

PHYSIOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

DR. AMJAAD ZUHIER ALROSAN

LECTURE 12: RESPIRATORY SYSTEM

Objectives

1. Discuss **structures of the respiratory system.**
2. Describe **pulmonary ventilation.**
3. Explore **lung volumes and capacities.**
4. Discuss **exchange of oxygen and carbon dioxide as well as transport of both.**
5. Describe **control of breathing.**

(Pages 856- 876 of the reference)

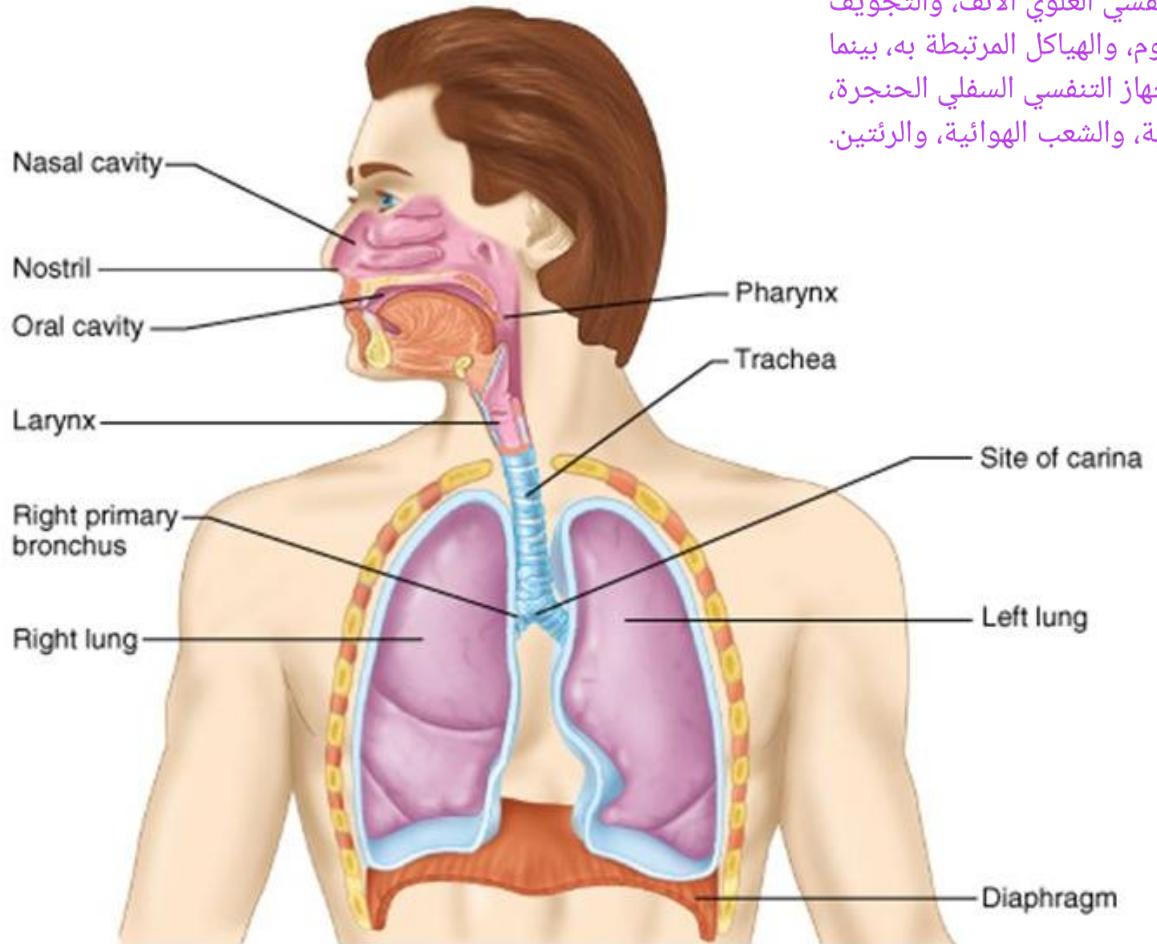
رح نسمع اسماء علماء كثير ، الدكتورة
قالت ما رح تجيب بالامتحان هاذ العالم
شو حكا وهيك بس لازم نفهم

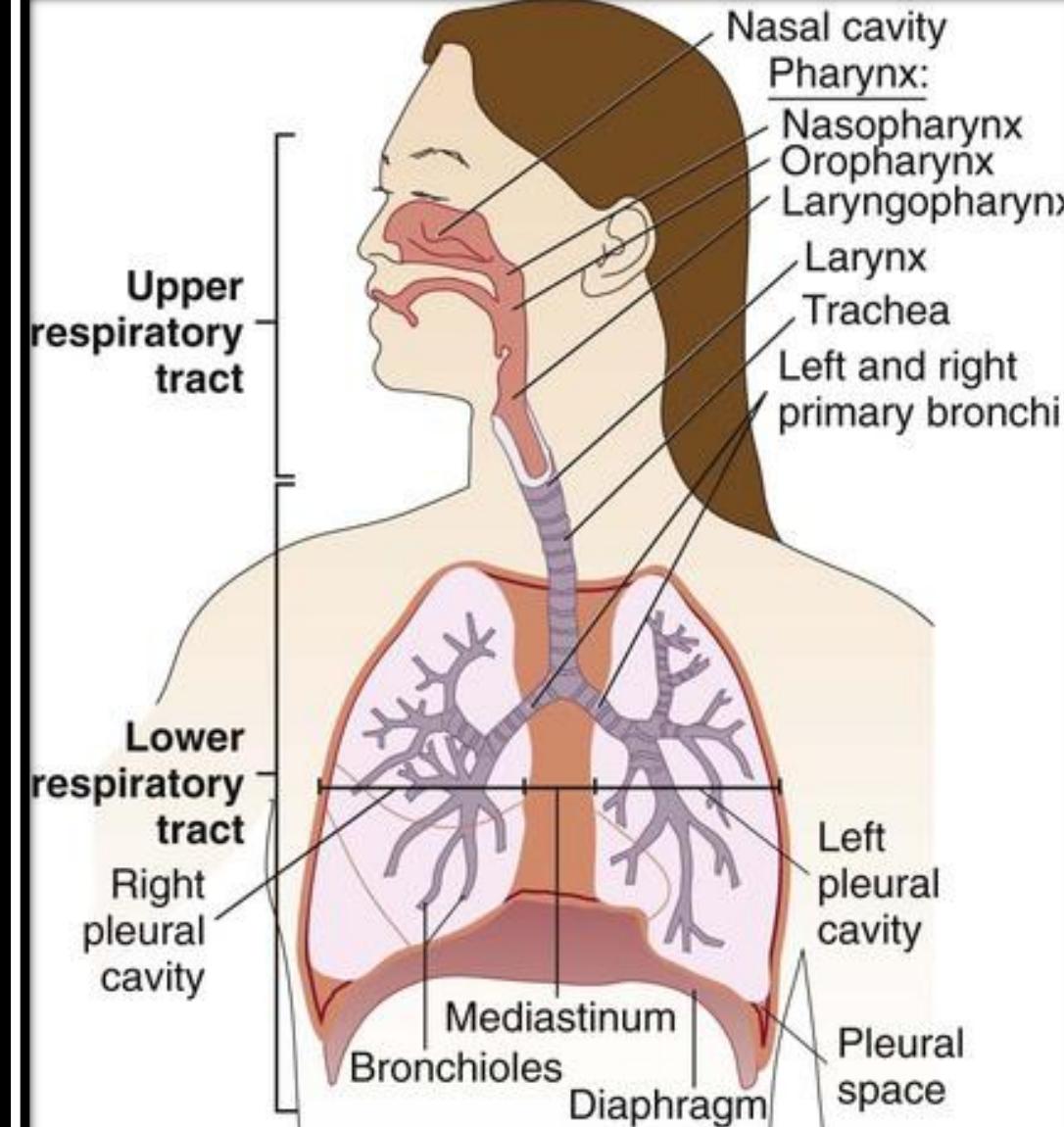
THE RESPIRATORY SYSTEM

يساهم الجهاز التنفسي في الحفاظ على التوازن الداخلي من خلال:

- The respiratory system **contributes to homeostasis** by:
 - Providing for **gas exchange**: intake of O₂ for delivery to body cells and removal of CO₂ produced by body cells.

توفير تبادل الغازات: تناول الأكسجين لتوصيله إلى خلايا الجسم وإزالة ثاني أكسيد الكربون الناتج عن خلايا الجسم.
 - Helping in **regulating blood pH of body fluids**.


