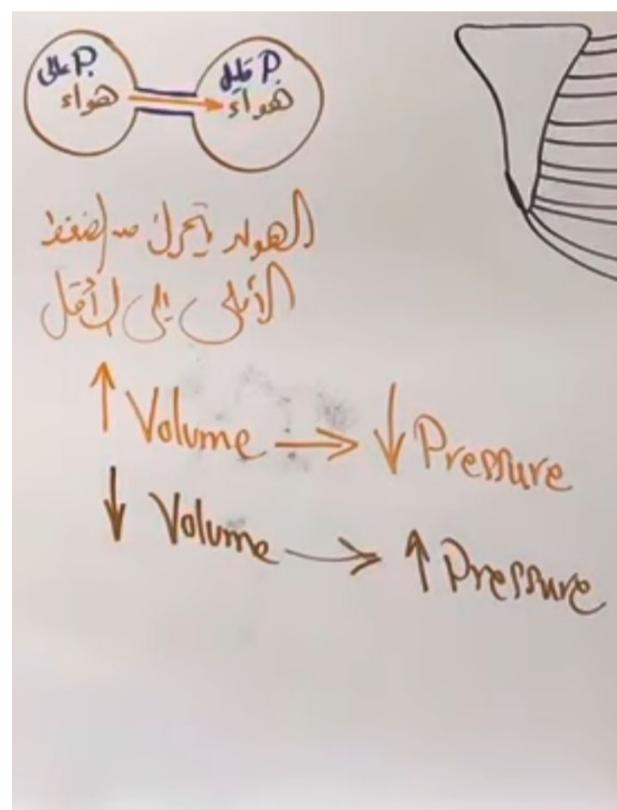
التهوية الرئوية أو التنفس، هو الاستنشاق (التدفق) و الزفير (التدفق) للهواء وينطوي على تبادل الهواء بين الغلاف الجوي و الحويصلات الهوائية في الرئتين.

1. **Pulmonary ventilation or breathing**, is the **inhalation (inflow)** and **exhalation (outflow)** of air and involves the exchange of air **between the atmosphere and the alveoli of the lungs**. التنفس الخارجي (الرئوي)، هو تبادل الغازات بين الحويصلات الهوائية في الرئتين والدم في الشعيرات الدموية الرئوية عبر الجهاز التنفسي غشاء. في هذه العملية، يكتسب الدم الشعري الرئوي O_2 ويفقد ثاني أكسيد الكربون.

2. **External (pulmonary) respiration**, is the **exchange of gases between the alveoli of the lungs and the blood in pulmonary capillaries** across the respiratory membrane. In this process, pulmonary capillary blood gains O_2 and loses CO_2 .

3. **Internal (tissue) respiration**, is the **exchange of gases between blood in systemic capillaries and tissue cells**. In this step the blood loses O_2 and gains CO_2 . Within cells, the metabolic reactions that consume O_2 and give off CO_2 during the production of ATP are termed **cellular respiration**.

يُعطى O_2 إلى tissue cell
يُخذل CO_2 من tissue cell


هواء بدخل من جو الى (lungs) اسم هاي عملية
(pulmonary ventilation)

ما يصل الى (lungs) ويصير عندك
lungs +blood in pulmonary for gases
capillaries
(external respiration) هاي العملية اسمها

في هاي مرحلة بوخذ (O2) يلي موجودة في lungs و بعطيه (co2)

التنفس الداخلي (الأنسجة)، هو تبادل الغازات بين الدم في الجهاز الشعيرات الدموية وخلايا الأنسجة. في هذه الخطوة، يفقد الدم O2 ويكتسب ثاني أكسيد الكربون. داخل الخلايا، التفاعلات الأيضية التي تستهلك O2 وتطلق ثاني أكسيد الكربون أثناء إنتاج ATP هي يطلق عليه التنفس الخلوي.

مهم جدا

PULMONARY VENTILATION

✓ In pulmonary ventilation, air flows between the atmosphere and the alveoli of the lungs because of alternating pressure differences created by contraction and relaxation of respiratory muscles.

✓ The rate of airflow and the amount of effort needed for breathing are also influenced by alveolar surface tension, compliance of the lungs, and airway resistance.

بنقل من Pressure
مستوى الاعلى الى
المستوى الاقل

هواء بدخل من atmosphere الى lungs
Air inside lungs يكون بس في pressure من atmosphere هو اقل من atmosphere

PRESSURE CHANGES DURING PULMONARY VENTILATION

- **Air moves into the lungs** when the air pressure inside the lungs is less than the air pressure in the atmosphere. **Air moves out of the lungs** when the air pressure inside the lungs is greater than the air pressure in the atmosphere.

يسمى التنفس بالاستنشاق (الإلهاام).

- **Inhalation:**

لكي يتدفق الهواء إلى الرئتين، يجب أن يصبح الضغط داخل المويصلات الهوائية أقل من الضغط الجوي. يتم تحقيق هذا الشرط من خلال زيادة حجم الرئتين.

- Breathing in is called inhalation (**inspiration**).
- For air to flow into the lungs, the pressure inside the alveoli must become lower than the atmospheric pressure. This condition is achieved by **increasing the size of the lungs**.

اذا كان container تبع volume عالي ف تبع غاز قليل pressure

- **The pressure of a gas in a closed container is inversely proportional to the volume of the container.** This inverse relationship between volume and pressure, called **Boyle's law**.

PRESSURE CHANGES DURING PULMONARY VENTILATION

الاختلافات في الضغط الناجمة عن التغيرات في الرئة حجم إجبار الهواء على دخول رئتينا عندما نستنشق ونخرج عندما نزفر

- **Differences in pressure caused by changes in lung volume** force air into our lungs when we inhale and out when we exhale.
- **For inhalation to occur, the lungs must expand, which increases lung volume and thus decreases the pressure in the lungs to below atmospheric pressure.**

لكي يحدث الاستنشاق، يجب أن تتوسع الرئتين، مما يزيد من حجم الرئة وبالتالي يقلل الضغط في الرئتين إلى ما دون الغلاف الجوي ضغط.

باتالي بنتقل الهواء من atmosphere الى داخل lungs

MUSCLES OF INHALATION AND EXHALATION

During normal, quiet inhalation, the diaphragm and external intercostals contract, the lungs expand, and air moves into the lungs;

During normal, quiet exhalation, the diaphragm and external intercostals relax and the lungs recoil, forcing air out of the lungs.

Volume بِعْدِ الرُّوْحِ الرِّئَفِ

پڑھ یزید

MUSCLES OF INHALATION

خلال الوضع

الطبقة، العضلة

الافتتاحية

ڈسنسسی،

الحجاب الحاجز

الوربية الخارجية

العقد، تتوسع

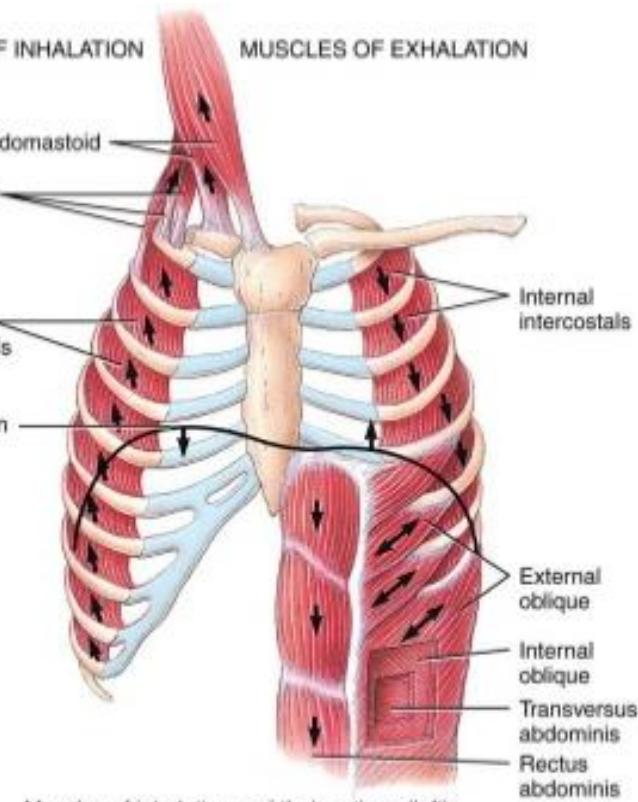
الكتاب المقدس

المرجعيات، وينص

إنشاء الوضع الطبيعي،

الخطوة التالية

الهدوء الرفيع، الحجاب

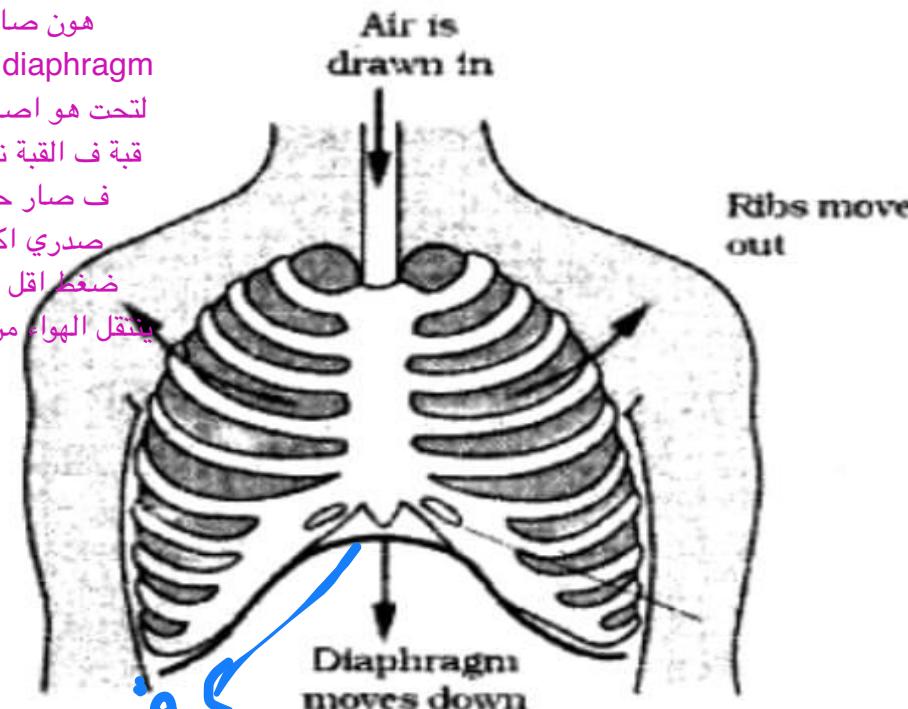

ال حاجز والوربيه

الخارجية الاسترخاء

• والارتداد الرؤييتين،

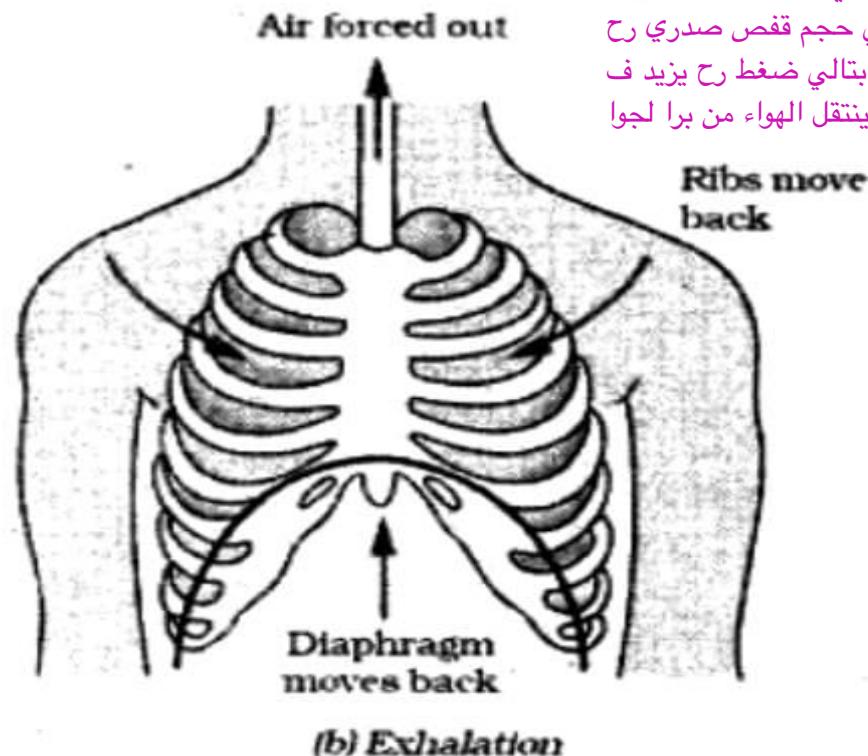
احمد المعاشر

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ



Muscles of inhalation and their actions (left); muscles of exhalation and their actions (right)

