

تفریغ کلینکال

Amino acid
metabolism **المحاضرہ:**

الصيدلاني/ة: یاسمين خلیل

جیان التغذیات

اللهم اغفر لآئيم وارحمه وعافه وأعف عنه واجمعه

وأهله في الجنة

a.a
ا.ا

building blocks for proteins

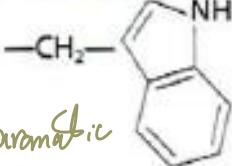
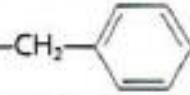
Amino acid metabolism and plasma proteins

Amino acids

plasma proteins Hormone
intracellular proteins, enzymes
A.A in metabolism

- Amino acids in blood are used in:

1 ► Synthesis of plasma, intracellular and structural proteins



2 ► Synthesis of nonprotein nitrogen containing compounds: purines, pyrimidines, porphyrins, creatine, histamine, thyroxine, epinephrine and coenzyme NAD

أحد أهم مصادر الطاقة - لجسم الإنسان

3 ► Body energy: 12-20% of energy is due to proteins: by Krebs cycle

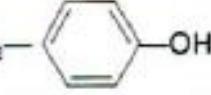
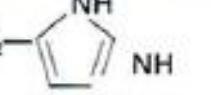
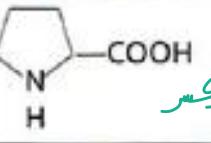
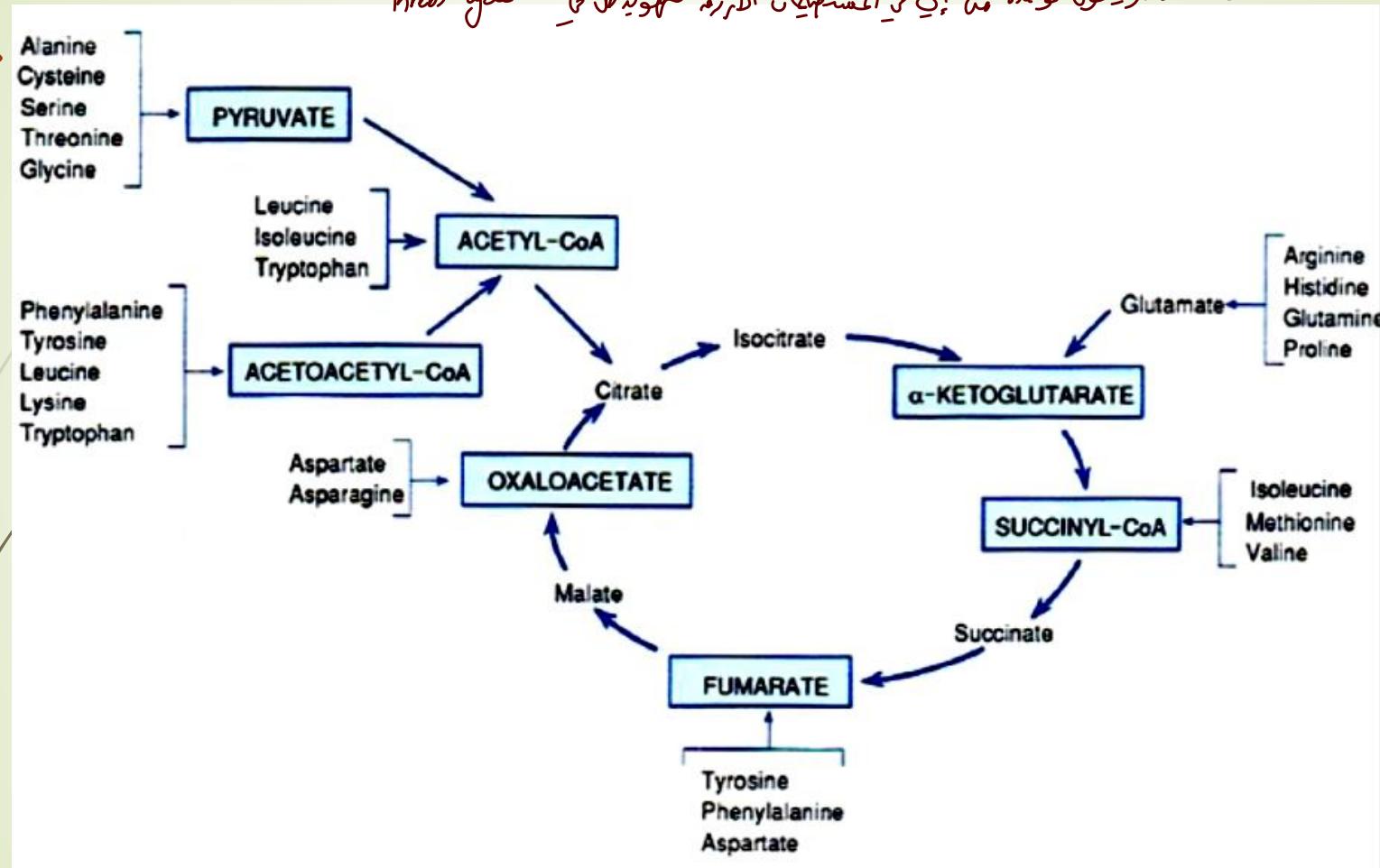