المساعدة في تنظيم درجة حموضة الدم وسوائل الجسم.
 - Contains **receptors for sense of smell**, **filters inspired air** **produces vocal sounds (phonation)**, and **excretes small amounts of water and heat**.

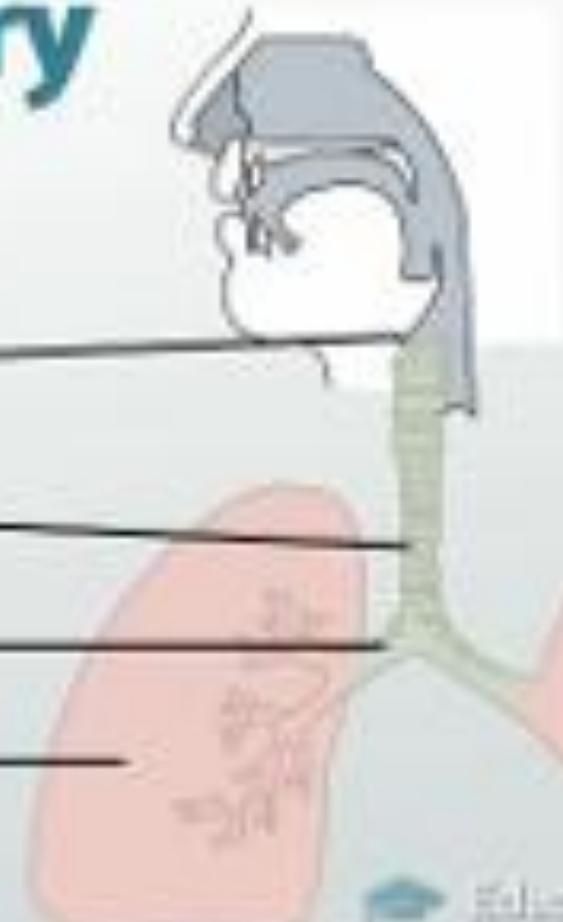

يحتوي على مستقبلات لحاسة الشم، ويقوم بتصفية الهواء المستنشق، وينتج أصواتاً صوتية (التنفس)، ويطرح كميات صغيرة من الماء والحرارة.

STRUCTURES OF THE RESPIRATORY SYSTEM

● The upper respiratory system includes the nose, nasal cavity, pharynx, and associated structures; the lower respiratory system includes the larynx, trachea, bronchi, and lungs.

يشمل الجهاز التنفسي العلوي الأنف، والتجويف الأنفي، والبلعوم، والهياكل المرتبطة به، بينما يشمل الجهاز التنفسي السفلي الحنجرة، والقصبة الهوائية، والشعب الهوائية، والرئتين.

Lower Respiratory System


larynx

trachea

bronchi

alveoli

(in lungs)

Pathway of Air/ O₂

الأذن - المنخران الخارجيان → تجويف الأنف → المنخران الداخليان

❖ Nose – external nares → nasal cavity → internal nares

* البلعوم - البلعوم الأنفي → البلعوم الفموي → البلعوم الحنجري

❖ Pharynx – nasopharynx → oropharynx → laryngopharynx

❖ Larynx – epiglottis → larynx *الحنجرة - لسان المزمار → الحنجرة

❖ Trachea – trachea القصبة الهوائية - القصبة الهوائية

الشعب الهوائية - الشعب الهوائية الأولية الشعب الهوائية الثانية الشعب الهوائية الثالثة الشعب الهوائية

❖ Bronchi – primary bronchi → secondary bronchi → tertiary bronchi → bronchioles

❖ Lungs – alveoli → blood stream الرئتان - الحويصلات الهوائية → مجرى الدم

PULMONARY VENTILATION

ت تكون عملية تبادل الغازات في الجسم، والتي تسمى التنفس، من ثلاثة خطوات أساسية:

- The process of gas exchange in the body, called respiration, has three basic steps:

1. Pulmonary ventilation or breathing, is the inhalation (inflow) and exhalation (outflow) of air and involves the exchange of air between the atmosphere and the alveoli of the lungs.

1. التهوية الرئوية أو التنفس، هي استنشاق (تدفق الهواء إلى الداخل) وزفير (تدفق الهواء إلى الخارج) وتشمل تبادل الهواء بين الغلاف الجوي وحويصلات الرئتين.

2. External (pulmonary) respiration, is the exchange of gases between the alveoli of the lungs and the blood in pulmonary capillaries across the respiratory membrane. In this process, pulmonary capillary blood gains O₂ and loses CO₂.

2. التنفس الخارجي (الرئوي)، هو تبادل الغازات بين حويصلات الرئتين والدم في الشعيرات الدموية الرئوية عبر الغشاء التنفسـي. في هذه العملية، يكتسب دم الشعيرات الدموية الرئوية الأكسجين ويفقد ثاني أكسيد الكربون.

3. Internal (tissue) respiration, is the exchange of gases between blood in systemic capillaries and tissue cells. In this step the blood loses O₂ and gains CO₂. Within cells, the metabolic reactions that consume O₂ and give off CO₂ during the production of ATP are termed cellular respiration.

3. التنفس الداخلي (النسيجي) هو تبادل الغازات بين الدم في الشعيرات الدموية الجهازية وخلايا الأنسجة. في هذه المرحلة، يفقد الدم الأكسجين (O₂) ويكتسب ثاني أكسيد الكربون (CO₂). داخل الخلايا، تسمى التفاعلات الأيضية التي تستهلك الأكسجين وتحل محله ثاني أكسيد الكربون أثناء إنتاج الأدينوسين ثلاثي الفوسفات (ATP) بالتنفس الخلوي.

PRESSURE CHANGES DURING PULMONARY VENTILATION

- Air moves into the lungs when the air pressure inside the lungs is less than the air pressure in the atmosphere. Air moves out of the lungs when the air pressure inside the lungs is greater than the air pressure in the atmosphere.

يدخل الهواء إلى الرئتين عندما يكون ضغط الهواء داخل الرئتين أقل من ضغط الهواء في الغلاف الجوي.
يخرج الهواء من الرئتين عندما يكون ضغط الهواء داخل الرئتين أكبر من ضغط الهواء في الغلاف الجوي.

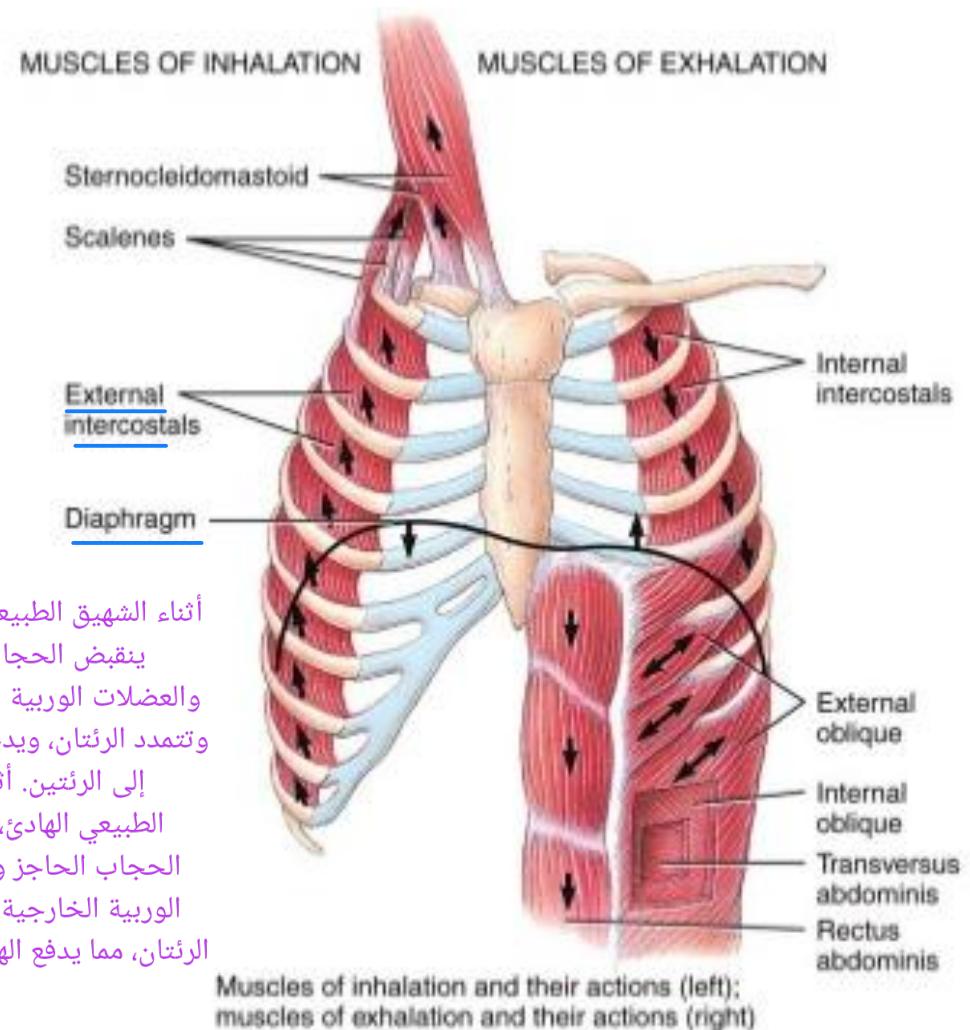
الشهيق ○ Inhalation:

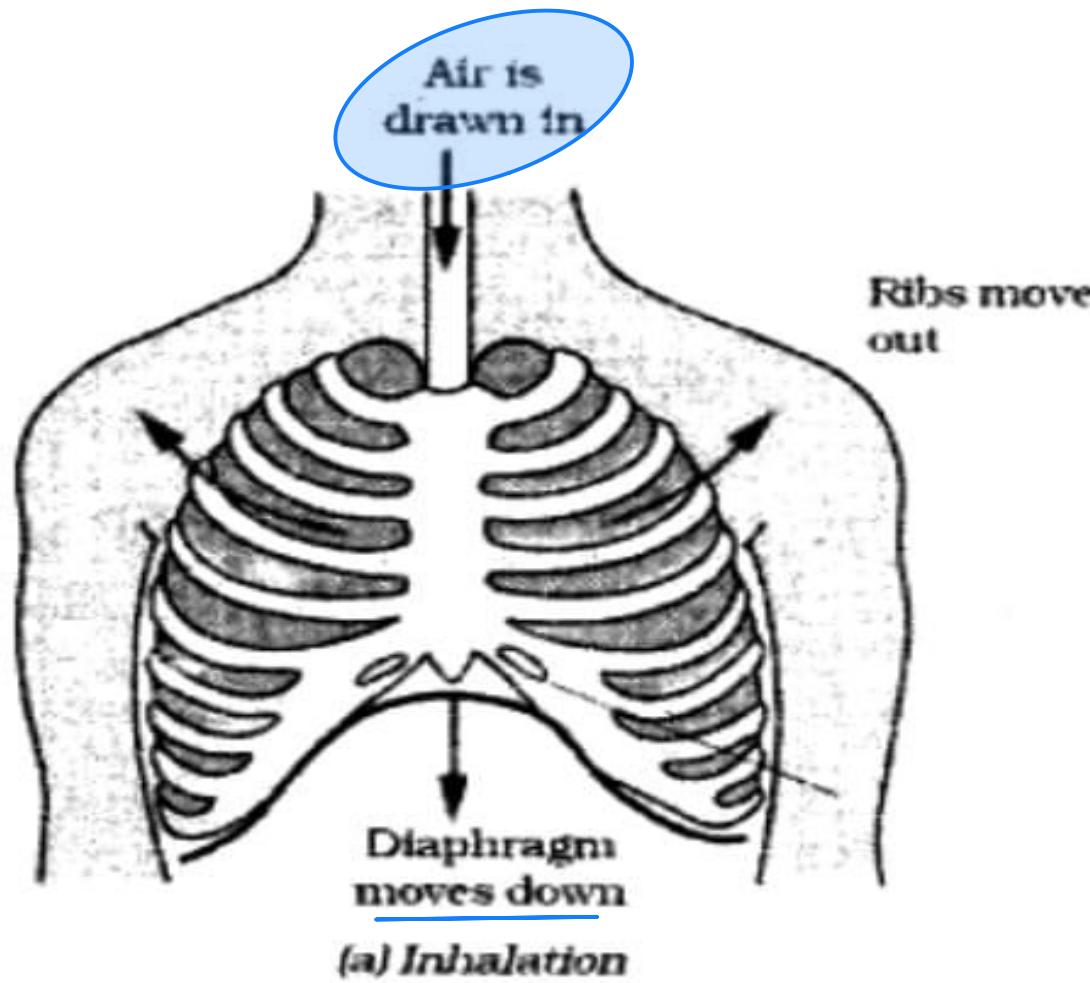
< يُسمى التنفس بالاستنشاق (الشهيق).

- Breathing in is called inhalation (inspiration).
< لكي يتدفق الهواء إلى الرئتين، يجب أن يصبح الضغط داخل الحويصلات الهوائية أقل من الضغط الجوي. يتم تحقيق هذه الحالة عن طريق زيادة حجم الرئتين.
- For air to flow into the lungs, the pressure inside the alveoli must become lower than the atmospheric pressure. This condition is achieved by increasing the size of the lungs.
< يتناسب ضغط الغاز في وعاء مغلق عكسيًا مع حجم الوعاء. وتُعرف هذه العلاقة العكسيّة بين الحجم والضغط بقانون بويل.
- The pressure of a gas in a closed container is inversely proportional to the volume of the container. This inverse relationship between volume and pressure, called Boyle's law.

PRESSURE CHANGES DURING PULMONARY VENTILATION

➤ Differences in pressure caused by changes in lung volume force air into our lungs when we inhale and out when we exhale.

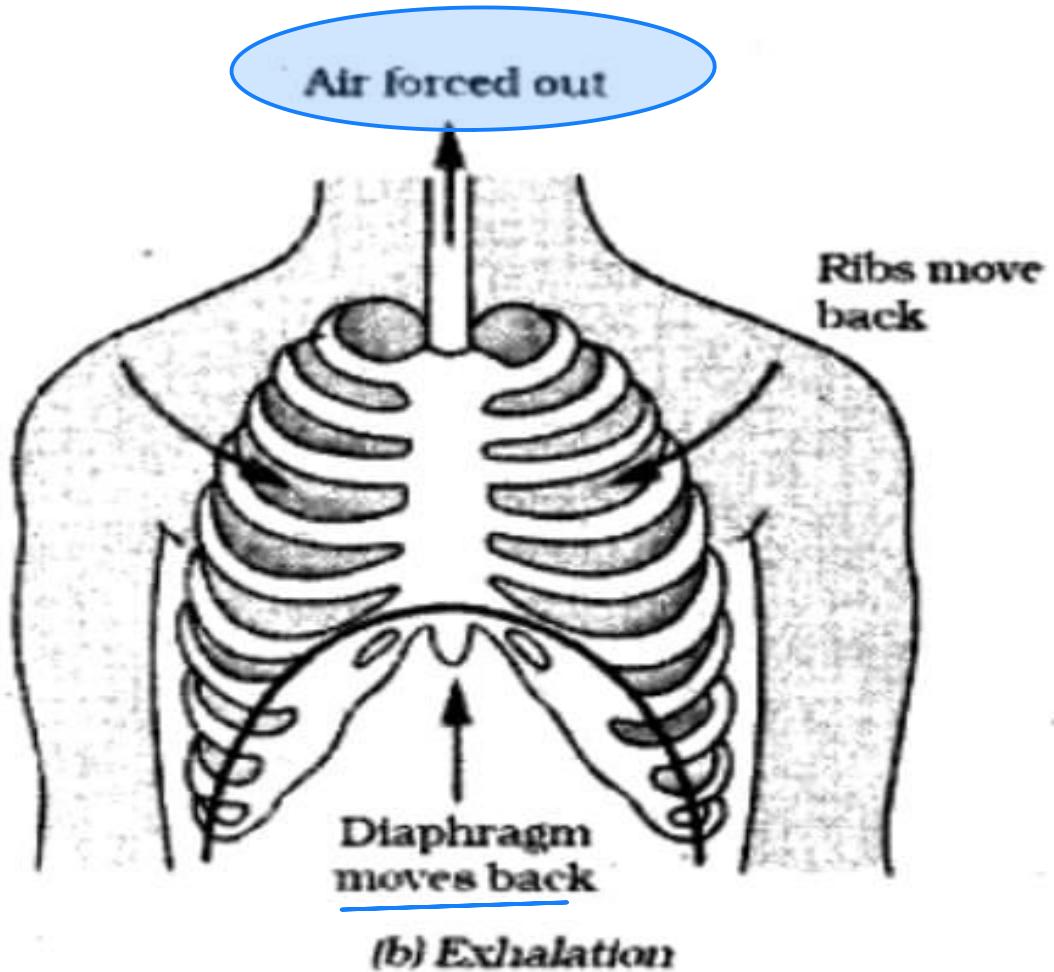

<تؤدي الاختلافات في الضغط الناتجة عن تغيرات حجم الرئة إلى دفع الهواء إلى داخل رئتينا عند الشهيق وإخراجه عند الزفير.