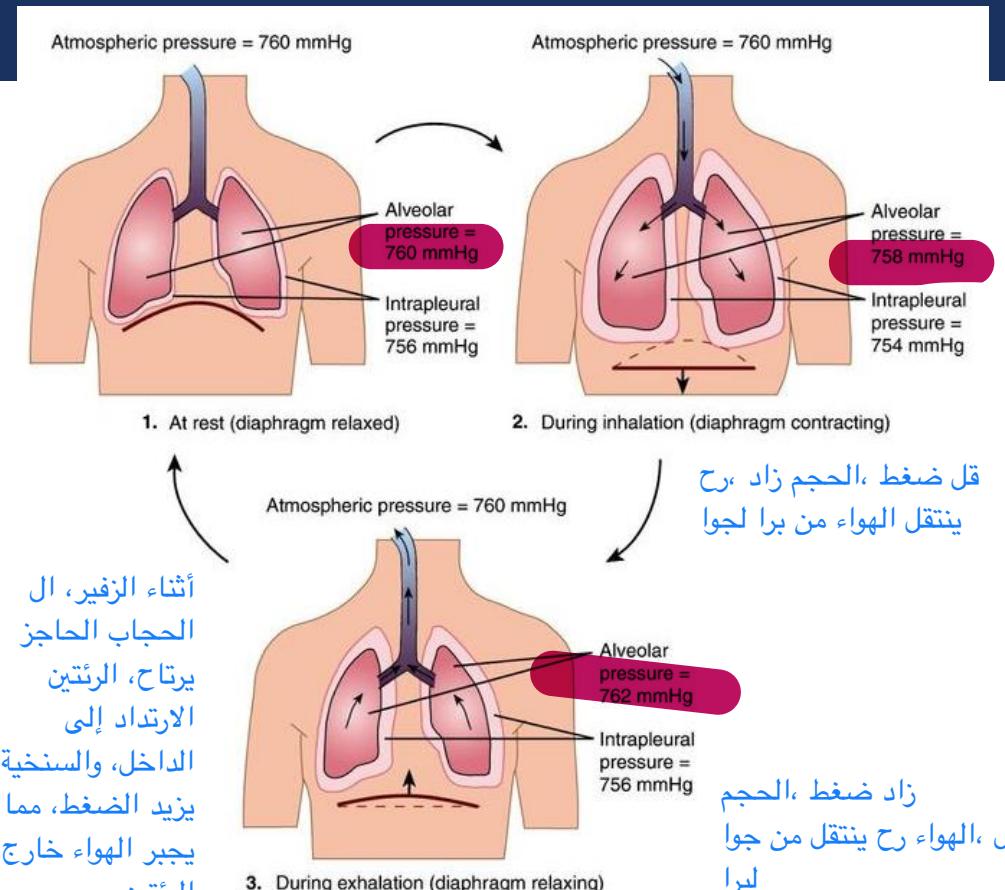
Active


نتيجة انقباض عضلات

هون صار انقباض
diaphragm يعني نزل
لتحت هو اصلاح شكل
قبة ف القبة نزلت لتحت
ف صار حجم قفص
صدرى اكتر ف بتالي
ضغط اقل ف بتالي رح
ينتقل الهواء من برا لجوا

Passive

هون بصير
ف بتالي diaphragm
مكانه يعني قبة رح يرجع
ف بتالي حجم قفص صدرى رح
يقل ف بتالي ضغط رح يزيد ف
رح ينتقل الهواء من برا لجوا


Mechanism of breathing human beings

PRESSURE CHANGES IN PULMONARY VENTILATION

During inhalation, the diaphragm contracts, the chest expands, **the lungs are pulled outward, and alveolar (intrapulmonic) pressure decreases.** بزيد جوا هذا يلي موجود جوا

During exhalation, the diaphragm relaxes, **the lungs recoil inward, and alveolar pressure increases, forcing air out of the lungs.** قل جوا أثناء الزفير، الـ الحاجب الحاجز يرتاح، الرئتين الارتداد إلى الداخل، والـ السنخية الداخل، والـ السنخية يزيد الضغط، مما يجبر الهواء خارج الرئتين.

اذا كان اعلى من 760 بكون موجب اذا يعني موجب اعلى من Atmosphere
تحت 760 بكون سالب سالب اقل من Atmosphere

MUSCLES OF INHALATION AND EXHALATION

- Because air always flows from a region of higher pressure to a region of lower pressure, inhalation takes place. Air continues to flow into the lungs as long as a pressure difference exists.
- During deep, forceful inhalations, accessory muscles of inspiration also participate in increasing the size of the thoracic cavity.
بس الواحد يوخذ نفس عميق
- The muscles are so named because they make little, if any, contribution during normal quiet inhalation, but during exercise or forced ventilation they may contract vigorously. The accessory muscles of inhalation include the sternocleidomastoid muscles.
بزيادة الحجم بقل ضغط
فبزيادة الهواء داخل
- Because both normal quiet inhalation and inhalation during exercise or forced ventilation involve muscular contraction, the process of inhalation is said to be active.

لأن الهواء يتدفق دائماً من منطقة ذات ضغط أعلى إلى منطقة أقل الضغط، يحدث الاستنشاق. يستمر الهواء في التدفق إلى الرئتين طالما يوجد اختلاف في الضغط.

➢ أثناء الاستنشاق العميق والقوي، عضلات الإلهام المشاركة أيضاً في زيادة حجم التجويف الصدري.

➢ سميت العضلات بهذا الاسم لأنها تقدم مساهمة ضئيلة، إن وجدت، خلال الوضع الطبيعي استنشاق هادئ، ولكن أثناء التمرين أو التهوية القسرية قد تقلص بقوة. تشمل العضلات الملحقة للاستنشاق العضلات القصبية الترقوية الخشاعية.

➢ لأن كل من الاستنشاق الهادئ العادي والاستنشاق أثناء يتضمن التمرين أو التهوية القسرية تقلص العضلات، يقال إن عملية الاستنشاق نشطة.

لَا حُوْلَ وَلَا قُوَّةَ إِلَّا بِاللَّهِ

موجود
جوا (lungs)
اعلى من
(atmosphere)

الزفير، يسمى الزفير (الزفير)، يرجع أيضاً إلى الضغط التدرج، ولكن في هذه الحالة يكون التدرج في الاتجاه المعاكس: الضغط في الرئتين أكبر من ضغط الغلاف الجوي. طبيعياً الزفير أثناء التنفس الهادئ، على عكس الاستنشاق، هو سلبي العملي لأنه لا توجد تقلصات عضلية.

الزفير EXHALATION

- Breathing out, called **exhalation (expiration)**, is also due to a pressure gradient, but in this case **the gradient is in the opposite direction**: The pressure in the lungs is greater than the pressure of the atmosphere. Normal exhalation during quiet breathing, unlike inhalation, is a **passive process because no muscular contractions are involved**.
- Instead, exhalation results from **elastic recoil of the chest wall and lungs**, both of which have a natural tendency to spring back after they have been stretched.

بدلاً من ذلك، ينتج الزفير عن الارتداد المرن لجدار الصدر و الرئتين، وكلاهما لديه ميل طبيعي للعودة بعد لقد تم تمديدهم
- Exhalation starts when the inspiratory muscles relax. As the diaphragm relaxes, its dome moves superiorly owing to its elasticity.

يبدأ الزفير عندما تسترخي العضلات الشهيقية. مثل الحاجب الحاجز يرتاح، يتحرك قبته بشكل متوفّق بسبب مرونته.

OTHER FACTORS AFFECTING PULMONARY VENTILATION

كما تعلم للتو، فإن اختلافات ضغط الهواء تدفع تدفق الهواء أثناء الاستنشاق والزفير. ومع ذلك، ثلاثة تؤثر عوامل أخرى على معدل تدفق الهواء والسهولة من التهوية الرئوية: التوتر السطحي لـ السائل السريخي، وامتداد الرئتين، والجري الهوائي مقاومة.

As you have just learned, air pressure differences drive airflow during inhalation and exhalation. However, three other factors affect the rate of airflow and the ease of pulmonary ventilation: surface tension of the alveolar fluid, compliance of the lungs, and airway resistance.

SURFACE TENSION OF ALVEOLAR FLUID

lungs محیط في

- A thin layer of alveolar fluid coats the luminal surface of alveoli and exerts a force known as **surface tension**.
 تأثيره اكبر خلال عملية مسؤولة عن تغير size lungs exhalation
- During breathing, surface tension must be overcome to expand the lungs during each inhalation. Surface tension also accounts for two-thirds of lung elastic recoil, which **decreases the size of alveoli during exhalation**.
- The surfactant (a mixture of phospholipids and lipoproteins) present in alveolar fluid reduces its surface tension.
 بس يقل بساعد في حدوث عملية inhalation رضع يلي بولدوا مبكر
- A deficiency of surfactant in **premature** infants causes **respiratory distress syndrome**, in which the surface tension of alveolar fluid is greatly increased, so that many alveoli collapse at the end of each exhalation. Great effort is then needed at the next inhalation to reopen the collapsed alveoli.

طبة، رقيقة من السائل، السنخ، تغطّي السطح اللمع، لل giocholas الهوائية وبمارس، قمة تعرف باسم التوت السطحه.

► أثناء التنفس، يجب التغلب على التوتر السطحي لتوسيع الرئتين أثناء كل استنشاق. يمثل التوتر السطحي أيضاً ثلثي الارتداد المرن للرئة، مما يقلل من حجم الحوسيفات الهوائية أثناء الزفير.

► الفاعل بالسطح (مزيج من الدهون الفوسفاتية والبروتينات الدهنية) الموجود في السائل السنخي يقلل من توترة السطحي.

نقص الفاعل بالسطح عند الأطفال الخدج يسبب ضائقة في الجهاز التنفسي الملازم، التي يزداد فيها التوتر السطحي للسائل السنخي بشكل كبير، بحيث تنهار العديد من الحويصلات الهوائية في نهاية كل زفير. ثم هناك حاجة إلى بذل جهد كبير في الاستنشاق التالي لإعادة فتح الحويصلات الهوائية المنهارة.

خلينا نفهم بالشكل بسيط :

التوتر السطحي في الوضع الطبيعي بس يكون عندي surfactant توتر السطحي تكون منخفض ف بتالي عملية الشهيق تكون سهلة، في وضع المرض زي الاطفال يلي بولدوا بكي ، تكون عندي surfactant قليل ف بتالي التوتر عالي ف بتالي شهيق صعب

التوتر السطحي في الوضع الطبيعي بس يكون في عندي surfactant بساعد في الزفير في الوضع المرضي : التوتر السطحي عالي كثير ف بدمري الحويصلات بخاليها تنها

و معلومة توتر السطحي فيه 2/3 من elastic recoil اذا زاد توتر سطحي بزيد elastic recoil ف بصير عندي الحالة المرضية و الحكي يلي شرحته

Elasticity على اعلى
Compliance على اعلى
lungs , chest well expanded على اعلى
surface tension اقل

Compliance ,surface tension : علاقة عكسية

COMPLIANCE OF THE LUNGS

يشير الامتثال إلى مقدار الجهد المطلوب لتمتد الرئتين وجدار الصدر.

- ✓ **Compliance refers to how much effort is required to stretch the lungs and chest wall.**

الامتثال العالي يعني أن الرئتين وجدار الصدر يتسعان بسهولة.

- ✓ **High compliance means that the lungs and chest wall expand easily.**

انخفاض الامتثال يعني أنهم يقاومون التوسيع.

- ✓ **Low compliance means that they resist expansion.**

في الرئتين، يرتبط الامتثال بعاملين رئيسيين: المرونة والتوتر السطحي.

علاقة طردية مع expand

- ✓ **In the lungs, compliance is related to two principal factors: elasticity and surface tension.**

- ✓ **The lungs normally have high compliance and expand easily because elastic fibers in lung tissue are easily stretched and surfactant in alveolar fluid reduces surface tension.**

عادة ما تتمتع الرئتين بامتثال عالي وتتوسيع بسهولة لأن الألياف المرونة في أنسجة الرئة هي قابلة للتمدد بسهولة وتحل الفاعل بالسطح في السائل الستحي من التوتر السطحي.

- ✓ **Decreased compliance is a common feature in pulmonary conditions that (1) scarlung tissue (for example, tuberculosis), (2) cause lung tissue to become filled with fluid (pulmonary edema), (3) produce a deficiency in surfactant, or (4) impede lung expansion in any way (for example, paralysis of the intercostal muscles).**

الشهيق → توسيع الرئة → تمدد القصبيات → قلت المقاومة → زاد تدفق الهواء
كما زاد القطر → قلت المقاومة → زاد تدفق الهواء

الزفير → انكماش الرئة → انكماش القصبيات → نقص القطر → زيادة المقاومة → نقص تدفق الهواء

مقاومة مجرى الهواء

AIRWAY RESISTANCE

مثل تدفق الدم عبر الأوعية الدموية، معدل تدفق الهواء عبر الشعب الهوائية يعتمد على كل من فرق الضغط والمقاومة.

❖ Like the flow of blood through blood vessels, **the rate of airflow through the airways depends on both the pressure difference and the resistance.**

❖ تدفق الهواء يساوي فرق الضغط بين الحويصلات الهوائية والغلاف الجوي مقسوما على المقاومة.

❖ **Airflow** equals the pressure difference between the alveoli and the atmosphere divided by the resistance.

❖ تقدم جدران الشعب الهوائية، وخاصة القصبيات، بعض مقاومة التدفق الطبيعي للهواء من وإلى الرئتين.

❖ **The walls of the airways, especially the bronchioles, offer some resistance to the normal flow of air into and out of the lungs.**

❖ مع توسيع الرئتين أثناء الاستنشاق، تكبر القصبيات بسبب سحب جدرانهم إلى الخارج في جميع الاتجاهات.

❖ قلت الشعب الهوائية ذات القطر الأكبر من المقاومة.

❖ **As the lungs expand during inhalation, the bronchioles enlarge because their walls are pulled outward in all directions.**

بزيادة خلل انتفاخ الرئتين
Air way resistance
عملية exhalation
بتقل خلل انتفاخ الرئتين
inhalation

❖ **Larger-diameter airways have decreased resistance.**

❖ ثم تزداد مقاومة مجرى الهواء أثناء الزفير حيث أن قطر تتناقص القصبات. يتم تنظيم قطر مجرى الهواء أيضاً من خلال درجة تقلص أو استرخاء العضلات الملساء في جدران الشعب الهوائية.

AIRWAY RESISTANCE

❖ Airway resistance then increases during exhalation as the diameter of bronchioles decreases. Airway diameter is also regulated by the degree of contraction or relaxation of smooth muscle in the walls of the airways.

إشارات من التقسيم الودي للجهاز العصبي اللاحاردي يسبب النظام استرخاء هذه العضلات الملساء، مما يؤدي إلى توسيع الشعب الهوائية وانخفاض المقاومة.