► The ammonium produced during deamination of amino acids is converted into urea in liver \rightarrow then goes to urine by kidneys

TABLE 8-1. AMINO ACIDS REQUIRED IN THE SYNTHESIS OF PROTEINS

AMINO ACID	R	
Glycine (Gly)	non polar	—H
Alanine (Ala)	non polar	—CH ₃
Valine (Val)*	non polar	—CH ₃ —CH—CH ₃
Leucine (Leu)*	non polar	—CH ₂ —CH ₂ —CH ₃ CH ₃
Isoleucine (Ile)*	non polar	—CH—CH ₂ —CH ₃ CH ₃
Cysteine (Cys)		—CH ₂ —SH
Methionine (Met)*	non polar	—CH ₂ —CH ₂ —S—CH ₃
Tryptophan (Trp)*	non polar	—CH ₂ — aromatic
Phenylalanine (Phe)*	non polar	—CH ₂ — aromatic
Asparagine (Asn)	Polar	—CH ₂ —C(=O)—NH ₂

branched
amino
acid


Sulfur
containing

AMINO ACID	R	
Glutamine (Gln)	Polar	—CH ₂ —CH ₂ —C(=O)—NH ₂
Serine (Ser)	Polar	—CH ₂ —OH
Threonine (Thr)*	Polar	—CH—CH ₂ —OH
Tyrosine (Tyr)	Polar aromatic	—CH ₂ — OH
Lysine (Lys)*	basic	—CH ₂ —CH ₂ —CH ₂ —CH ₂ —NH ₂
Arginine (Arg)	basic	—CH ₂ —CH ₂ —CH ₂ —N(H)—C(=O)—NH ₂
Histidine (His)*	basic aromatic	—CH ₂ — NH
Aspartate (Asp)		—CH ₂ —COOH
Glutamate (Glu)		—CH ₂ —CH ₂ —COOH
Proline (Pro)*	non polar	 So cyclic amino!