➤ For inhalation to occur, the lungs must expand, which increases lung volume and thus decreases the pressure in the lungs to below atmospheric pressure.

لكي يحدث الشهيق، يجب أن تتمدد الرئتان، مما يزيد من حجم الرئة وبالتالي يقلل الضغط في الرئتين إلى ما دون الضغط الجوي.

MUSCLES OF INHALATION AND EXHALATION

- During normal, quiet inhalation, the diaphragm and external intercostals contract, the lungs expand, and air moves into the lungs; during normal, quiet exhalation, the diaphragm and external intercostals relax and the lungs recoil, forcing air out of the lungs.



Ribs move
out

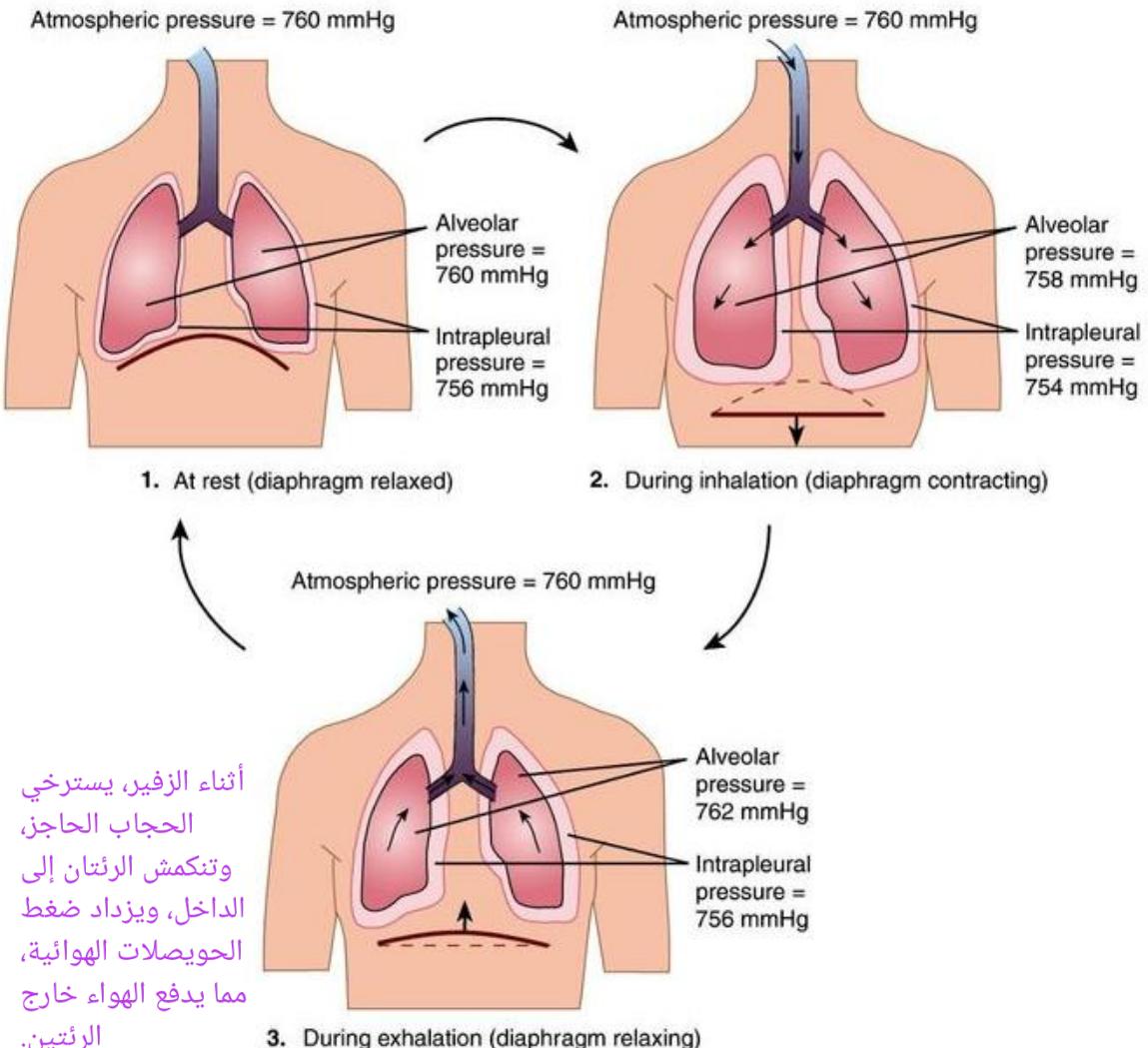
Diaphragm
moves down

(a) Inhalation

Ribs move
back

Diaphragm
moves back

(b) Exhalation


Mechanism of breathing human beings

PRESSURE CHANGES IN PULMONARY VENTILATION

During inhalation, the diaphragm contracts, the chest expands, **the lungs are pulled outward**, and **alveolar (intrapulmonic) pressure decreases**.

أثناء الشهيق، ينقبض الحجاب الحاجز، ويتمدد الصدر، ويسحب الرئتان إلى الخارج، وينخفض الضغط السنخي (داخل الرئة).

During exhalation, the diaphragm relaxes, **the lungs recoil inward**, and **alveolar pressure increases**, **forcing air out of the lungs**.

MUSCLES OF INHALATION AND EXHALATION

> نظراً لأن الهواء يتدفق دائمًا من منطقة ذات ضغط أعلى إلى منطقة ذات ضغط أقل، يحدث الشهيق. ويستمر تدفق الهواء إلى الرئتين طالما وجد فرق في الضغط.

- Because air always flows from a region of higher pressure to a region of lower pressure, inhalation takes place. Air continues to flow into the lungs as long as a pressure difference exists.

> أثناء الشهيق العميق والقوي، تشارك عضلات الشهيق المساعدة أيضًا في زيادة حجم التجويف الصدري.

- During deep, forceful inhalations, accessory muscles of inspiration also participate in increasing the size of the thoracic cavity.

- The muscles are so named because they make little, if any, contribution during normal quiet inhalation, but during exercise or forced ventilation they may contract vigorously. The accessory muscles of inhalation include the sternocleidomastoid muscles.

> سميت هذه العضلات بهذا الاسم لأنها تساهم بشكل ضئيل، إن وجد، أثناء الشهيق الهدئ الطبيعي، ولكن أثناء التمارين أو التهوية القسرية، قد تنبض بقوة. تشمل عضلات الشهيق المساعدة العضلة القصية الترقوية الخشائية.

- Because both normal quiet inhalation and inhalation during exercise or forced ventilation involve muscular contraction, the process of inhalation is said to be active.

لأن كلاً من الشهيق الهدئ الطبيعي والشهيق أثناء التمارين أو التهوية القسرية ينطوي على انقباض عضلي، فإن عملية الشهيق يقال إنها عملية نشطة.

EXHALATION

الزفير، أو ما يسمى بالزفير، ينتج أيضاً عن تدرج في الضغط، ولكن في هذه الحالة يكون التدرج في الاتجاه المعاكس: الضغط في الرئتين أكبر من ضغط الغلاف الجوي.

- **Breathing out, called exhalation (expiration), is also due to a pressure gradient, but in this case the gradient is in the opposite direction:** The pressure in the lungs is greater than the pressure of the atmosphere. **Normal exhalation during quiet breathing, unlike inhalation, is a passive process because no muscular contractions are involved.**
- **Instead, exhalation results from elastic recoil of the chest wall and lungs, both of which have a natural tendency to spring back after they have been stretched.**
- **Exhalation starts when the inspiratory muscles relax.** As the diaphragm relaxes, its dome moves superiorly owing to its elasticity.

بدلاً من ذلك، ينتج الزفير عن الارتداد المرن لجدار الصدر والرئتين، وكلاهما لديه ميل طبيعي للارتداد بعد تمددهما.

< يبدأ الزفير عندما تسترخي عضلات الشهيق. عندما يسترخي الحاجز، تتحرك قبته للأعلى بسبب مرونته.