❖ **Signals from the sympathetic division of the autonomic nervous system cause relaxation of this smooth muscle, which results in bronchodilation and decreased resistance.**

❖ أي حالة تضيق أو تعيق الشعب الهوائية تزداد المقاومة، بحيث يلزم المزيد من الضغط للحفاظ على نفس تدفق الهواء (أي الربو أو مرض الانسداد الرئوي المزمن (COPD)).

❖ **Any condition that narrows or obstructs the airways increases resistance**, so that more pressure is required to maintain the same airflow (i.e. asthma or chronic obstructive pulmonary disease (COPD)).

LUNG VOLUMES AND CAPACITIES

أثناء الراحة، يبلغ متوسط الشخص البالغ السليم 12 نفاسا في الدقيقة، مع كل استنشاق وزفير نقل حوالي 500 مل من الهواء من وإلى الرئتين.

✓ While at rest, a healthy adult averages 12 breaths a minute, with each inhalation and exhalation moving about 500 mL of air into and out of the lungs.

هذا نفس يلي بدخلو و هما يلي بطلعوا 500

يسمى حجم نفس واحد حجم المد والجزر (VT).

✓ The **volume of one breath is called the tidal volume (VT).**

التهوية الدقيقة (MV) - إجمالي حجم الهواء المستنشق والزفير كل دقيقة - هو معدل التنفس مضروبا في حجم المد والجزر:

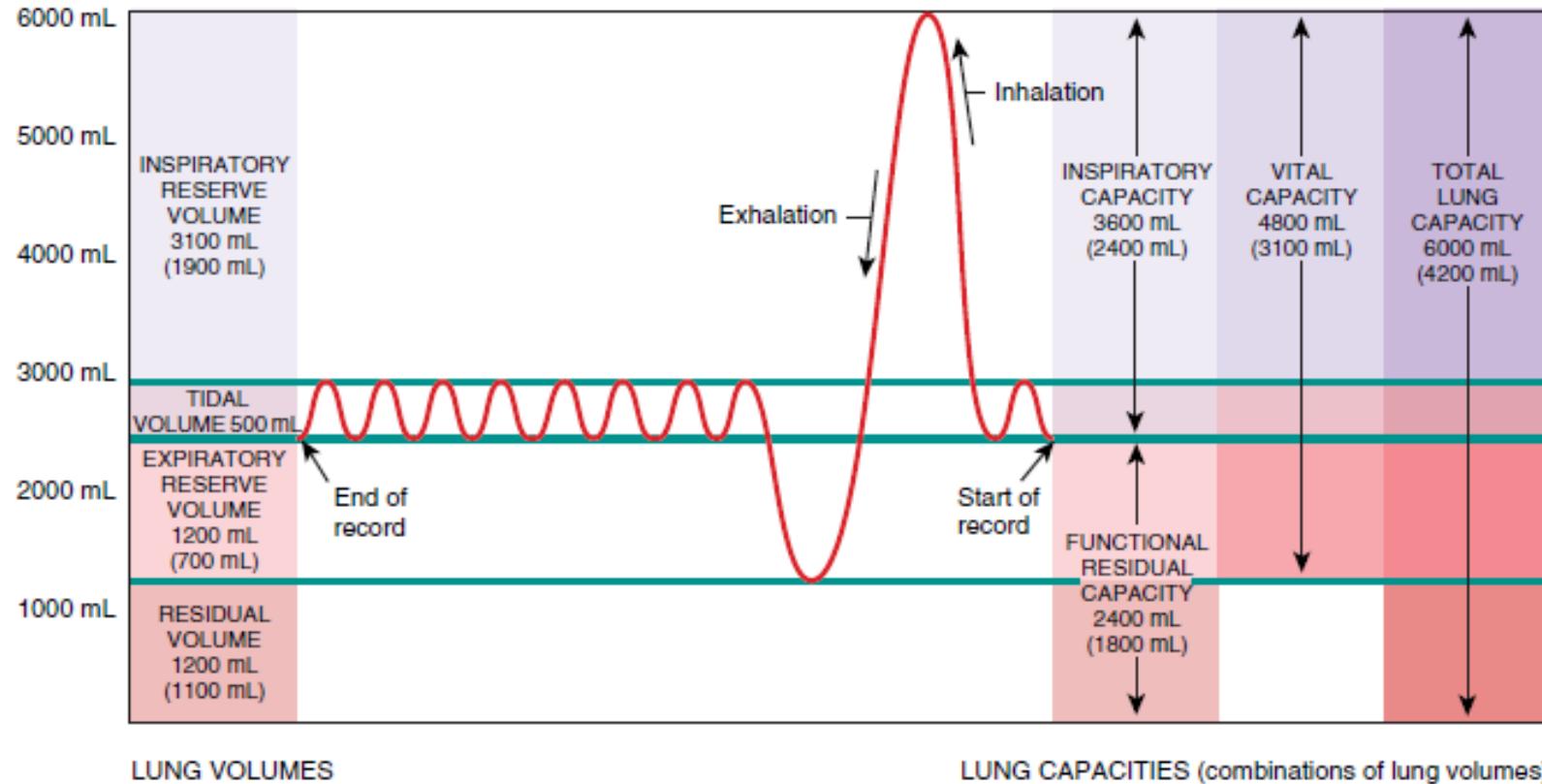
✓ **The minute ventilation (MV)**—the total volume of air inhaled and exhaled each minute—is respiratory rate multiplied by tidal volume:

✓ الجهاز المستخدم عادة لقياس حجم الهواء الذي يتم تبادله أثناء التنفس و معدل التنفس هو مقياس التنفس أو مقياس التنفس.

$$\begin{aligned} MV &= 12 \text{ breaths/min} \times 500 \text{ mL/breath} \\ &= 6 \text{ liters/min} \end{aligned}$$

عادة ما تكون التهوية الدقيقة الأقل من المعتاد علامة على خلل رئوي.

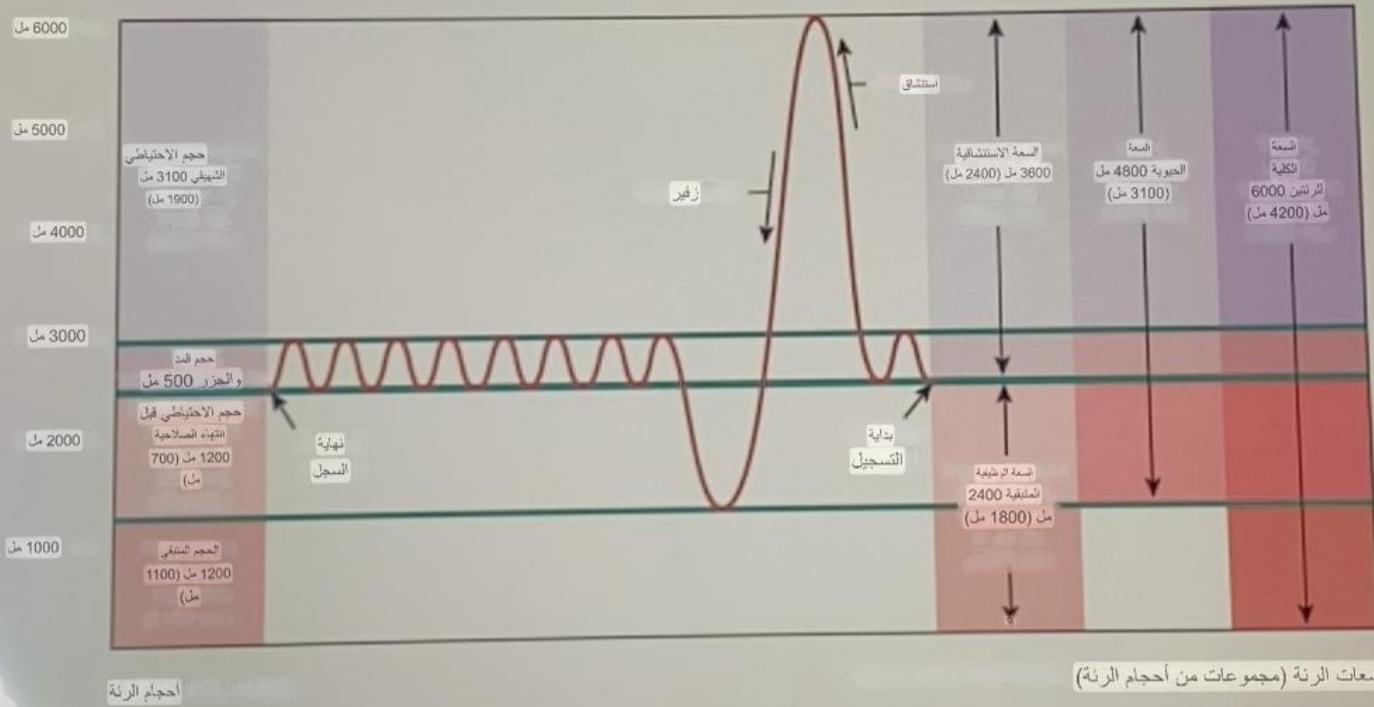
✓ يسمى السجل مخطط التنفس. يتم تسجيل الاستنشاق على أنه انحراف تصاعدي، والزفير يتم تسجيله على أنه انحراف هبوطي.


✓ Lower-than-normal minute ventilation usually is a **sign of pulmonary malfunction.**

✓ The apparatus commonly used to measure the volume of air exchanged during breathing and the respiratory rate is **a spirometer or respirometer.**

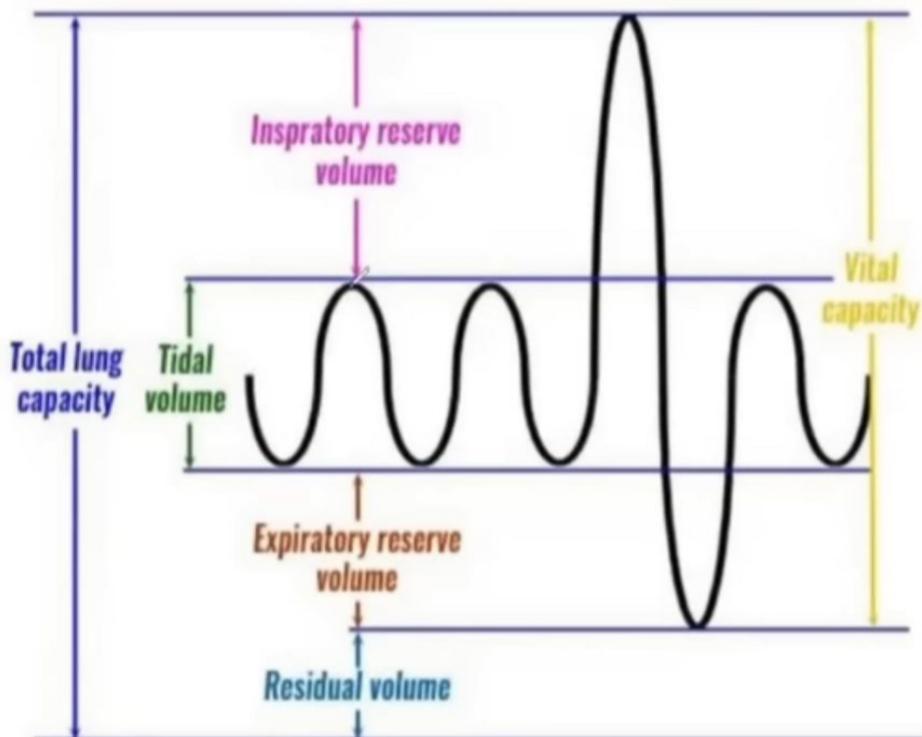
✓ The record is called a **spirogram**. **Inhalation** is recorded as an upward deflection, and **exhalation** is recorded as a downward deflection.

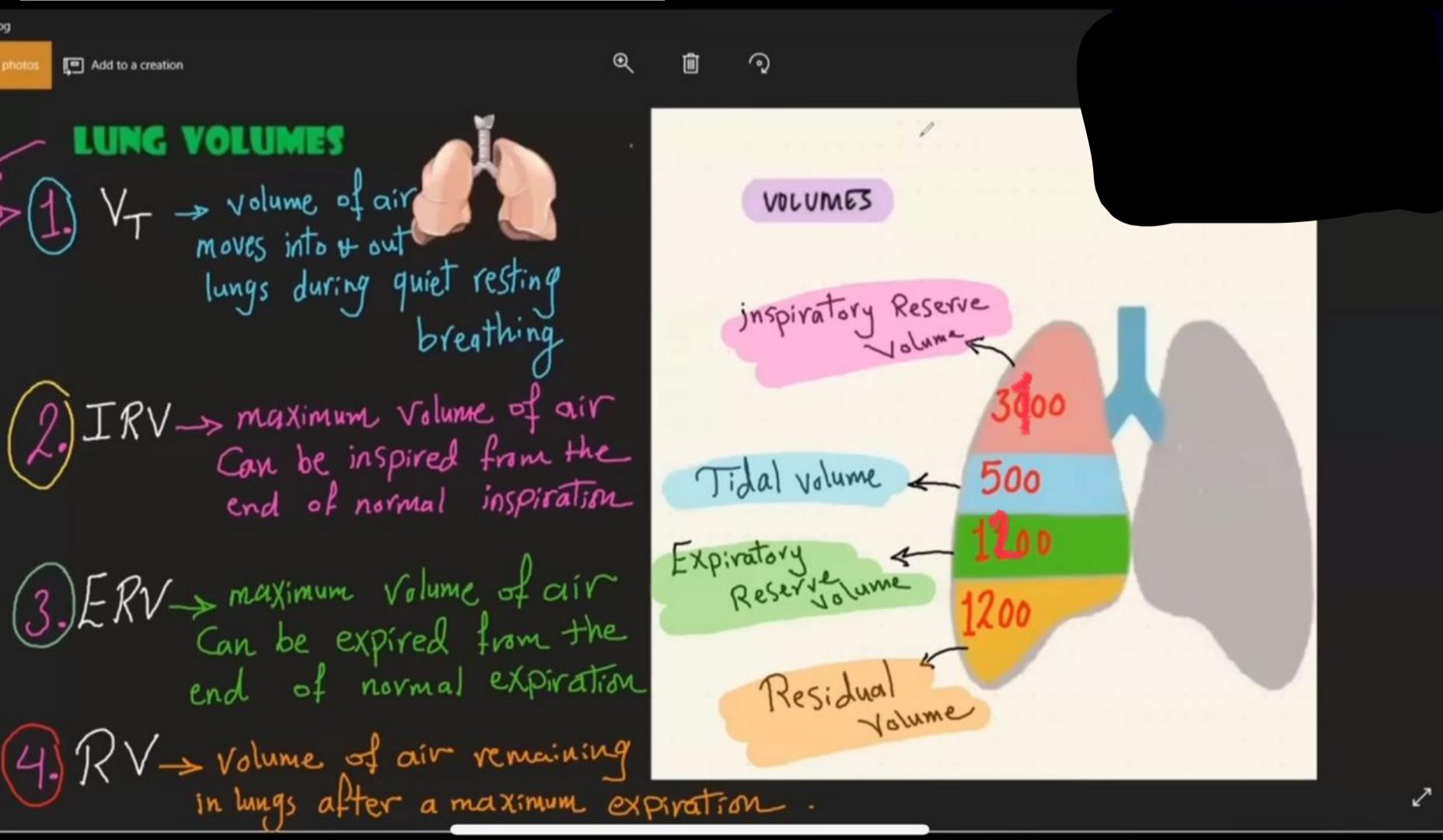
Figure 23.15 Spirogram of lung volumes and capacities. The average values for a healthy adult male and female are indicated, with the values for a female in parentheses. Note that the spirogram is read from right (start of record) to left (end of record).