(-) charge
acidic

١٥٩ قادر تتحول لوعاء من أي من المركبات الأذرمه منحوي ظل في

Krebs cycle

Aminoacidopathies

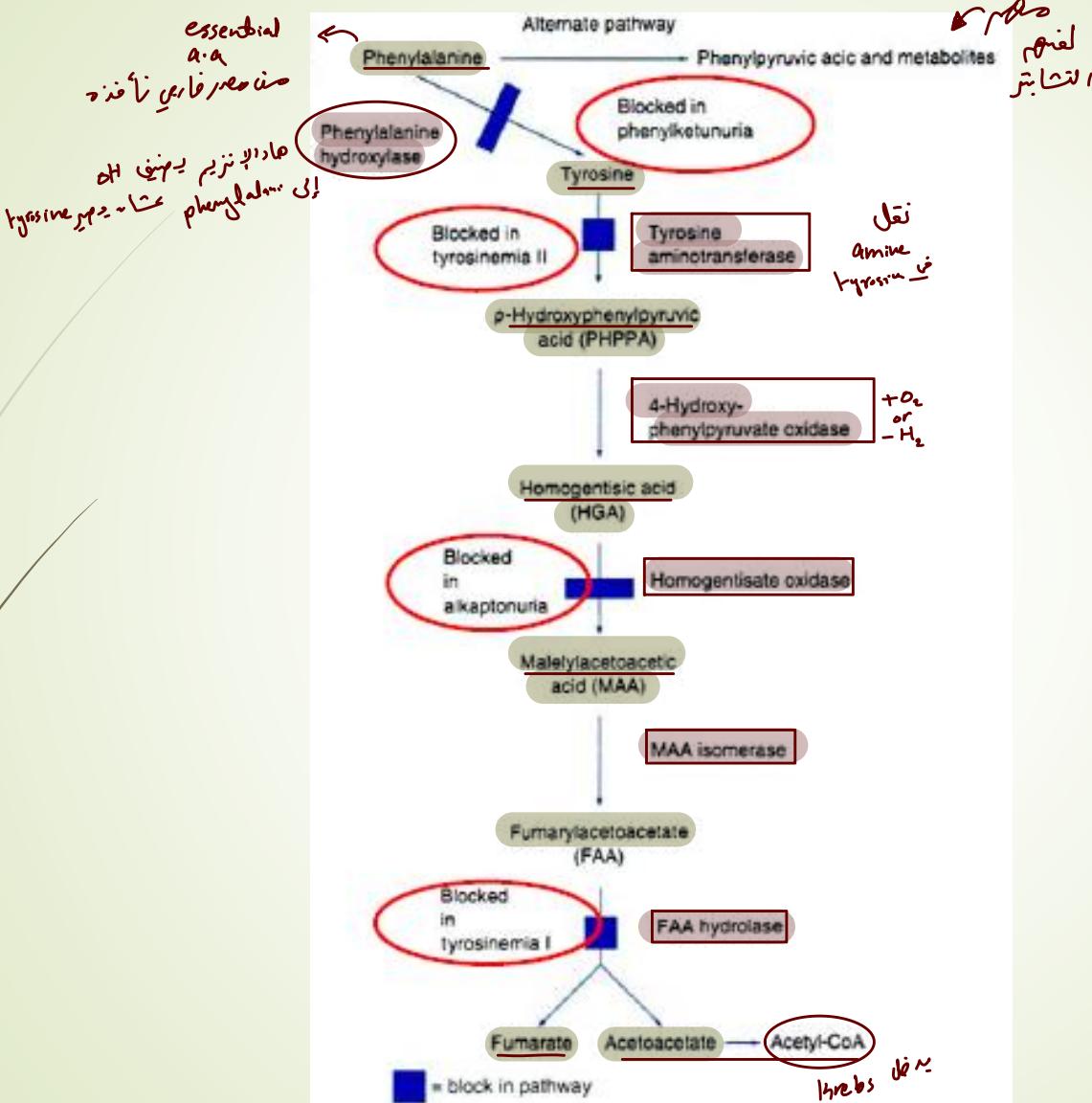
لما يدخل سفر اينzym مسؤول عن تحويل فـ لو هـار تحـلـ فـ اـنـزـيمـ اـيـ

يـتـحـلـ فـيـ Aـ مـتـاـ بـهـيرـ Bـ

هـونـهـ يـتـحـلـ دـيـلاـ مـتـاـيـنـ.

فـ بـهـيرـ يـتـحـلـ فـيـ الجـسـمـ فـيـ Bـ

درـلاـدـهـ فـيـ Aـ


- Can be in the activity of specific enzyme in the metabolic pathway

إـنـ مـوـبـودـ وـعـيـ طـبـيـعـيـ بـيـنـ تـحـالـ ، إـنـ مـوـبـودـ سـجـيـةـ بـيـنـ كـانـةـ
أـنـ عـيـنـ مـوـبـودـ الـبـيـمـ دـيـلـهـ كـالـ بـيـنـ مـلـهـ الـتـحـفـ

- Membrane transport system for amino acids
فـ يـتـرـاجـمـ ٩ـ٠ـ٩ـ فـيـ مـكـلـهـ دـيـنـعـهـ فـيـ مـكـلـهـ آـنـ

- Diseases to talk about:

- Phenylketonuria ✓
- Maple syrup urine disease (MSUD) ✓
- Homocystinuria ✓
- Argeninosuccinic aciduria and citrullinemia ✓
- Cystinuria ✓

هاد الالو ه هو اندیزیم
هاد الالو ه هو صاده ناتیجہ

لے ! مواد اکب ارنہ مٹا لے مریخ
ہر ذمکی عنہ هو
سبیہ تر ایم سبیہ تر ایم
کانہ الیزیم یعنی ای اندیزیم
ھن تھاں قیڑا یعنی وہاں سیاہی
ف لوہی ایٹھا جھل لھا یعنی الحکاہ : اپنی اک دنیا یعنی
عن ایڑک و میڈر فیرجھ لھیں یعنی
Supple
لے . Tyrosine
فہمتو یہ المختصر یعنی الفہم !