الزفير الطبيعي أثناء التنفس الهدئي.
على عكس الشهيق، هو عملية سلبية لأنه
لا يوجد انقباضات عضلية متضمنة.

OTHER FACTORS AFFECTING PULMONARY VENTILATION

عوامل أخرى تؤثر على التهوية الرئوية

- As you have just learned, air pressure differences drive airflow during inhalation and exhalation. However, three other factors affect the rate of airflow and the ease of pulmonary ventilation: surface tension of the alveolar fluid, compliance of the lungs, and airway resistance.

كما تعلم للتو، فإن اختلافات ضغط الهواء تدفع تدفق الهواء أثناء الشهيق والزفير. ومع ذلك، هناك ثلاثة عوامل أخرى تؤثر على معدل تدفق الهواء وسهولة التهوية الرئوية: التوتر السطحي لسائل الحويصلات الهوائية، وامتداد الرئتين، ومقاومة مجرى الهواء.

الدكتورة قالت افهموهم فهم احسن ما تحفظوا
وركزوا على قصة ال collapse

البيبي يلي ببولد بالشهر السابع بتكون كمية ال surfactant قليلة عندهم وبالتالي ال surface tension عالي وبالتالي الرئتين رح يصيدهم عشان هييك بحطوهם بالخداج collapse

SURFACE TENSION OF ALVEOLAR FLUID

طبقة رقيقة من سائل الحويصلات الهوائية تغطي السطح الداخلي للحويصلات الهوائية وتمارس قوة تعرف بالتوتر السطحي.

- **A thin layer of alveolar fluid coats the luminal surface of alveoli and exerts a force known as **surface tension**.**

➤ **During breathing, surface tension must be overcome to expand the lungs during each inhalation. Surface tension also accounts for two-thirds of lung elastic recoil, which decreases the size of alveoli during exhalation.**

أثناء التنفس، يجب التغلب على التوتر السطحي لتوسيع الرئتين أثناء شهيق. كما يمثل التوتر السطحي ثلثي ارتداد الرئة المرن، مما يقلل من حجم الحويصلات الهوائية أثناء الزفير.

- **The surfactant (a mixture of phospholipids and lipoproteins) present in alveolar fluid reduces its surface tension.**

يقلل الفاعل بالسطح (مزيج من الفوسفوليبيدات والبروتينات الدهنية) الموجود في السائل السنخي من توتره السطحي.

- **A deficiency of surfactant in premature infants causes respiratory distress syndrome, in which the surface tension of alveolar fluid is greatly increased, so that many alveoli collapse at the end of each exhalation. Great effort is then needed at the next inhalation to reopen the collapsed alveoli.**

يسبب نقص الدوبامين في المادة الفعالة السطحية لدى الأطفال الخدج متلازمة الصائفة التنفسية، حيث يزداد توتر سطح السائل السنخي بشكل كبير مما يؤدي إلى انهيار العديد من الحويصلات الهوائية في نهاية كل زفير. وبالتالي، يتطلب الأمر جهداً كبيراً في الشهيق التالي لإعادة فتح الحويصلات الهوائية المنهارة.

COMPLIANCE OF THE LUNGS

Compliance refers to **how much effort is required to stretch the lungs and chest wall**. يشير القدرة إلى مقدار الجهد المطلوب لتمدد الرئتين وجدار الصدر.

High compliance means that **the lungs and chest wall expand easily**. يعني القدرة العالية أن الرئتين وجدار الصدر يتمددان بسهولة.

✓ **Low compliance means that they resist expansion.** القدرة المنخفضة يعني أنها مقاومة التمدد. في الرئتين، يرتبط القدرة بعاملين رئيسيين: المرونة والتوتر السطحي.

✓ **In the lungs, compliance is related to two principal factors: elasticity and surface tension.**

✓ **The lungs normally have high compliance and expand easily because elastic fibers in lung tissue are easily stretched and surfactant in alveolar fluid reduces surface tension.** تتمتع الرئتان عادةً بقدرة عالٍ وتمددان بسهولة لأن الألياف المرنة في أنسجة الرئة تتمدد بسهولة ويقلل الفاعل بالسطح في السائل السنيخي من التوتر السطحي.

Decreased compliance is a common feature in pulmonary conditions that (1) scarlung tissue (for example, tuberculosis), (2) cause lung tissue to become filled with fluid (pulmonary edema), (3) produce a deficiency in surfactant, or (4) impede lung expansion in any way (for example, paralysis of the intercostal muscles). يُعد انخفاض القدرة سمة شائعة في الحالات الرئوية التي (1) تسبب ندبة في أنسجة الرئة (على سبيل المثال، السل)، (2) تسبب امتلاء أنسجة الرئة بالسوائل (الوذمة الرئوية)، (3) تسبب نقصاً في المادة الفعالة السطحية، أو (4) تعيق تمدد الرئة بأي شكل من الأشكال (على سبيل المثال، شلل العضلات الوربية).

AIRWAY RESISTANCE

- ❖ Like the flow of blood through blood vessels, the rate of airflow through the airways depends on both the pressure difference and the resistance.

مثل تدفق الدم عبر الأوعية الدموية، يعتمد معدل تدفق الهواء عبر المسالك الهوائية على كل من فرق الضغط والمقاومة.

- ❖ Airflow equals the pressure difference between the alveoli and the atmosphere divided by the resistance.

يساوي تدفق الهواء فرق الضغط بين الحويصلات الهوائية والغلاف الجوي مقسوماً على المقاومة.

- ❖ **The walls of the airways, especially the bronchioles, offer some resistance to the normal flow of air into and out of the lungs.**

توفر جدران المسالك الهوائية، وخاصة القصبيات، بعض المقاومة للتدفق الطبيعي للهواء داخل وخارج الرئتين.

- As the lungs expand during inhalation, the bronchioles enlarge because their walls are pulled outward in all directions.
- Larger-diameter airways have decreased resistance.

مع تمدد الرئتين أثناء الشهيق، تتوسيع القصبيات لأن جدرانها تُسحب للخارج في جميع الاتجاهات. المسالك الهوائية ذات القطر الأكبر لها مقاومة أقل.

AIRWAY RESISTANCE

- ❖ Airway resistance then increases during exhalation as the diameter of bronchioles decreases. Airway diameter is also regulated by the degree of contraction or relaxation of smooth muscle in the walls of the airways.

*تزداد مقاومة مجاري الهواء أثناء الزفير مع انخفاض قطر القصبات. كما يتم تنظيم قطر مجاري الهواء بدرجة انقباض أو استرخاء العضلات الملساء في جدران مجاري الهواء.

- Signals from the sympathetic division of the autonomic nervous system cause relaxation of this smooth muscle, which results in bronchodilation and decreased resistance.

تتسبب الإشارات من القسم الودي للجهاز العصبي الإلإرادي في استرخاء هذه العضلات الملساء، مما يؤدي إلى توسيع القصبات وانخفاض المقاومة،

أي حالة تضيق أو تسد مجاري الهواء تزيد من المقاومة، بحيث يلزم ضغط أكبر للحفاظ على نفس تدفق الهواء (مثل الربو أو مرض الانسداد الرئوي المزمن (COPD)).

- Any condition that narrows or obstructs the airways increases resistance, so that more pressure is required to maintain the same airflow (i.e. asthma or chronic obstructive pulmonary disease (COPD)).

LUNG VOLUMES AND CAPACITIES

- ✓ While at rest, a healthy adult averages 12 breaths a minute, with each inhalation and exhalation moving about 500 mL of air into and out of the lungs.

✓ أثناء الراحة، يتتنفس الشخص البالغ السليم في المتوسط 12 نفساً في الدقيقة، حيث تُحْزَك كل شهيق وزفير حوالي 500 مل من الهواء داخل وخارج الرئتين.

- ✓ The volume of one breath is called the tidal volume (VT).