كل ما زاد مسافة يلي بده يقطعها الغاز كلما كانت عملية تبادل الغازات اصعب

الشكل 23.15: مخطط التنفس لأجسام وساعات الرئة. يوضح الشكل متوسط القيم لرجل وامرأة بالغين يتمتعان بصحة جيدة ، مع وضع قيم المرأة بين قوسين. لاحظ أن مخطط التنفس يقرأ من اليمين (بداية التسجيل) إلى اليسار (نهاية التسجيل).

كل ما زادت مسافة يلي بدء يقطعها الغاز كلما كانت عملية تبادل الفازات أصعب


تعد ساعات الرئة مزيجاً من أحجام الرئة المختلفة.


تلخيص لصفحات الجاي

طالع
inhalation

نازل
Exhalation

لاحظ انو الجهاز ما بقياس residual volume

LUNG VOLUMES AND CAPACITIES

يختلف حجم المد والجزر اختلافاً كبيراً من شخص لآخر وفي نفس الوقت شخص في أوقات مختلفة

- ✓ **Tidal volume** varies considerably from one person to another and in the same person at different times.
معدل التهوية السنخية هو حجم الهواء في الدقيقة الذي يصل بالفعل منطقة الجهاز التنفسي.
- ✓ The **alveolar ventilation rate** is the volume of air per minute that actually reaches the respiratory zone.
يتم تعريف العديد من أحجام الرئة الأخرى فيما يتعلق بالتنفس القوي. بشكل عام، هذه الأحجام أكبر في الذكور والأفراد الأطول والبالغين الأصغر سناً، وأصغر في الإناث، والأفراد الأقصر، وكبار السن. قد تكون الأضطرابات المختلفة أيضاً يتم تشخيصها من خلال مقارنة القيم الطبيعية الفعلية والمتوقعة للمريض الجنس والطول والعمر
- ✓ **Several other lung volumes are defined relative to forceful breathing.** In general, these volumes are larger in males, taller individuals, and younger adults, and smaller in females, shorter individuals, and the elderly. Various disorders also may be diagnosed by comparison of actual and predicted normal values for a patient's gender, height, and age.
- ✓ **Lung capacities are combinations of various lung volumes.** سعات الرئة هي مزيج من أحجام الرئة المختلفة.

LUNG VOLUMES AND CAPACITIES

إذا تم استنشاق أكثر من 500ml

- By taking a very deep breath, you can inhale a good deal more than 500 mL. This additional inhaled air, called the **inspiratory reserve volume**، يمكن استنشاق المزيد من الهواء إذا كان الاستنشاق يتبع الزفير القسري. إذا كنت تستنشق بشكل طبيعي ثم الزفير بالقوة قدر الإمكان، يجب أن تكون قادراً على الدفع أكثر بكثير الهواء بالإضافة إلى 500 مل من حجم المد والجزر. 1200 مل إضافي في الذكور و700 مل في الإناث حجم الاحتياطي الزفير.

- Even more air can be inhaled if inhalation follows forced exhalation. If you inhale normally and then exhale as forcibly as possible, you should be able to push out considerably more air in addition to the 500 mL of tidal volume. The extra 1200 mL in males and 700 mL in females is called the **expiratory reserve volume**.
عندما تتم **exhalation** (زفير) أكثرب من **inhalation** (استنشاق) يمكن أن يكون الزفير في ثانية واحدة باقصى جهد بعد الاستنشاق الأقصى. عادة، حجم الزفير القسري في ثانية واحدة، (FEV1.0) هو حجم الهواء الذي يمكن أن ينجزه الرئتين في ثانية واحدة باقصى جهد بعد الاستنشاق الأقصى.

- The forced expiratory volume in 1 second**, (FEV1.0) is the volume of air that can be exhaled from the lungs in 1 second with maximal effort following a maximal inhalation. Typically, chronic obstructive pulmonary disease (COPD) greatly reduces FEV1.0 because COPD increases airway resistance.

LUNG VOLUMES AND CAPACITIES

بشكل طبيعي
Inhalation
بشكل كبير
exhalation

- Even after the expiratory reserve volume is exhaled, considerable air remains in the lungs, is called the residual volume and amounts to about 1200 mL in males and 1100 mL in females.

يعني هذا الحجم ضل موجود في lungs
حتى لو اعمل Expiratory reserve volume
- Inspiratory capacity is the sum of tidal volume and inspiratory reserve volume ($500 \text{ mL} + 3100 \text{ mL} = 3600 \text{ mL}$ in males and $500 \text{ mL} + 1900 \text{ mL} = 2400 \text{ mL}$ in females).

القدرة الشهيقية هي مجموع حجم المد والجزر وحجم الاحتياطي الشهيق ($500 \text{ مل} + 3100 \text{ مل} = 3600 \text{ مل}$ في الذكور و $500 \text{ مل} + 1900 \text{ مل} = 2400 \text{ مل}$ في إناث).
- Functional residual capacity is the sum of residual volume and expiratory reserve volume ($1200 \text{ mL} + 1200 \text{ mL} = 2400 \text{ mL}$ in males and $1100 \text{ mL} + 700 \text{ mL} = 1800 \text{ mL}$ in females).

السعه الوظيفية المتبقية هي مجموع الحجم المتبقى والزفير حجم الاحتياطي ($1200 \text{ مل} + 1200 \text{ مل} = 2400 \text{ مل}$ في الذكور و $1100 \text{ مل} + 700 \text{ مل} = 1800 \text{ مل}$ من الإناث)

LUNG VOLUMES AND CAPACITIES

القدرة الحيوية هي مجموع حجم الاحتياطي الشهيق، المد والجزر الحجم، وحجم الاحتياطي الزفير (4800 مل في الذكور و 3100 مل في الإناث).

- **Vital capacity** is the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume (4800 mL in males and 3100 mL in females).
- Finally, **total lung capacity** is the sum of vital capacity and residual volume (4800 mL + 1200 mL = 6000 mL in males and 3100 mL + 1100 mL = 4200 mL in females).

أخيرا، إجمالي سعة الرئة هو مجموع السعة الحيوية والبقايا الحجم (4800 مل + 1200 مل = 6000 مل في الذكور و 3100 مل + 1100 مل = 4200 مل في الإناث).

EXCHANGE OF OXYGEN AND CARBON DIOXIDE

تبادل الأكسجين وثاني أكسيد الكربون بين السنتخية يحدث الهواء والدم الرئوي عن طريق الانتشار السلبي، وهو يحكمها سلوك الغازات بقانونين للغاز، قانون دالتون وقانون هنري.

- **The exchange of oxygen and carbon dioxide between alveolar air and pulmonary blood occurs via **passive diffusion**, which is governed by the behavior of gases by two gas laws, Dalton's law and Henry's law.**

قانون دالتون مهم لفهم كيفية تحرك الغازات خفض تدرجات الضغط الخاصة بهم عن طريق الانتشار، وقانون هنري يساعد في شرح كيفية ارتباط قابلية ذوبان الغاز بانتشاره

- **Dalton's law is important for understanding how gases move down their pressure gradients by diffusion, and Henry's law helps explain how the solubility of a gas relates to its diffusion.**

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

وفقا لقانون دالتون، فإن كل غاز في خليط من الغازات يمارس غازه الخاص الضغط كما لو لم تكن هناك غازات أخرى.

- ✓ According to Dalton's law, each gas in a mixture of gases exerts its own pressure as if no other gases were present.

يسمى ضغط غاز معين في الخليط جزئياً الضغط (P_x).

يعني بحكي عن واحد يعني عن CO_2

- ✓ **The pressure of a specific gas in a mixture is called its partial pressure (P_x).**

يتم حساب الضغط الكلي للخلط ببساطة عن طريق إضافة كل الضغوط الجزئية.

- ✓ **The total pressure of the mixture is calculated simply by adding all of the partial pressures.**

الهواء الجوي هو خليط من الغازات - النيتروجين (N_2) والأكسجين (O_2) والأرجون (Ar)، ثاني أكسيد الكربون (CO_2)، كميات متغيرة من بخار الماء (H_2O)، بالإضافة إلى غيرها

الغازات الموجودة بكميات صغيرة

- ✓ **Atmospheric air is a mixture of gases—nitrogen (N_2), oxygen (O_2), argon (Ar), carbon dioxide (CO_2), variable amounts of water vapor (H_2O), plus other gases present in small quantities.**

تحدد هذه الضغوط الجزئية حركة O_2 و CO_2 بين الغلاف الجوي والرئتين، وبين الرئتين والدم، وبين الدم وخلايا الجسم. ينتشر كل غاز عبر غشاء قابل للنفاذ من المنطقة التي يوجد فيها الضغطالجزئي أكبر من المنطقة التي يكون فيها ضغطهالجزئي أقل. الأكبر الفرق في الضغطالجزئي، كلما كان معدل الانتشار أسرع.

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

يمكنا تحديد الضغطالجزئي الذي يمارسه كل المكون في الخليط عن طريق ضرب النسبة المئوية للغاز في الخليط حسب الضغط الكلي للخليط. جوي الهواء هو 78.6% نيتروجين، و20.9% أكسجين، و0.093% أرجون، و0.04% ثاني أكسيد الكربون، و0.06% غازات أخرى؛ توجد أيضاً كمية متغيرة من بخار الماء.

- We can determine the **partial pressure exerted by each component in the mixture** by multiplying the percentage of the gas in the mixture by the total pressure of the mixture. Atmospheric air is 78.6% nitrogen, 20.9% oxygen, 0.093% argon, 0.04% carbon dioxide, and 0.06% other gases; a variable amount of water vapor is also present.

كلما كان (diffuses) أعلى كلما كان (اسرع difference in the partial pressure)

- These partial pressures determine the movement of O_2 and CO_2 between the atmosphere and lungs, between the lungs and blood, and between the blood and body cells. Each gas diffuses across a permeable membrane from the area where its partial pressure is greater to the area where its partial pressure is less. **The greater the difference in partial pressure, the faster the rate of diffusion.**

ينص قانون هنري على أن كمية الغاز التي يستذوب في السائل هي يتناسب مع الضغط الجزئي للغاز وقابلية للذوبان. في الجسم السوائل، تكون قدرة الغاز على البقاء في المحلول أكبر عندما يكون ضغطه الجزئي أعلى وعندما يكون له قابلية ذوبان عالية في الماء. كلما ارتفع الضغط الجزئي من الغاز فوق السائل وكلما زادت قابلية الذوبان، كلما بقي المزيد من الغاز حل. بالمقارنة مع الأكسجين، يذوب الكثير من ثاني أكسيد الكربون في بلازما الدم لأن قابلية ذوبان ثاني أكسيد الكربون أكبر بـ 24 مرة من ذوبان O₂. على الرغم من الهواء نحن نتنفس يحتوي في الغالب على N₂، هذا الغاز ليس له تأثير معروف على وظائف الجسم، وعند مستوى سطح البحر، يذوب القليل جداً منه في بلازما الدم لأنه الذوبان منخفض جداً.

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

- Compared with inhaled air, **alveolar air has less O₂ and more CO₂ while exhaled air contains more O₂ than alveolar air and less CO₂**.

بالمقارنة مع الهواء المستنشق، يحتوي الهواء السنخي على كمية أقل من O₂ والمزيد من ثاني أكسيد الكربون أثناء الزفير يحتوي الهواء على O₂ أكثر من الهواء السنخي وCO₂ أقل.

- Henry's law states that the quantity of a gas that will dissolve in a liquid is proportional to the partial pressure of the gas and its solubility. In body fluids, the ability of a gas to stay in solution is greater when its partial pressure is higher and when it has a high solubility in water.** The higher the partial pressure of a gas over a liquid and the higher the solubility, the more gas will stay in solution. **In comparison to oxygen, much more CO₂ is dissolved in blood plasma because the solubility of CO₂ is 24 times greater than that of O₂.** Even though the air we breathe contains **mostly N₂, this gas has no known effect on bodily functions, and at sea level pressure very little of it dissolves in blood plasma because its solubility is very low.**

كلما كان ذائبية الغاز في الماء أعلى ، (على كلما كانت قدرة غاز انو يضل في solution اكبر)

EXTERNAL AND INTERNAL RESPIRATION

External respiration

تبادل الغاز الرئوي هو انتشار O_2 من الهواء في الحويصلات الهوائية من الرئتين إلى الدم في الشعيرات الدموية الرئوية و انتشار ثاني أكسيد الكربون في الاتجاه المعاكس.