Phenylketonuria (PKU)

وراثي من الأبوالازم (لام جين) انتاج حبوب مهاب أحادي جين \rightarrow عامل المرض

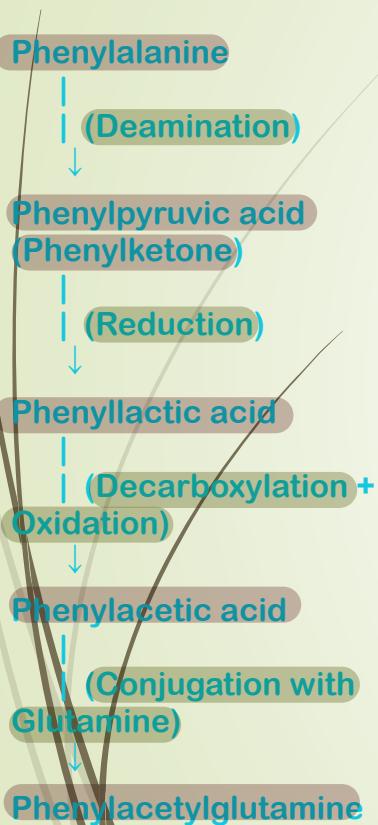
- An **autosomal recessive genetic disorder** characterized by a deficiency in the hepatic enzyme phenylalanine hydroxylase (PAH)
- The PAH gene is located on chromosome 12

جزء من متلازمة

من على العظام مصيبة للأظافر بسبب الجين ينبع عن حبوب هو مسبب للأظافر

- More than **four hundred** **disease-causing mutations** have been found in the PAH gene

400 انتاج العظام بحسب جاد الحال (منف، استرال، إيهانه...)


- PAH is necessary to metabolize the amino acid phenylalanine to tyrosine

انتاج حبوب نزيف مع تؤدي إلى انتاج حبوب $1200 \mu\text{mol/L}$ إلى أكثر من $1200 \mu\text{mol/L}$ ديدن إلى انتاج حبوب لامة ناتجة عن: ذئبة في الألياف إلى بدء

- When deficient, phenylalanine accumulates to a level $> 1200 \mu\text{mol/L}$ and metabolized by alternative pathways.

Phenylketonuria (PKU)

أمثلة لمعنى المعرفة

- The metabolites which are detected in blood and urine include:
 - Phenylpyruvic acid (which known as phenylketone): which is the product of deamination of phenylalanine
 - phenyllactic acid: which is the reduction product of phenylpyruvic acid
 - Phenylacetic acid which is produced by decarboxylation and oxidation of phenylpyruvic acid
 - And phenylacetylglutamine: which is the glutamine conjugate of phenylacetic acid

- These metabolites give urine musty odor

نحو **metabolite** موجوده عن انتصف، (الماءين بس بخلان به، اولمه)

وَعَلَىٰ مُحَمَّدٍ بْنِ عَبْدِ رَحْمَةِ سَرْهُونَ عَلَيْهِمُ الْكَفَلُ رَأْيَهُمْ أَنْ يُنْهَا بِالْأَبْوَابِ

normal range: 70 - 200

Phenylketonuria (PKU)

100 - 600 asymptomatic
600 - 1200 mild
higher than 1200 severe

- Variants of the disease result from partial deficiencies of PAH activity and are typically classified as:
 - Mild PKU if phenylalanine levels are between 600 and 1200 $\mu\text{mol/L}$
 - Non-PKU mild hyperphenylalaninemia which present with phenylalanine levels in the range of 180-600 $\mu\text{mol/L}$ and no accompanying accumulation of phenylketones.
- The normal limits for serum phenylalanine levels for full term, normal weight newborns range from 1.2 to 3.4 mg/dL (70-200 $\mu\text{mol/L}$)
normal

Phenylketonuria (PKU)

لَا يُحْلِفُ مُحْسِنًا وَلَا يُؤْكِلُ فِي تَرَاعِيٍّ مِنْ
سَبَبِهِ، إِنَّمَا يَجْعَلُ مُحْسِنًا مُحْسِنًا مُحْسِنًا
tyrosine is free, phenylalanine is
tyrosine, it can't be converted to tyrosine, it is
co-factors

- ▶ A rarer form of the disease occurs when PAH is normal but there is a defect in the biosynthesis of the **cofactor tetrahydrobiopterin (BH4)** by the patient which is necessary for proper activity of the enzyme (for PA, tyrosine and tryptophan hydroxylation)
- ▶ It results in hyperphenylalaninemia, that are not responsive to dietary treatment
- ▶ Examination of urinary proteins is helpful in diagnosis
- ▶ Although cofactor defects are rare, they must be identified so that appropriate treatment can be initiated
- ▶ Patients must be given the active cofactor along with the neurotransmitter precursor L-dopa and 5-OH tryptophan