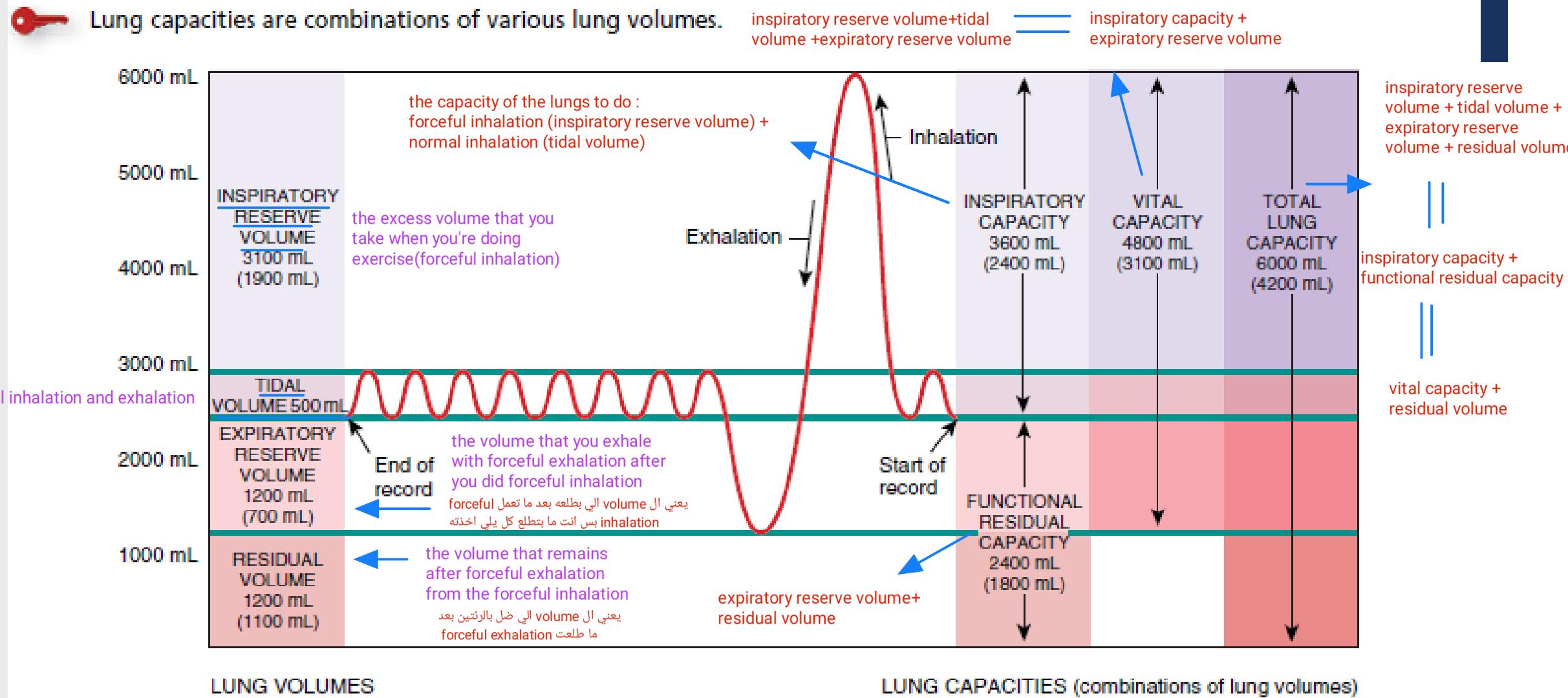
يُطلق على حجم النفس الواحد اسم حجم المد والجزر (VT).

- ✓ The minute ventilation (MV) – the total volume of air inhaled and exhaled each minute – is respiratory rate multiplied by tidal volume:

التهوية الدقيقة (M) - إجمالي حجم الهواء المستنشق والمزبور كل دقيقة - هي معدل التنفس مضروباً في حجم المد والجزر:

$$MV = \frac{\text{respiratory rate}}{12 \text{ breaths/min}} \times \frac{\text{tidal volume}}{500 \text{ mL/breath}} \\ = 6 \text{ liters/min}$$

✓ عادةً ما تكون التهوية الدقيقة الأقل من المعدل الطبيعي علامة على خلل في وظائف الرئة.


- ✓ Lower-than-normal minute ventilation usually is a sign of pulmonary malfunction.

الجهاز المستخدم عادةً لقياس حجم الهواء المتبادل أثناء التنفس ومعدل التنفس هو مقياس التنفس أو جهاز قياس التنفس.

- ✓ The apparatus commonly used to measure the volume of air exchanged during breathing and the respiratory rate is a spirometer or respirometer.
- ✓ The record is called a spirogram. Inhalation is recorded as an upward deflection, and exhalation is recorded as a downward deflection.

يُسمى التسجيل مخطط التنفس، ويُسجل الشهيق كانحراف لأعلى، ويُسجل الزفير كانحراف لأسفل.

Figure 23.15 Spirogram of lung volumes and capacities. The average values for a healthy adult male and female are indicated, with the values for a female in parentheses. Note that the spirogram is read from right (start of record) to left (end of record).

LUNG VOLUMES AND CAPACITIES

- ✓ **Tidal volume** varies considerably from one person to another and in the same person at different times. ✓ يختلف حجم المد والجزر بشكل كبير من شخص لآخر، وحتى لدى الشخص نفسه في أوقات مختلفة.

- ✓ The alveolar ventilation rate is the volume of air per minute that actually reaches the respiratory zone. معدل التهوية السنية هو حجم الهواء في الدقيقة الذي يصل فعلياً إلى منطقة التنفس.

يتم تعريف العديد من أحجام الرئة الأخرى بالنسبة للتنفس القوي. بشكل عام، تكون هذه الأحجام أكبر لدى الذكور، والأفراد الأطول، والبالغين الأصغر سناً، وأصغر لدى الإناث، والأفراد الأقصر، وكبار السن. يمكن أيضاً تشخيص العديد من الاضطرابات عن طريق مقارنة القيم الطبيعية الفعلية والمتواعدة لجنس المريض وطوله وعمره.

- ✓ **Several other lung volumes are defined relative to forceful breathing.** In general, these volumes are larger in males, taller individuals, and younger adults, and smaller in females, shorter individuals, and the elderly. Various disorders also may be diagnosed by comparison of actual and predicted normal values for a patient's gender, height, and age.

- ✓ **Lung capacities** are combinations of various lung volumes.

ساعات الرئة هي مجموعات من أحجام الرئة المختلفة.

LUNG VOLUMES AND CAPACITIES

من خلال أخذ نفس عميق جدًا، يمكنك استنشاق أكثر بكثير من 500 مل. يطلق على هذا الهواء المستنشق الإضافي، حجم الاحتياطي الشهيقي، ويبلغ حوالي 3100 مل لدى الذكور البالغين و1900 مل لدى الإناث البالغات.

- By taking a very deep breath, you can inhale a good deal more than 500 mL. This additional inhaled air, called the **inspiratory reserve volume**, is about 3100 mL in an average adult male and 1900 mL in an average adult female.
- Even more air can be inhaled if inhalation follows forced exhalation. If you inhale normally and then exhale as forcibly as possible, you should be able to push out considerably more air in addition to the 500 mL of tidal volume. The extra 1200 mL in males and 700 mL in females is called the **expiratory reserve volume**.
- **The forced expiratory volume in 1 second**, (FEV1.0) is the volume of air that can be exhaled from the lungs in 1 second with maximal effort following a maximal inhalation. Typically, chronic obstructive pulmonary disease (COPD) greatly reduces FEV1.0 because COPD increases airway resistance.

LUNG VOLUMES AND CAPACITIES

- Even after the expiratory reserve volume is exhaled, considerable air remains in the lungs, is called the **residual volume** and amounts to about 1200 mL in males and 1100 mL in females.

حتى بعد زفير حجم الاحتياطي الزفيرى، يبقى قدر كبير من الهواء في الرئتين، ويسمى الحجم المتبقى ويبلغ حوالي 1200 مل عند الذكور و 1100 مل عند الإناث.

- Inspiratory capacity is the sum of tidal volume and inspiratory reserve volume (500 mL + 3100 mL = 3600 mL in males and 500 mL + 1900 mL = 2400 mL in females).

السعه الاستنشاقية هي مجموع حجم المد والجزر وحجم الاحتياطي الاستنشاقى (500 مل + 3100 مل = 3600 مل عند الذكور و 500 مل + 1900 مل = 2400 مل عند الإناث).

- Functional residual capacity is the sum of residual volume and expiratory reserve volume (1200 mL + 1200 mL = 2400 mL in males and 1100 mL + 700 mL = 1800 mL in females).

السعه الوظيفية المتبقية هي مجموع الحجم المتبقى وحجم الاحتياطي الزفيرى (1200 مل + 1200 مل = 2400 مل عند الذكور و 1100 مل + 700 مل = 1800 مل عند الإناث).

LUNG VOLUMES AND CAPACITIES

السعة الحيوية هي مجموع حجم الاحتياطي الشهيقي، وحجم المد والجزر، وحجم الاحتياطي الزفير (4800 مل في الذكور و 3100 مل في الإناث).