- **Pulmonary gas exchange** is the diffusion of O_2 from air in the alveoli of the lungs to blood in pulmonary capillaries and the diffusion of CO_2 in the opposite direction.
- **Respiration in the lungs converts deoxygenated blood (depleted of some O_2) coming from the right side of the heart into oxygenated blood (saturated with O_2) that returns to the left side of the heart.**

التنفس في الرئتين يحول الدم منزوع الأكسجين (المستنفد من بعض O_2) القادمة من الجانب الأيمن من القلب إلى الدم المؤكسج (المشبع ب O_2) الذي يعود إلى الجانب الأيسر من القلب.

EXTERNAL AND INTERNAL RESPIRATION

عدد الشعيرات الدموية بالقرب من الحويصلات الهوائية في الرئتين كبير جدا، والدم يتدفق ببطء بما فيه الكفاية من خلال هذه الشعيرات الدموية بحيث تلتقط الدم الأقصى كمية O_2 .

- The number of capillaries near alveoli in the lungs is very large, and blood flows slowly enough through these capillaries that it picks up a maximal amount of O_2 .

أثناء التمرين القوي، عندما يزداد الناتج القلبي، يتدفق الدم أكثر بسرعة من خلال كل من الدورة الدموية الجهازية والرئوية. نتيجة لذلك، وقت عبور الدم في الشعيرات الدموية الرئوية أقصر.

- During vigorous exercise, when cardiac output is increased, blood flows more rapidly through both the systemic and pulmonary circulations. As a result, blood's transit time in the pulmonary capillaries is shorter. يعني ما يلحق يوخذ كميات اوكسجين كافية
- In diseases that decrease the rate of gas diffusion, however, the blood may not come into full equilibrium with alveolar air, especially during exercise. When this happens, the PO_2 declines and PCO_2 rises in systemic arterial blood.

في الأمراض التي تقلل من معدل انتشار الغاز، ومع ذلك، قد لا يكون الدم يأتي في حالة توازن كامل مع الهواء السنخي، خاصة أثناء التمرين. متى يحدث هذا، ينخفض PO_2 ويرتفع PCO_2 في الدم الشرياني الجهازي.

(Pulmonary) حولت (deoxygenated) إلى (oxygenated) بعدين وصل (left ventricle) هسا (pumping oxygenated blood) إلى (aorta) بعمل (systemic arteries) (systemic capillaries) بعدين من خلال

يضخ البطين الأيسر الدم المؤكسج إلى الشريان الأورطي و من خلال الشريان الجهازي إلى الشعيرات الدموية CO2 O2 و الجهازية. التبادل بين الشعيرات الدموية الجهازية والأنسجة تسمى الخلايا بالتنفس الداخلي أو تبادل الغاز الجهازي.

EXTERNAL AND INTERNAL RESPIRATION

- ❖ The left ventricle pumps oxygenated blood into the aorta and through the systemic arteries to systemic capillaries. **The exchange of O₂ and CO₂ between systemic capillaries and tissue cells is called internal respiration or systemic gas exchange.**

عندما يغادر O₂ مجرى الدم، يتم تحويل الدم المؤكسج إلى دم منزوع الأكسجين.

- ❖ As O₂ leaves the bloodstream, oxygenated blood is converted into deoxygenated blood.

على عكس التنفس الخارجي، الذي يحدث فقط في الرئتين، يحدث التنفس الداخلي في الأنسجة في جميع أنحاء الجسم

- ❖ **Unlike external respiration, which occurs only in the lungs, internal respiration occurs in tissues throughout the body.**

PO2 من الدم الذي يتم ضخه في الشعيرات الدموية الجهازية أعلى PO2 (100 مم زئبق) من في خلايا الأنسجة (40 مم زئبق عند الراحة) لأن الخلية باستمرار استخدم O2 لإنتاج ATP.

EXTERNAL AND INTERNAL RESPIRATION

- The PO₂ of blood pumped into systemic capillaries is higher (100 mmHg) than the PO₂ in tissue cells (40 mmHg at rest) because the cells constantly use O₂ to produce ATP.
الى Tissue cell
بينما يتشر O₂ من الشعيرات الدموية الجهازية إلى خلايا الأنسجة، ينتشر ثاني أكسيد الكربون في الاتجاه المعاكس. لأن خلايا الأنسجة systemic capillaries تنتج باستمرار ثاني أكسيد الكربون، PCO₂ للخلايا (45 مم زئبق عند الراحة) أعلى من الشعيرات الدموية الجهازية دم (40 مم زئبق).
- While O₂ diffuses from the systemic capillaries into tissue cells, CO₂ diffuses in the opposite direction. Because tissue cells are constantly producing CO₂, the PCO₂ of cells (45 mmHg at rest) is higher than that of systemic capillary blood (40 mmHg).

ثم يعود الدم المنزوع الأكسجين إلى القلب ويتم ضخه إلى الرئتين لدورة أخرى من التنفس الخارجي.

- The **deoxygenated blood then returns to the heart** and is pumped to the lungs for another cycle of external respiration.

THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

فرق الضغط الجزيئي للغازات. يجب أن يكون PO_2 السنخي أعلى من الدم PO_2 للأكسجين ليتشر من الهواء السنخي إلى الدم. آل الاختلافات بين PO_2 و PCO_2 في الهواء السنخي مقابل الدم الرئوي زيادة أثناء التمرين.

□ **Partial pressure difference of the gases.** Alveolar PO_2 must be higher than blood PO_2 for oxygen to diffuse from alveolar air into the blood. **The differences between PO_2 and PCO_2 in alveolar air versus pulmonary blood increase during exercise.**

المساحة السطحية الممتدة لتبادل الغاز. المساحة السطحية للحويصلات الهوائية ضخمة. بالإضافة إلى ذلك، تحيط العديد من الشعيرات الدموية بكل حويصلة هوائية، لذلك الكثير من أن ما يصل إلى 900 مل من الدم قادر على المشاركة في تبادل الغاز في أي لحظة

□ **Surface area available for gas exchange.** The surface area of the alveoli is huge. In addition, many capillaries surround each alveolus, so many that as much as 900 mL of blood is able to participate in gas exchange at any instant.

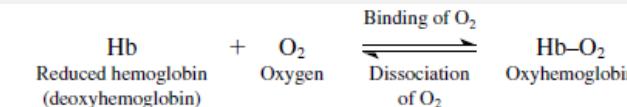
THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

کلام از کار کی ایجاد کرنے کا طریقہ

الغشاء التنفسى رقيق جداً، لذلك الانتشار يحدث بسرعة. تراكم السائل الخلالي بين الحويصلات الهوائية، كما يحدث في الوذمة الرئوية، يطهى معدل تبادل الغاز لأنها تزداد مسافة الانتشار.

Diffusion distance. The respiratory membrane is very thin, so diffusion occurs quickly. **Buildup of interstitial fluid between alveoli, as occurs in pulmonary edema, slows the rate of gas exchange because it increases the diffusion distance.** الوزن الجزيئي وقابلية ذوبان الغازات. لأن 02 لديه الوزن الجزيئي أقل من ثاني أكسيد الكربون، من المتوقع أن ينتشر عبر الغشاء التنفسى، أيسع بحوله 1.2 متر. ومع ذلك، فإن قابلية ذوبان ثاني أكسيد الكربون في الأذناء السائلة من الغشاء السائلة من الغشاء التنفسى، أكثـر

الوزن الجزائري وقابلية ذوبان الغازات. لأن O_2 لديه الوزن الجزيئي أقل من ثاني أكسيد الكربون، من المتوقع أن ينتشر عبر التنفسية أسرع بحوالي 1.2 مرة. ومع ذلك، فإن قابلية ذوبان ثاني أكسيد الكربون في الأجزاء السائلة من الغشاء التنفسية أحوالياً 24 مرة أكثر من O_2 . مع الأخذ في الاعتبار كلا هذين العاملين، فإن صافي ثاني أكسيد الكربون الخارجي يحدث الانتشار بسرعة أكبر 20 مرة من صافي انتشار O_2 الداخلي.


Molecular weight and solubility of the gases. Because O₂ has a lower molecular weight than CO₂, it could be expected to diffuse across the respiratory membrane about 1.2 times faster. However, the solubility of CO₂ in the fluid portions of the respiratory membrane is about 24 times greater than that of O₂. Taking both of these factors into account, net outward CO₂ diffusion occurs 20 times more rapidly than net inward O₂ diffusion.

TRANSPORT OF OXYGEN AND CARBON DIOXIDE: OXYGEN TRANSPORT

لا يذوب الأكسجين بسهولة في الماء، لذلك فقط حوالي 1.5٪ من يذوب O_2 المستنشق في بلازما الدم.

- Oxygen does not dissolve easily in water, so only about 1.5% of inhaled O_2 is dissolved in blood plasma.
- ❖ About 98.5% of blood O_2 is bound to hemoglobin in red blood cells (the amount dissolved in the plasma is 0.3 mL and the amount bound to hemoglobin is 19.7 mL.).

يرتبط حوالي 98.5٪ من O_2 في الدم بالهيموغلوبين في الدم الأحمر الخلالي (الكمية الذائبة في البلازما هي 0.3 مل و الكمية المرتبطة بالهيموغلوبين هي 19.7 مل).

The 98.5% of the O_2 that is bound to hemoglobin is trapped inside RBCs, so only the dissolved O_2 (1.5%) can diffuse out of tissue capillaries into tissue cells. Thus, it is important to understand the factors that promote O_2 binding to and dissociation (separation) from hemoglobin.

The Relationship between Hemoglobin

THE RELATIONSHIP BETWEEN HEMOGLOBIN AND OXYGEN PARTIAL PRESSURE

❖ **The most important factor that determines how much O₂ binds to hemoglobin is the PO₂; the higher the PO₂, the more O₂ combines with Hb.**

عندما يتم تحويل الهيموغلوبين المفخض (Hb) تماماً إلى أوكسي الهيموغلوبين (Hb-O₂), يقال إن الهيموغلوبين مشبع بالكامل؛ عندما يتكون الهيموغلوبين من خليط من Hb و Hb-O₂, فهو مشبع جزئياً. تعبير النسبة المئوية لتشبع الهيموغلوبين عن متوسط تشبع الهيموغلوبين بالأكسجين. على سبيل المثال، إذا كان كل ربط جزء الهيموغلوبين جزئين O₂, ثم الهيموغلوبين مشبع بنسبة 50% لأن كل Hb يمكن أن يرتبط بحد أقصى أربعة O₂.

❖ **When reduced hemoglobin (Hb) is completely converted to oxyhemoglobin (Hb-O₂), the hemoglobin is said to be fully saturated; when hemoglobin consists of a mixture of Hb and Hb-O₂, it is partially saturated.** The percent saturation of hemoglobin expresses the average saturation of hemoglobin with oxygen. For instance, if each hemoglobin molecule has bound two O₂ molecules, then the hemoglobin is 50% saturated because each Hb can bind a maximum of four O₂.

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

الحموضة (الرقم الهيدروجيني): مع زيادة الحموضة (انخفاض الرقم الهيدروجيني)، تقارب ينخفض الهيموغلوبين لـ O_2 ، وينفصل O_2 بسهولة أكبر عن الهيموغلوبين. يعمل تأثير بور في كلا الاتجاهين: زيادة في يؤدي أيون الهيدروجين في الدم إلى تفريغ O_2 من الهيموغلوبين، و يؤدي ربط O_2 بالهيموغلوبين إلى تفريغ أيون الهيدروجين من الهيموغلوبين (يمكن أن يحمل الهيموغلوبين كمخزن مؤقت ل أيونات الهيدروجين).

لازم تكوني عالية حتى يتربط PH الاوكسجين مع هيموغلوبين بشكل (Fully) اكبر و يعطيني saturated)

❖ 1. **Acidity (pH):** As acidity increases (pH decreases), the affinity of hemoglobin for O_2 decreases, and O_2 dissociates more readily from hemoglobin. **The Bohr effect** works both ways: An increase in hydrogen ion in blood causes O_2 to unload from hemoglobin, and the binding of O_2 to hemoglobin causes unloading of hydrogen ion from hemoglobin (hemoglobin can act as a buffer for hydrogen ions).

زيادة CO_2 → تزداد H^+ → ينخفض pH

على CO_2

على H^+

أقل pH

ارتباط الهيمو مع الاوكسجين اقل

أقل CO_2

أقل H^+ (Acidity)

على pH

ارتباط هيمو مع اوكسجين اعلى

Acidosis

عالية CO_2

ارتباط اوكسجين مع هيمو قليل

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

❖ 2. **Partial pressure of carbon dioxide: PCO₂ and pH are related factors because low blood pH (acidity) results from high PCO₂.** As CO₂ enters the blood, much of it is temporarily converted to carbonic acid (H₂CO₃). The carbonic acid thus formed in red blood cells dissociates into hydrogen ions and bicarbonate ions. **As the hydrogen ions concentration increases, pH decreases.** Thus, an increased PCO₂ produces a more acidic environment, which helps release O₂ from hemoglobin.