نَبْلَى عَنْهُ نَفَعَ فِي حَادِهِ اِرْجَعَهُ مُحْسِنًا بِهِ دُلُّ عَارِيَنَ حَسَابَ

كُرْنَهُ إِلَّا تَرَكَاهُ إِلَّا تَنْتَهَى مُحْسِنًا حَادِهِ اِرْجَعَهُ

Phenylketonuria (PKU)

phenylalanine
tyrosine
نحوه
منه

غير معالج متجدد من اجل اسرع من معالجة

بداء متأخر في دماغه

- Left untreated, this condition can cause problems with brain development, leading to progressive mental retardation and seizures
- In infants and children, the deterioration of brain function begins in the second or third week of life
- Brain damage can be avoided if the disease is detected at birth and the infant is maintained on a diet containing very low level of phenylalanine and high levels of tyrosine
- There is no cure. Damage done is irreversible so early detection is crucial

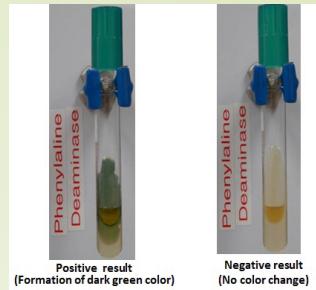
الانتكال في الاتزيم

Screening for PKU

يستخدم 8 أيام متطلبات الأمعاء الازمة عادة تتوقف ارتفاع او انخفاض $\text{pH} \text{ a.1.1}$

$\beta2$ -thienylalanine agar
Bacillus subtilis دبس طحالب
و ماء هو البكتيريا دماغ تقدر عن سهل
phenylalanine growth inhibitor
صراحتاً متغيراً سهلاً او $\beta2$ -thienylalanine agar (عند عدم وجود
(phenylalanine) فتح تسمى $\beta2$ -thienylalanine agar

- The Guthrie bacterial inhibition assay:
- Spores of the organism *Bacillus subtilis* are incorporated into an agar plate that contains $\beta2$ -thienylalanine, a metabolic antagonist to *B. subtilis* growth.
- A filter paper disk impregnated with blood from the infant is placed on the agar
- If the blood level exceeds the range of 2-4 mg/dL, the phenylalanine counteracts the antagonists and bacterial growth occurs.
 - negative ①
 - high 120-230 $\mu\text{mol/L} \rightarrow$ phenylalanine is high → normal 70-200
- To avoid false-negative results, the infant must be at least 24 hours old to ensure adequate time for enzyme and amino acid levels to develop
- The sample should be taken before administration of antibiotics or transfusion of blood or blood products
 - will inhibit $\beta2$ -thienylalanine ②
 - will form dilution blood ③
- Premature infant can show false positive results due to the immaturity of the liver enzyme systems
 - الروغد - بني الماء انتام ④


لزوجدة
العنبر

Other screening methods

حَيَاةُ بَطْرِنَةِ حِبَارَةِ

- ▶ Microfluorometric assay: The direct measurement of phenylalanine in dried blood filter disks:
 - ▶ This method is quantitative, more adaptable to automation, and is not affected by presence of antibiotics. **پنهان افتسن میلورڈ بیوہ بھیرا پورہ انہیں**
- ▶ The procedure is based on the fluorescence of complex formed of phenylalanine-ninhydrin-copper in the presence of dipeptide (i.e. L- leucyl-L-alanine).
- ▶ The test requires pretreatment of the filter paper specimen with trichloacetic acid (TCA)
- ▶ The extract is then reacted with microtiter with a mixture of ninhydrin, succinate, and leucylalanine in the presence of copper tartarate.
- ▶ The fluorescence of the complex is measured using excitation/ emission wavelengths of 360 nm and 530 nm, respectively
- ▶ For quantitative methods, HPLC or tandem mass spectrometry (MS/MS) are used

Other screening methods

نحوه ای این میتواند در استخراجین بسیار مفید باشد، از این طریق بسیار ایجاد میشود

- Urine testing for phenylpyruvate can be used for diagnosis in questionable cases and for monitoring of dietary therapy
- The test which may be performed by tube or reagent strip test involves the reaction of ferric chloride with phenypyruvic acid in urine to produce a green color
- نحوه ای این میتواند در استخراجین بسیار مفید باشد، از این طریق بسیار ایجاد میشود Prenatal diagnosis and detection of carrier status in families with PKU is now available using DNA analysis
- Analysis using cloned human PAH cDNA, has revealed the presence or numerous restriction fragment length polymorphism in the PAH gene