- **Vital capacity** is the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume (4800 mL in males and 3100 mL in females).
- Finally, **total lung capacity** is the sum of vital capacity and residual volume (4800 mL + 1200 mL = 6000 mL in males and 3100 mL + 1100 mL = 4200 mL in females).

وأخيرًا، فإن السعة الرئوية الكلية هي مجموع السعة الحيوية والحجم المتبقى (4800 مل + 1200 مل = 6000 مل عند الذكور و 3100 مل + 1100 مل = 4200 مل عند الإناث).

EXCHANGE OF OXYGEN AND CARBON DIOXIDE

مثل ما قلنا مو مطلوب نحفظ كل قانون مين العالم تبعه بس لازم نفهمهم

- The exchange of oxygen and carbon dioxide between alveolar air and pulmonary blood occurs via passive diffusion, which is governed by the behavior of gases by two gas laws, Dalton's law and Henry's law.

يحدث تبادل الأكسجين وثاني أكسيد الكربون بين هواء الحويصلات الهوائية ودم الرئة عبر الانتشار السلبي، والذي يحكمه سلوك الغازات من خلال قانونين للغازات، قانون دالتون وقانون هنري.

يُعد قانون دالتون مهماً لفهم كيفية تحرك الغازات وفقاً لدرجات الضغط الخاصة بها عن طريق الانتشار، ويُساعد قانون هنري في شرح كيفية ارتباط ذوبان الغاز بانتشاره.

- Dalton's law is important for understanding how gases move down their pressure gradients by diffusion, and Henry's law helps explain how the solubility of a gas relates to its diffusion.

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

✓ According to **Dalton's law**, each gas in a mixture of gases exerts its own pressure as if no other gases were present.

وفقاً لقانون دالتون، يمارس كل غاز في خليط من الغازات ضغطه الخاص كما لو لم تكن هناك غازات أخرى موجودة.

● **The pressure of a specific gas in a mixture is called its partial pressure (P_x)**.

يُطلق على ضغط غاز معين في خليط اسم ضغطه الجزيئي (P_x).

● **The total pressure of the mixture is calculated simply by adding all of the partial pressures**.

يتم حساب الضغط الكلي للخلط ببساطة عن طريق جمع كل الضغوط الجزئية.

الهواء الجوي عبارة عن خليط من الغازات - النيتروجين (N_2) والأكسجين (O_2) والأرجون (Ar) وثاني أكسيد الكربون (CO_2) وكثيارات متغيرة من بخار الماء (H_2O).

✓ **Atmospheric air is a mixture of gases—nitrogen (N_2), oxygen (O_2), argon (Ar), carbon dioxide (CO_2), variable amounts of water vapor (H_2O), plus other gases present in small quantities.**

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

يمكنا تحديد الضغط الجزيئي الذي يمارسه كل مكون في الخليط عن طريق ضرب النسبة المئوية للغاز في الخليط في الضغط الكلي للخلط. يتكون الهواء الجوي من 78.6% نيتروجين، 20.9% أرجون، 0.04% ثاني أكسيد الكربون، و 0.06% غازات أخرى، كما توجد كمية متغيرة من بخار الماء.

- We can determine the partial pressure exerted by each component in the mixture by multiplying the percentage of the gas in the mixture by the total pressure of the mixture. Atmospheric air is 78.6% nitrogen, 20.9% oxygen, 0.093% argon, 0.04% carbon dioxide, and 0.06% other gases; a variable amount of water vapor is also present.

تحدد هذه الضغوط الجزيئية حركة الأكسجين وثاني أكسيد الكربون بين الغلاف الجوي والرئتين، وبين الرئتين والدم، وبين الدم وخلايا الجسم. ينتشر كل غاز عبر غشاء نفاذ من المنطقة ذات الضغط الجزيئي الأعلى للأكسجين إلى المنطقة ذات الضغط الجزيئي الأقل. كلما زاد الفرق في الضغط الجزيئي، زادت سرعة الانتشار.

- These partial pressures determine the movement of O₂ and CO₂ between the atmosphere and lungs, between the lungs and blood, and between the blood and body cells. Each gas diffuses across a permeable membrane from the area where its partial pressure is greater to the area where its partial pressure is less. **The greater the difference in partial pressure, the faster the rate of diffusion.**

GAS LAWS: DALTON'S LAW AND HENRY'S LAW

- Compared with inhaled air, alveolar air has less O₂ and more CO₂ while exhaled air contains more O₂ than alveolar air and less CO₂.

بالمقارنة مع الهواء المستنشق، يحتوي هواء الحويصلات الهوائية على كمية أقل من الأكسجين وكمية أكبر من ثاني أكسيد الكربون، بينما يحتوي هواء الزفير على كمية أكبر من الأكسجين من هواء الحويصلات الهوائية وكمية أقل من ثاني أكسيد الكربون.
- Henry's law** states that the quantity of a gas that will dissolve in a liquid is proportional to the partial pressure of the gas and its solubility. In body fluids, the ability of a gas to stay in solution is greater when its partial pressure is higher and when it has a high solubility in water. The higher the partial pressure of a gas over a liquid and the higher the solubility, the more gas will stay in solution. In comparison to oxygen, much more CO₂ is dissolved in blood plasma because the solubility of CO₂ is 24 times greater than that of O₂. Even though the air we breathe contains mostly N₂, this gas has no known effect on bodily functions, and at sea level pressure very little of it dissolves in blood plasma because its solubility is very low.

ينص قانون هنري على أن كمية الغاز التي تذوب في سائل تتناسب طردياً مع الضغط الجزيئي للغاز ذوبانيه. في سوائل الجسم، تكون قدرة الغاز على البقاء في محلول أكبر عندما يكون ضغطه الجزيئي أعلى وعندما تكون ذوبانيه في الماء عالية. كلما زاد الضغط الجزيئي للغاز فوق السائل، وزاد ذوبانيه، زادت كمية الغاز المتبقية في محلول. وبالمقارنة مع الأكسجين، يذوب ثاني أكسيد الكربون بكمية أكبر بكثير في بلازما الدم، لأن ذوبانيه أعلى بـ 24 مرة من ذوبانية الأكسجين. ورغم أن الهواء الذي نتنفسه يتكون في معظمها من النيتروجين، إلا أنه لا يُعرف له أي تأثير على وظائف الجسم، وعند ضغط مستوى سطح البحر، لا يذوب منه إلا القليل جداً في بلازما الدم، لأن ذوبانيه منخفضة للغاية.

EXTERNAL AND INTERNAL RESPIRATION

تبادل الغازات الرئوي هو انتشار الأكسجين من الهواء في الحويصلات الهوائية للرئتين إلى الدم في الشعيرات الدموية الرئوية وانتشار ثاني أكسيد الكربون في الاتجاه المعاكس.

- **Pulmonary gas exchange** is the diffusion of O₂ from air in the alveoli of the lungs to blood in pulmonary capillaries and the diffusion of CO₂ in the opposite direction.
- Respiration in the lungs converts deoxygenated blood (depleted of some O₂) coming from the right side of the heart into oxygenated blood (saturated with O₂) that returns to the left side of the heart.

يتحول التنفس في الرئتين الدم غير المؤكسج (الذي فقد بعض الأكسجين) القادم من الجانب الأيمن من القلب إلى دم مؤكسج (مشبع بالأكسجين) يعود إلى الجانب الأيسر من القلب.

EXTERNAL AND INTERNAL RESPIRATION

عدد الشعيرات الدموية بالقرب من الحويصلات الهوائية في الرئتين كبير جدًا، ويتدفق الدم ببطء كافٍ عبر هذه الشعيرات الدموية بحيث يلتقط أقصى كمية من الأكسجين.

- The number of capillaries near alveoli in the lungs is very large, and blood flows slowly enough through these capillaries that it picks up a maximal amount of O₂.

أثناء التمارين الرياضية الشاقة، عندما يزداد الناتج القلبي، يتدفق الدم بسرعة أكبر عبر كل من الدورة الدموية الجهازية والرئوية. ونتيجة لذلك، يكون وقت مرور الدم في الشعيرات الدموية الرئوية أقصر.

- During vigorous exercise, when cardiac output is increased, blood flows more rapidly through both the systemic and pulmonary circulations. As a result, blood's transit time in the pulmonary capillaries is shorter.

- In diseases that decrease the rate of gas diffusion, however, the blood may not come into full equilibrium with alveolar air, especially during exercise. When this happens, the P_{O₂} declines and P_{CO₂} rises in systemic arterial blood.