الضغط الجزيئي لثاني أكسيد الكربون: يرتبط PCO₂ ودرجة الحموضة العوامل بسبب انخفاض درجة الحموضة في الدم (الحموضة) ينتج عن ارتفاع PCO₂. كما يدخل ثاني أكسيد الكربون إلى الدم، ويتم تحويل الكثير منه مؤقتاً إلى كربوني حمض (H₂CO₃). وهكذا يتكون حمض الكربونيك في خلايا الدم الحمراء ينفصل إلى أيونات الهيدروجين وأيونات البيكربونات. مثل الهيدروجين يزداد تركيز الأيونات، وينخفض الرقم الهيدروجيني. وبالتالي، زيادة PCO₂ ينتج بيئه أكثر حموضة، مما يساعد على إطلاق O₂ من الهيموغلوبين

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

حرارة عالية ارتباط هيمو مع الاوكسجين قليل

- ❖ 3. **Temperature:** Within limits, as temperature increases, so does the amount of O₂ released from hemoglobin. During hypothermia (lowered body temperature) cellular metabolism slows, the need for O₂ is reduced, and more O₂ remains bound to hemoglobin.

درجة الحرارة: ضمن الحدود، مع زيادة درجة الحرارة، وكذلك كمية O₂ المنبعثة من الهيموغلوبين. أثناء انخفاض حرارة الجسم (انخفاض درجة حرارة الجسم) يتباين الأيض الخلوي، وال الحاجة إلى O₂ يتم تقليله، ولا يزال المزيد من O₂ مرتبطة بالهيموغلوبين.

CARBON DIOXIDE TRANSPORT

في ظل ظروف الراحة العادية، يحتوي كل 100 مل من الدم منزوع الأكسجين على ما يعادل 53 مل من ثاني أكسيد الكربون الغازي، والذي يتم نقله في الدم في ثلاثة أشكال رئيسية:

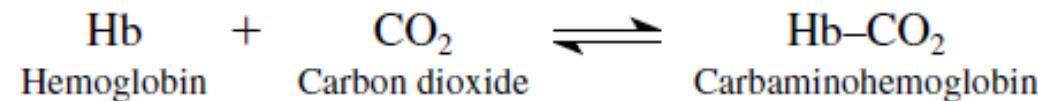
Under normal resting conditions, each 100 mL of deoxygenated blood contains the equivalent of 53 mL of **gaseous CO_2 , which is transported in the blood in three main forms:**

ثاني أكسيد الكربون المذاب. أصغر نسبة مئوية - حوالي 7٪
تنبوب في الدم البلازماء. عند الوصول إلى الرئتين، ينتشر في الهواء السنتхи ويتم الزفير.

1. Dissolved CO_2 . The smallest percentage—about 7%—is dissolved in blood plasma. On reaching the lungs, it diffuses into alveolar air and is exhaled.

مركبات كاربامينو. نسبة مئوية أعلى إلى حد ما، حوالي 23٪، تتحدد مع المجموعات الأمينية للأحماض الأمينية والبروتينات في الدم لتشكيل كاربامينو مركبات. لأن البروتين الأكثر انتشارا في الدم هو الهيموغلوبين (في الداخل خلايا الدم الحمراء)، ترتبط معظم ثاني أكسيد الكربون المنقول بهذه الطريقة الهيموغلوبين.

2. Carbamino compounds. somewhat higher percentage, about 23%, combines with the amino groups of amino acids and proteins in blood to form carbamino compounds. Because the most prevalent protein in blood is hemoglobin (inside red blood cells), most of the CO_2 transported in this manner is bound to hemoglobin.


CARBON DIOXIDE TRANSPORT

يتآثر تكوين الكربامينوهيموغلوبين بشكل كبير ب PCO_2 . على سبيل المثال، في

الشعيرات الدموية للأنسجة يكون PCO_2 مرتفعا نسبيا، مما يعزز تكوين الكربامينوهيموغلوبين. ولكن في الشعيرات

الدموية الرئوية، يكون PCO_2 منخفض نسبيا، وينقسم ثاني أكسيد الكربون بسهولة عن الغلوبين ويدخل الهويصلات الهوائية عن طريق الانتشار.

chains. Hemoglobin that has bound CO_2 is termed **carbaminohemoglobin (Hb-CO₂)**:

The formation of carbaminohemoglobin is greatly influenced by PCO_2 . For example, in tissue capillaries PCO_2 is relatively high, which promotes formation of carbaminohemoglobin. But in pulmonary capillaries, PCO_2 is relatively low, and the CO_2 readily splits apart from globin and enters the alveoli by diffusion.

أيونات البيكربونات. يتم نقل أكبر نسبة من ثاني أكسيد الكربون - حوالي 70٪ - في بلازما الدم مثل أيونات البيكربونات. وبالتالي، عندما يلتقط الدم ثاني أكسيد الكربون، أيون البيكربونات يتراكم داخل كريات الدم الحمراء. ينتقل بعض أيون البيكربونات إلى بلازما الدم، أسفل تدرج تركيزه. في المقابل، تنتقل أيونات الكلوريد من البلازما إلى كريات الدم الحمراء. هذا التبادل للأيونات السالبة، الذي يحافظ على التوازن الكهربائي بين تعرف بلازما الدم والسيتوكسول RBC باسم تحول الكلوريد. التأثير الصافي لهذه التفاعلات هي أن ثاني أكسيد الكربون يتم إزالته من خلايا الأنسجة ونقله في بلازما الدم مثل أيون البيكربونات. عندما يمر الدم عبر الشعيرات الدموية الرئيسية في الرئتين، كل شيء من هذه التفاعلات ينعكس ويتم زفير ثاني أكسيد الكربون.

CARBON DIOXIDE TRANSPORT

3. Bicarbonate ions. The greatest percentage of CO_2 —about 70%—is transported in blood plasma as bicarbonate ions. Thus, as blood picks up CO_2 , bicarbonate ion accumulates inside RBCs. Some bicarbonate ion moves out into the blood plasma, down its concentration gradient. In exchange, chloride ions move from plasma into the RBCs. *This exchange of negative ions, which maintains the electrical balance between blood plasma and RBC cytosol, is known as the chloride shift.* The net effect of these reactions is that CO_2 is removed from tissue cells and transported in blood plasma as bicarbonate ion. As blood passes through pulmonary capillaries in the lungs, all of these reactions reverse and CO_2 is exhaled.

داخل كريات الدم الحمراء:

1. يتحدد CO_2 مع الماء H_2O بمساعدة إنزيم أنهيدراز الكربونيك.

2. يتكون حمض الكربونيك H_2CO_3

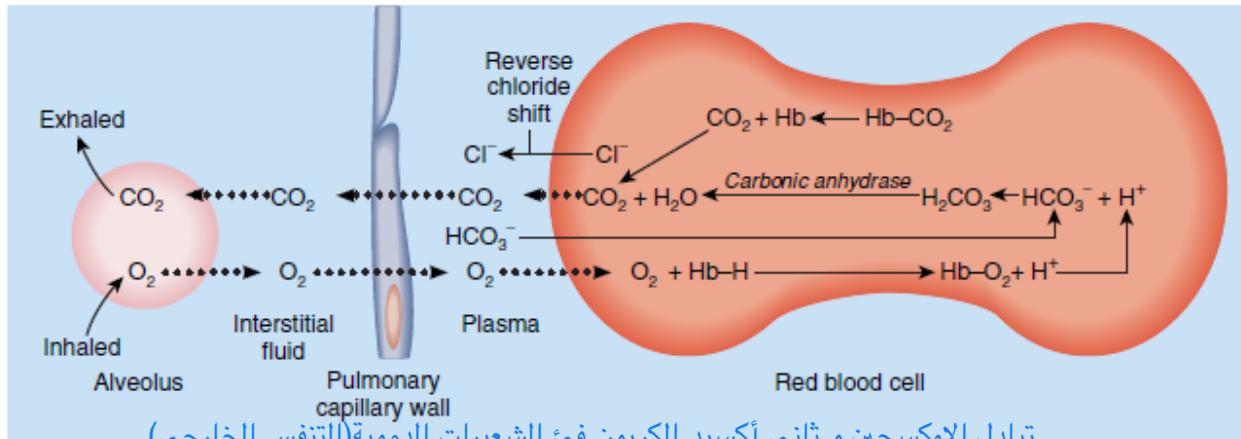
3. يتحلل الحمض بسرعة إلى:

· أيون هيدروجين (H^+)

· أيون بيكربونات (HCO_3^-)

بتقى

CARBON DIOXIDE TRANSPORT


- ❖ The amount of CO₂ that can be transported in the blood is influenced by the percent saturation of hemoglobin with oxygen. The lower the amount of oxyhemoglobin (Hb–O₂), the higher the CO₂-carrying capacity of the blood, a relationship known as the Haldane effect.

مُكوِّن دم يرتبط مع CO₂

❖ كمية ثاني أكسيد الكربون التي يمكن نقلها في الدم هييتاثر بنسبة تشبّع الهيموغلوبين بالأكسجين. كلما انخفضت كمية أوكسي الهيموغلوبين (Hb-O₂)، زادت قدرة الدم على حمل ثاني أكسيد الكربون، وهي علاقة تعرف باسم تأثير هالدين.

SUMMARY OF GAS EXCHANGE AND TRANSPORT IN LUNGS AND TISSUES

Hemoglobin inside red blood cells transports O_2 , CO_2 , and H^+ .

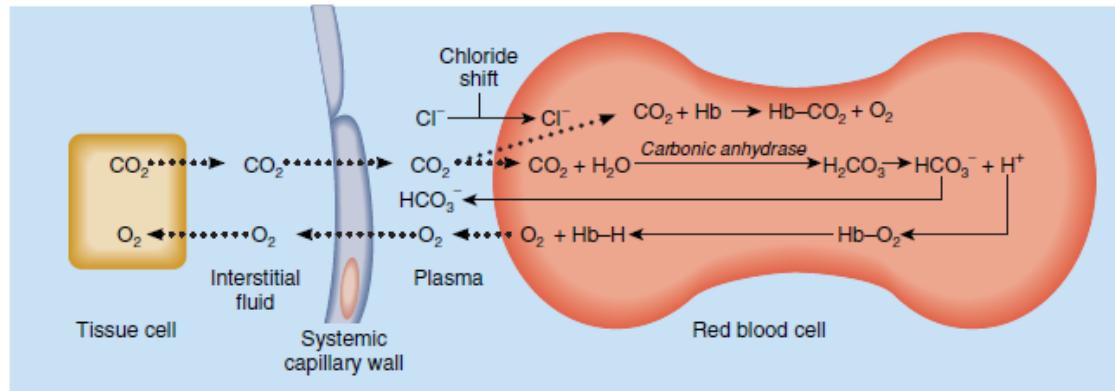
(a) Exchange of O_2 and CO_2 in pulmonary capillaries (external respiration)

Summary of chemical reactions that occur during gas exchange. (a) As carbon dioxide (CO_2) is exhaled, hemoglobin (Hb) inside red blood cells in pulmonary capillaries unloads CO_2 and picks up O_2 from alveolar air. Binding of O_2 to Hb-H releases hydrogen ions (H^+). Bicarbonate ions (HCO_3^-) pass into the RBC and bind to released H^+ , forming carbonic acid (H_2CO_3). The H_2CO_3 dissociates into water (H_2O) and CO_2 , and the CO_2 diffuses from blood into alveolar air. To maintain electrical balance, a chloride ion (Cl^-) exits the RBC for each HCO_3^- that enters (reverse chloride shift). (b) CO_2 diffuses out of tissue cells that produce it and enters red blood cells, where some of it binds to hemoglobin, forming carbaminohemoglobin ($Hb-CO_2$). This reaction causes O_2 to dissociate from oxyhemoglobin ($Hb-O_2$). Other molecules of CO_2 combine with water to produce bicarbonate ions (HCO_3^-) and hydrogen ions (H^+). As Hb buffers H^+ , the Hb releases O_2 (Bohr effect). To maintain electrical balance, a chloride ion (Cl^-) enters the RBC for each HCO_3^- that exits (chloride shift).

ملخص التفاعلات الكيميائية التي تحدث أثناء تبادل الغازات. (أ) عند زفير ثاني أكسيد الكربون (CO_2), يقوم الهيموجلوبين (CO)، داخل خلايا الدم الحمراء في الشعيرات الدموية الرئوية بتفريغ CO_2 والتقاط O_2 من هواء الحويصلات الهوائية. يؤدي ارتباط O_2 بـ Hb - CO إلى إطلاق أيونات الهيدروجين (H^+). تمر أيونات البيكربونات (HCO_3^-) إلى خلايا الدم الحمراء وترتبط بـ H^+ المطلق، مكونةً حمض الكربونيك (H_2CO_3). يتفكك H_2CO_3 إلى ماء (H_2O) وثاني أكسيد الكربون (CO_2), وينتشر CO_2 من الدم إلى هواء الحويصلات الهوائية. للحفاظ على التوازن الكهربائي، يخرج أيون كلوريد (Cl^-) من خلايا الدم الحمراء مقابل كل أيون HCO_3^- يدخلها (انتقال عكسي للكلوريد). (ب) ينتشر ثاني أكسيد الكربون (CO_2) خارج خلايا الأنسجة المنتجة له، ويدخل خلايا الدم الحمراء، حيث يرتبط جزء منه بالهيموجلوبين، مكوناً كاربامينوهيموجلوبين ($Hb-CO$). يؤدي هذا التفاعل إلى انفصال الأكسجين (O_2) عن أوكسي هيموجلوبين ($Hb-O_2$). تتحد جزيئات أخرى من ثاني أكسيد الكربون مع الماء لإنتاج أيونات البيكربونات (HCO_3^-) وأيونات الهيدروجين (H^+). وبما أن الهيموجلوبين يعمل على تنظيم تركيز أيونات الهيدروجين، فإنه يطلق الأكسجين (تأثير بور). وللحفاظ على التوازن الكهربائي، يدخل أيون كلوريد (Cl^-) إلى خلية الدم الحمراء مقابل كل أيون بيكربونات يخرج منها (انتقال الكلوريد).

الرئتين (الشكل أ - التنفس الخارجي)

- يخرج ثاني أكسيد الكربون (CO_2) مع الزفير.
- الهيموجلوبين (Hb) داخل كريات الدم الحمراء:
- يُطلق CO_2 .
- يرتبط بالأكسجين (O_2) من هواء الحويصلات الهوائية.
- ارتباط O_2 بالهيموجلوبين يؤدي إلى:
- إطلاق أيونات الهيدروجين (H^+).
- أيونات البيكربونات (HCO_3^-):
- تدخل إلى كريات الدم الحمراء.
- ترتبط بـ H^+ المطلق، مشكلة حمض الكربونيك (H_2CO_3).
- يتفكك حمض الكربونيك إلى:
- ماء (H_2O).
- ثاني أكسيد الكربون (CO_2), والذي ينتشر بعد ذلك إلى هواء الحويصلات ليتم زفيره.
- للحفاظ على التوازن الكهربائي:
- يخرج أيون كلوريد (Cl^-) من كريات الدم الحمراء مقابل كل أيون HCO_3^- يدخلها.
- هذه العملية تُسمى "التحول العكسي للكلوريد".


ثانياً: في الأنسجة (الشكل ب)

- ينتشر ثاني أكسيد الكربون (CO_2) من خلايا الأنسجة المنتجة له.
- يدخل CO_2 إلى كريات الدم الحمراء، حيث يحدث الآتي:
- جزء منه يرتبط بالهيموجلوبين، مكوناً كاربامينوهيموجلوبين ($Hb-CO$).
- هذا الارتباط يؤدي إلى تحرير الأكسجين (O_2) من الأوكسيهيموجلوبين ($Hb-O_2$).
- جزء آخر من جزيئات CO_2 :
- يتحدد مع الماء (H_2O) داخل الكرية الحمراء.
- يُنتج هذا التفاعل:
- أيونات البيكربونات (HCO_3^-).
- أيونات الهيدروجين (H^+).
- الهيموجلوبين يعمل كمحفّد (يمنع التغير الحمضي):
- بامتصاص H^+ .
- هذا الامتصاص يساعد على إطلاق المزيد من O_2 (تأثير بور).
- للحفاظ على التوازن الكهربائي:
- يدخل أيون كلوريد (Cl^-) إلى كريات الدم الحمراء مقابل كل أيون HCO_3^- يخرج منها إلى البلازما.
- هذه العملية تُسمى "التحول الكلوريدي".

الله أكْبَر

ملخص التفاعلات الكيميائية التي تحدث أثناء تبادل الغازات. (أ) عند زفير ثاني أكسيد الكربون (CO_2), يقوم الهيموجلوبين من هواء الحويصلات الهوائية. يؤدي ارتباط O_2 والتقاط CO_2 داخل خلايا الدم الحمراء في الشعيرات الدموية الرئوية بتفريغ (Hb) ارتباط O_2 بـ Hb - CO إلى إطلاق أيونات الهيدروجين (H^+). تمر أيونات البيكربونات (HCO_3^-) إلى خلايا الدم الحمراء وترتبط بـ H^+ المطلق، مكونةً حمض الكربونيك (H_2CO_3). يتفكك H_2CO_3 إلى ماء (H_2O) وثاني أكسيد الكربون (CO_2), وينتشر CO_2 من الدم إلى هواء الحويصلات الهوائية. للحفاظ على التوازن الكهربائي، يخرج أيون الكلوريد (Cl^-) من خلايا الدم الحمراء مقابل كل HCO_3^- يدخلها (انتقال عكسي للكلوريد). (ب) ينتشر ثاني أكسيد الكربون (CO_2) خارج خلايا الأنسجة المنتجة له، ويدخل خلايا الدم الحمراء، حيث يرتبط جزء منه بالهيموجلوبين، مكوناً كاربامينوهيموجلوبين ($Hb-CO$). يؤدي هذا التفاعل إلى انفصال الأكسجين (O_2) عن أوكسي هيموجلوبين ($Hb-O_2$). تتحد جزيئات أخرى من ثاني أكسيد الكربون مع الماء لإنتاج أيونات البيكربونات (HCO_3^-) وأيونات الهيدروجين (H^+). وبما أن الهيموجلوبين يعمل كمنظم لأيونات الهيدروجين، فإنه يطلق الأكسجين (تأثير بور). وللحفاظ على التوازن الكهربائي، يدخل أيون كلوريد (Cl^-) إلى خلية الدم الحمراء مقابل كل أيون بيكربونات يخرج منها (انتقال الكلوريد).

SUMMARY OF GAS EXCHANGE AND TRANSPORT IN LUNGS AND TISSUES

(b) Exchange of O₂ and CO₂ in systemic capillaries (internal respiration)

Summary of chemical reactions that occur during gas exchange. (a) As carbon dioxide (CO₂) is exhaled, hemoglobin (Hb) inside red blood cells in pulmonary capillaries unloads CO₂ and picks up O₂ from alveolar air. Binding of O₂ to Hb–H releases hydrogen ions (H⁺). Bicarbonate ions (HCO₃⁻) pass into the RBC and bind to released H⁺, forming carbonic acid (H₂CO₃). The H₂CO₃ dissociates into water (H₂O) and CO₂, and the CO₂ diffuses from blood into alveolar air. To maintain electrical balance, a chloride ion (Cl⁻) exits the RBC for each HCO₃⁻ that enters (reverse chloride shift). (b) CO₂ diffuses out of tissue cells that produce it and enters red blood cells, where some of it binds to hemoglobin, forming carbaminohemoglobin (Hb–CO₂). This reaction causes O₂ to dissociate from oxyhemoglobin (Hb–O₂). Other molecules of CO₂ combine with water to produce bicarbonate ions (HCO₃⁻) and hydrogen ions (H⁺). As Hb buffers H⁺, the Hb releases O₂ (Bohr effect). To maintain electrical balance, a chloride ion (Cl⁻) enters the RBC for each HCO₃⁻ that exits (chloride shift).

CONTROL OF BREATHING

❖ At rest, about 200 mL of O₂ is used each minute by body cells. During strenuous exercise, however, O₂ use typically increases 15- to 20-fold in normal healthy adults.

عند الراحة، يتم استخدام حوالي 200 مل من O₂ كل دقيقة بواسطة خلايا الجسم. خلال التمرين الشاق، ومع ذلك، فإن استخدام O₂ عادة ما يزيد من 15 إلى 20 ضعفاً في البالغون الأصحاء الطبيعيون.

✓ Respiratory Center:

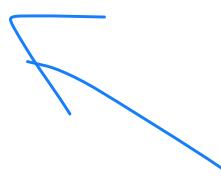
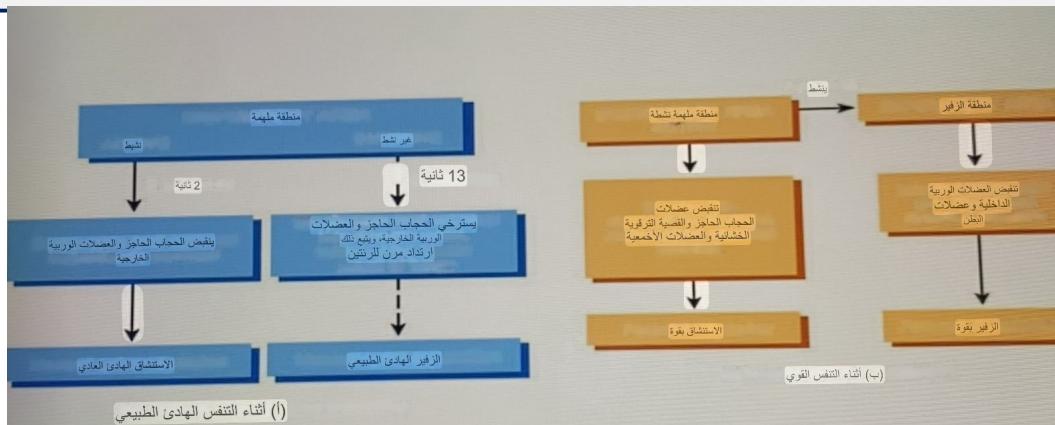
• The size of the thorax is altered by the action of the breathing muscles, which contract as a result of nerve impulses transmitted from centers in the brain and relax in the absence of nerve impulses.

مركز الجهاز التنفسى:
• يتم تغيير حجم الصدر عن طريق عمل عضلات التنفس، التي تتلاصص نتيجة للنبضات العصبية التي تنتقل من المراكز في الدماغ والاسترخاء في غياب النبضات العصبية.

CONTROL OF BREATHING

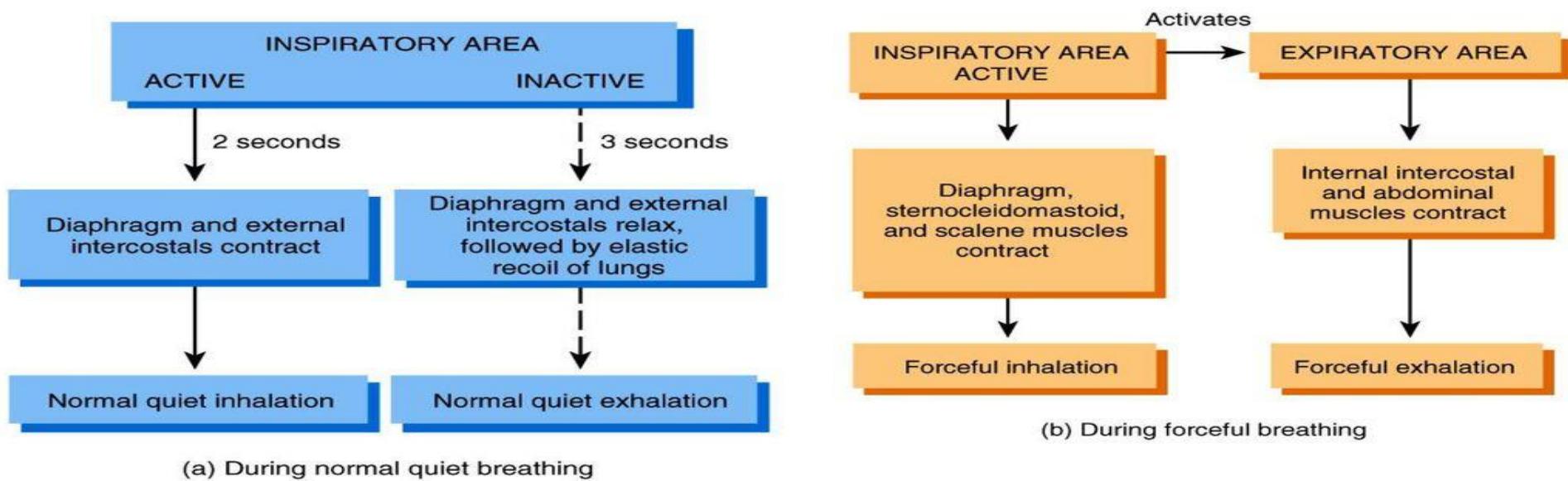
✓ **Respiratory Center:**

- These nerve impulses are sent from clusters of neurons located bilaterally in the brain stem. This widely dispersed group of neurons, collectively called the respiratory center, can be divided into two principal areas on the basis of location and function: (1) the medullary respiratory center in the medulla oblongata and (2) the pontine respiratory group in the pons.



مركز الجهاز التنفسي:

- يتم إرسال هذه النبضات العصبية من مجموعات من الخلايا العصبية الموجودة بشكل ثنائي في جذع الدماغ. هذه المجموعة المنتشرة على نطاق واسع من الخلايا العصبية، تسمى مجتمعة يمكن تقسيم مركز الجهاز التنفسي إلى منطقتين رئيسيتين على أساس الموقع والوظيفة: (1) مركز الجهاز التنفسي النخاعي في النخاع المستطيل و(2) المجموعة التنفسية الجسرية في بونس.

MEDULLARY RESPIRATORY CENTER


- ✓ The medullary respiratory center is **made up of two collections of neurons** called the **dorsal respiratory group (DRG)**, formerly called the **inspiratory area**, and the **ventral respiratory group (VRG)**, formerly called the **expiratory area**.

يتكون مركز الجهاز التنفسى النخاعى من مجموعتين من الخلايا العصبية تسمى مجموعة الجهاز التنفسى الزهرى (DRG)، والتي كانت تسمى سابقاً منطقة الشهيق، ومجموعة الجهاز التنفسى البطنى (VRG)، كانت تسمى سابقاً منطقة الزفير.

MEDULLARY RESPIRATORY CENTER

Figure 23.25 Role of the medullary rhythmicity area during normal quiet breathing

أثناء الاستنشاق القوي، النبضات العصبية من DRG غير نشط جنباً إلى جنب مع الخلايا العصبية VRG التي تؤدي إلى استنشاق قوي، ولكن الخلايا العصبية في VRG متضمنة في الرفير القسري أرسل نبضات عصبية إلى العضلات الملحقة لـ الرفير (أي الرئوي الداخلي).

DRG ليس فقط تحفيز الحجاب الحاجز والعضلات الوربية الخارجية لـ الاستنشاق، هم قم أيضاً بتشييط الخلايا العصبية في VRG المشاركة في الاستنشاق القسري لإرسال نبضات إلى العضلات الملحق (أي القصبة الترقوية الخشائية) من الاستنشاق.

MEDULLARY RESPIRATORY CENTER

يتم تشييط VRG عندما تكون هناك حاجة إلى التنفس القوي، مثل أثناء التمرين، أو عند العزف على آلة النفخ، أو على ارتفاعات عالية

- ✓ The VRG becomes activated when **forceful breathing is required**, such as during exercise, when playing a wind instrument, or at high altitudes.
- ✓ During **forceful inhalation**, nerve impulses from the DRG not only stimulate the diaphragm and external intercostal muscles to contract, they also activate neurons of the VRG involved in forceful inhalation to send impulses to the accessory muscles (i.e. sternocleidomastoid) of inhalation.
- ✓ During **forceful exhalation**, the DRG is inactive along with the neurons of the VRG that result in forceful inhalation, but neurons of the VRG involved in forceful exhalation send nerve impulses to the accessory muscles of exhalation (i.e. internal intercostals).

هون بس يشتغل VTG

PONTINE RESPIRATORY GROUP

المجموعة التنفسية الجذعية (PRG)، التي كانت تسمى سابقاً الهوائية المنطقة، هي مجموعة من الخلايا العصبية في الجسر.

- ✓ **The pontine respiratory group (PRG)**, formerly called the **pneumotaxic area**, is a collection of neurons in the pons.
- ✓ The **neurons in the PRG** are active during inhalation and exhalation.
- ✓ The PRG **transmits nerve impulses** to the DRG in the medulla.
- ✓ The PRG may play a role in both inhalation and exhalation **by modifying the basic rhythm of breathing** generated by the VRG, as when exercising, speaking, or sleeping.

الخلايا العصبية في PRG نشطة أثناء الاستنشاق والزفير.

✓ ينقل PRG النبضات العصبية إلى DRG في النخاع.

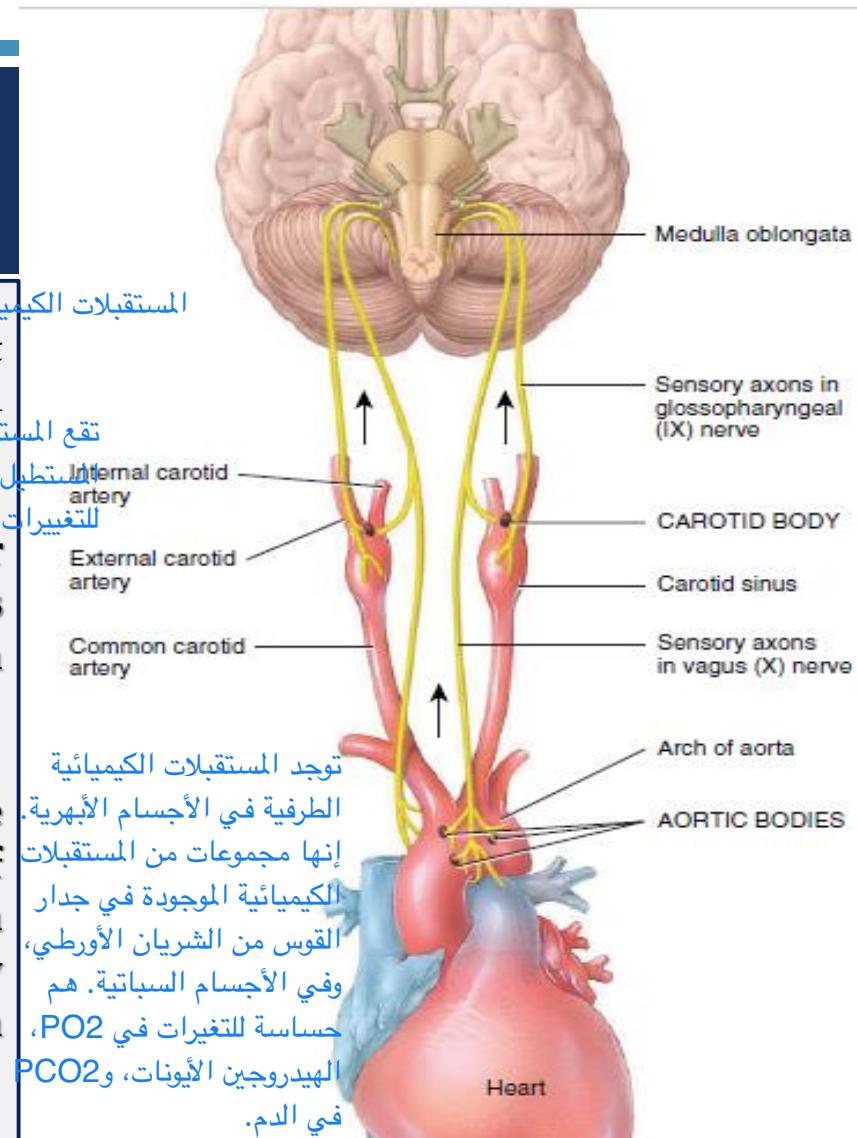
✓ قد يلعب PRG دوراً في كل من الاستنشاق والزفير عن طريق تعديل الإيقاع الأساسي للتنفس الناتج عن VRG، كما هو الحال عند ممارسة الرياضة، التحدث، أو النوم.

REGULATION OF THE RESPIRATORY CENTER

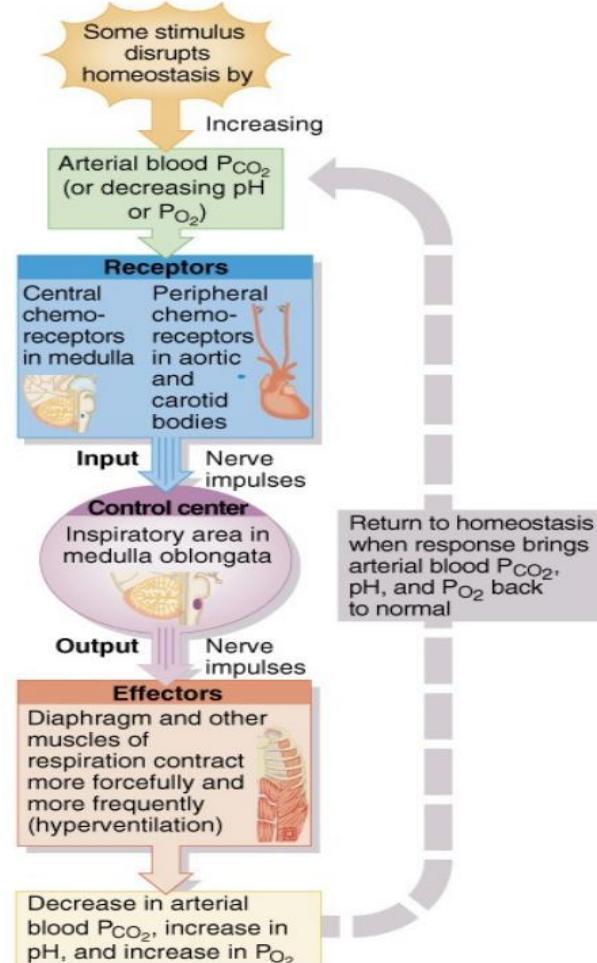
يمكن تعديل نشاط مركز الجهاز التنفسي استجابة لالمستقبلات في الجهاز العصبي المحيطي، وعوامل أخرى في من أجل الحفاظ على توازن التنفس

- ✓ **Activity of the respiratory center can be modified in response to receptors in the peripheral nervous system, and other factors in order to maintain the homeostasis of breathing.**

CHEMORECEPTOR REGULATION OF BREATHING


بعض المحفزات الكيميائية تعدل مدى سرعة وعمقنا تنفس. يعمل الجهاز التنفسي للحفاظ على المستويات المناسبة من ثاني أكسيد الكربون CO_2 ويستجيب جداً للتغيرات في مستويات هذه الغازات في الجسم السوائل

- ✓ **Certain chemical stimuli modulate how quickly and how deeply we breathe.** The respiratory system functions to maintain proper levels of CO_2 and O_2 and is very responsive to changes in the levels of these gases in body fluids.
- ✓ We introduced sensory neurons that are responsive to chemicals, called chemoreceptors. قدمنا الخلايا العصبية الحسية التي تستجيب للمواد الكيميائية، تسمى المستقبلات الكيميائية.


LOCATIONS OF PERIPHERAL CHEMORECEPTORS

المستقبلات الكيميائية هي خلايا عصبية حسية الاستجابة للتغيرات في مستويات معينة للمواد الكيميائية في الجسم.

- ✓ **Chemoreceptors** are sensory neurons that respond to changes in the levels of certain chemicals in the body.
تقع المستقبلات الكيميائية المركبة في أو بالقرب من النخاع المسطر في الجهاز العصبي المركزي نظام. إنهم حساسون للتغيرات في أيونات الهيدروجين في السائل النخاعي.
- ✓ **Central chemoreceptors** are located in or near the medulla oblongata in the central nervous system. They are sensitive to changes in hydrogen ions in the CSF.
- ✓ **Peripheral chemoreceptors** are located in the aortic bodies. They are clusters of chemoreceptors located in the wall of the arch of the aorta, and in the carotid bodies. They are sensitive to changes in PO₂, hydrogen ions, and PCO₂ in the blood.

Negative Feedback Regulation of Breathing

- Negative feedback control of breathing
- Increase in arterial pCO_2
- Stimulates receptors
- Inspiratory center
- Muscles of respiration contract more frequently & forcefully
- pCO_2 Decreases

THE INFLATION REFLEX

على غرار تلك الموجودة في الأوعية الدموية، تسمى المستقبلات الحساسة للتمدد توجد مستقبلات البارو أو مستقبلات التمدد في جدران الشعب الهوائية والقصبات.

- ✓ Similar to those in the blood vessels, **stretch-sensitive receptors called baroreceptors or stretch receptors are located in the walls of bronchi and bronchioles.** Parasympathetic regulation
- ✓ When these receptors become stretched during overinflation of the lungs, nerve impulses are sent along the vagus (X) nerves to the dorsal respiratory group (DRG) in the medullary respiratory center. In response, the DRG is inhibited and the diaphragm and external intercostals relax. As a result, further inhalation is stopped and exhalation begins.

عندما تصبح هذه المستقبلات ممتدة أثناء التضخم المفرط للرئتين، يتم إرسال النبضات العصبية على طول الأعصاب المهمة (X) إلى الجهاز التنفسiي الظاهري المجموعة (DRG) في

مركز الجهاز التنفسiي النخاعي. رداً على ذلك، فإن DRG هي يتم تثبيط الحجاب الحاجز والوريبة الخارجية. نتيجة لذلك، يتوقف المزيد من الاستنشاق ويبدأ الزفير

THE INFLATION REFLEX

عندما يترك الهواء الرئتين أثناء الزفير، تتكمض الرئتين و لم تعد مستقبلات التمدد محفزة. وبالتالي، فإن DRG هي لم بعد يتم تثبيطه، و يبدأ استنشاق جديد. هذا المنعكس هو شار إليه باسم رد فعل التضخم.

Exhalation

✓ **As air leaves the lungs during exhalation, the lungs deflate and the stretch receptors are no longer stimulated. Thus, the DRG is no longer inhibited, and a new inhalation begins. This reflex is referred to as the inflation reflex.**

2. عملية المنعكس عند امتناع الرئتين (التضخم الزائد) **تليخيص لسولافة:**

• عندما تمدد الرئتين بشكل زائد أثناء الشهيق العميق، تمدد جدران الممرات الهوائية وتنشط هذه المستقبلات.

• ترسل إشارات عصبية عبر العصب الحاكي (Vagus Nerve - العصب القحفي العاشر) إلى مركز التنفس الظهيري (Dorsal Respiratory Group - DRG) في النخاع المستطيل.

• نتيجة لذلك: يتم تثبيط DRG، مما يؤدي إلى:

• استرخاء الحجاب الحاجز والعضلات الوربية الخارجية.

• توقف الشهيق.

• بدء الزفير.

3. عملية المنعكس عند خروج الهواء (انكماش الرئتين)

• خلال الزفير، يخرج الهواء وتتكمض الرئتين.

• تتوقف المستقبلات عن الإثارة بسبب زوال التمدد.

• نتيجة لذلك: يزول التثبيط عن DRG.

• يبدأ شهيق جديد تلقائياً.

OTHER INFLUENCES ON BREATHING

تحفيز الجهاز الحوفي: توقع النشاط أو العاطفي قد يحفز القلق الجهاز الحوفي، والذي يرسل بعد ذلك مدخلات مثيرة إلى DRG، مما يزيد من معدل وعمق التنفس.

Limbic system stimulation: Anticipation of activity or emotional anxiety may stimulate the limbic system, which then sends excitatory input to the DRG, increasing the rate and depth of breathing.

درجة الحرارة

□ ألم

□ تمدد عضلة العضلة العاصرة الشرجية

□ تهيج الشعب الهوائية: تهيج فيزيائي أو كيميائي للبلعوم أو الحنجرة يؤدي إلى التوقف الفوري للتنفس متبعاً بالسعال أو العطس.

□ ضغط الدم

Temperature

Pain

Stretching the anal sphincter muscle

Irritation of airways: Physical or chemical irritation of the pharynx or larynx brings about an immediate cessation of breathing followed by coughing or sneezing.

Blood pressure

اذا قل

Increase Rate of breathing

علاقة عكسية

TABLE 23.3

Summary of Stimuli That Affect Breathing Rate and Depth

STIMULI THAT INCREASE BREATHING RATE AND DEPTH

Voluntary hyperventilation controlled by cerebral cortex and anticipation of activity by stimulation of limbic system.

Increase in arterial blood P_{CO_2} above 40 mmHg (causes an increase in H^+) detected by peripheral and central chemoreceptors.

Decrease in arterial blood P_{O_2} from 105 mmHg to 50 mmHg.

Increased activity of proprioceptors.

Increase in body temperature.

Prolonged pain.

Decrease in blood pressure.

Stretching of anal sphincter.

STIMULI THAT DECREASE BREATHING RATE AND DEPTH

Voluntary hypoventilation controlled by cerebral cortex.

Decrease in arterial blood P_{CO_2} below 40 mmHg (causes a decrease in H^+) detected by peripheral and central chemoreceptors.

Decrease in arterial blood P_{O_2} below 50 mmHg.

Decreased activity of proprioceptors.

Decrease in body temperature (decreases respiration rate), sudden cold stimulus (causes apnea).

Severe pain (causes apnea).

Increase in blood pressure.

Irritation of pharynx or larynx by touch or chemicals (causes brief apnea followed by coughing or sneezing).

THANK YOU

AMJADZ@HU.EDU.JO