ومع ذلك، في الأمراض التي تقلل من معدل انتشار الغاز، قد لا يصل الدم إلى حالة توازن كاملة مع هواء الحويصلات الهوائية، خاصة أثناء التمارين. عند حدوث ذلك، ينخفض ضغط الأكسجين الجزئي (P_{O₂}) ويترفع ضغط ثاني أكسيد الكربون الجزئي (P_{CO₂}) في الدم الشرياني الجهازي.

EXTERNAL AND INTERNAL RESPIRATION

يُضخُّ البَطَنِيُّ الْأَيْسِرِ الدَّمُ الْمُؤَكَّسِ إِلَى الشَّرِيَانِ الْأَوْرَطِيِّ وَعَبَرَ الشَّرَائِينِ الْجَهَازِيِّينِ إِلَى الشَّعِيرَاتِ الدَّمَوِيَّةِ الْجَهَازِيَّةِ. يُطَلَّقُ عَلَى تِبَادُلِ الْأَكْسِجِينِ وَثَانِي أَكْسِيدِ الْكَرْبُونِ بَيْنِ الشَّعِيرَاتِ الدَّمَوِيَّةِ الْجَهَازِيَّةِ وَخَلَائِيِّ الْأَنْسَجَةِ اسْمُ التِّنَفُّسِ الدَّاخِلِيِّ أَوْ تِبَادُلِ الْفَازَاتِ الْجَهَازِيِّ.

- ❖ The left ventricle pumps oxygenated blood into the aorta and through the systemic arteries to systemic capillaries. The exchange of O₂ and CO₂ between systemic capillaries and tissue cells is called internal respiration or systemic gas exchange.
- ❖ As O₂ leaves the bloodstream, oxygenated blood is converted into deoxygenated blood.
 - * عندما يغادر الأكسجين مجرى الدم، يتحول الدم المؤكسج إلى دم غير مؤكسج.
 - * على عكس التنفس الخارجي، الذي يحدث فقط في الرئتين، يحدث التنفس الداخلي في الأنسجة في جميع أنحاء الجسم.
- ❖ Unlike external respiration, which occurs only in the lungs, internal respiration occurs in tissues throughout the body.

EXTERNAL AND INTERNAL RESPIRATION

- The PO₂ of blood pumped into systemic capillaries is higher (100 mmHg) than the PO₂ in tissue cells (40 mmHg at rest) because the cells constantly use O₂ to produce ATP.

يكون ضغط الأكسجين الجزئي (PO₂) في الدم الذي يُضخ إلى الشعيرات الدموية الجهازية أعلى (100 ملم زئبق) من ضغط الأكسجين الجزئي في خلايا الأنسجة (40 ملم زئبق في حالة الراحة) لأن الخلايا تستخدم الأكسجين باستمرار لإنتاج ATP.
- While O₂ diffuses from the systemic capillaries into tissue cells, CO₂ diffuses in the opposite direction. Because tissue cells are constantly producing CO₂, the PCO₂ of cells (45 mmHg at rest) is higher than that of systemic capillary blood (40 mmHg).

يبينما ينتشر الأكسجين من الشعيرات الدموية الجهازية إلى خلايا الأنسجة، ينتشر ثاني أكسيد الكربون في الاتجاه المعاكس. ولأن خلايا الأنسجة تنتج ثاني أكسيد الكربون باستمرار، فإن ضغط ثاني أكسيد الكربون الجزئي (PCO₂) في الخلايا (45 ملم زئبق في حالة الراحة) يكون أعلى من ضغط ثاني أكسيد الكربون الجزئي في دم الشعيرات الدموية الجهازية (40 ملم زئبق).
- The **deoxygenated blood** then **returns to the heart** and is pumped to the lungs for another cycle of external respiration.

ثم يعود الدم غير المؤكسج إلى القلب ويُضخ إلى الرئتين لدورة تنفس خارجي أخرى.

THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

يعتمد معدل تبادل الغازات الرئوي والجهاري على عدة عوامل:

● **Partial pressure difference of the gases.** Alveolar PO_2 must be higher than blood PO_2 for oxygen to diffuse from alveolar air into the blood. The differences between PO_2 and PCO_2 in alveolar air versus pulmonary blood increase during exercise.

فرق الضغط الجزيئي للغازات. يجب أن يكون ضغط الأكسجين في الهوبيصلات الهوائية أعلى من ضغط الأكسجين في الدم حتى ينتشر الأكسجين من هواء الهوبيصلات الهوائية إلى الدم. تزداد الفروق بين ضغط الأكسجين وثاني أكسيد الكربون في هواء الهوبيصلات الهوائية مقابل الدم الرئوي أثناء التمارين.

● **Surface area available for gas exchange.** The surface area of the alveoli is huge. In addition, many capillaries surround each alveolus, so many that as much as 900 mL of blood is able to participate in gas exchange at any instant.

مساحة السطح الممتاحة لتبادل الغازات. مساحة سطح الهوبيصلات الهوائية هائلة. بالإضافة إلى ذلك، تحيط العديد من الشعيرات الدموية بكل حويصلة هوائية، لدرجة أن ما يصل إلى 900 مل من الدم قادر على المشاركة في تبادل الغازات في أي لحظة.

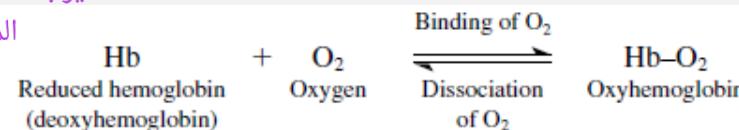
THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

مسافة الانتشار، الغشاء التنفسى رقيق جدًا، لذا يحدث الانتشار بسرعة. يؤدي تراكم السائل الخلالي بين الحويصلات الهوائية، إلى إبطاء معدل تبادل الغازات لأنه يزيد من مسافة الانتشار.

● **Diffusion distance.** The respiratory membrane is very thin, so diffusion occurs quickly. Buildup of interstitial fluid between alveoli, as occurs in pulmonary edema, slows the rate of gas exchange because it increases diffusion distance.

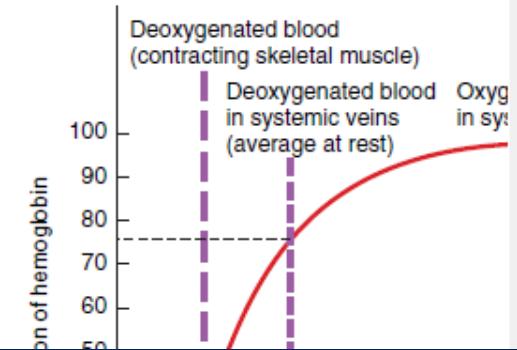
الوزن الجزيئي وذوبانية الغازات. نظرًا لأن الأكسجين له وزن جزيئي أقل من ثاني أكسيد الكربون، فمن المتوقع أن ينتشر عبر الغشاء التنفسى أسرع بحوالي 1.2 مرة. ومع ذلك، فإن ذوبانية ثاني أكسيد الكربون في الأجزاء السائلة من الغشاء التنفسى أكبر بحوالي 24 مرة من ذوبانية الأكسجين. بأخذ هذين العاملين في الاعتبار، يحدث الانتشار الصافى لثاني أكسيد الكربون إلى الخارج أسرع بعشرين مرة من الانتشار الصافى للأكسجين إلى الداخل.

● **Molecular weight and solubility of the gases.** Because O₂ has a lower molecular weight than CO₂, it could be expected to diffuse across the respiratory membrane about 1.2 times faster. However, the solubility of CO₂ in the fluid portions of the respiratory membrane is about 24 times greater than that of O₂. Taking both of these factors into account, net outward CO₂ diffusion occurs 20 times more rapidly than net inward O₂ diffusion.


TRANSPORT OF OXYGEN AND CARBON DIOXIDE: OXYGEN TRANSPORT

لا يذوب الأكسجين بسهولة في الماء، لذلك يذوب حوالي 1.5% فقط من الأكسجين المستنشق في بلازما الدم.

- **Oxygen does not dissolve easily in water, so only about 1.5% of inhaled O₂ is dissolved in blood plasma.**
- **About 98.5% of blood O₂ is bound to hemoglobin in red blood cells** (the amount dissolved in the plasma is 0.3 mL and the amount bound to hemoglobin is 19.7 mL.).


يرتبط حوالي 98.5% من أكسجين الدم بالهيموغلوبين في خلايا الدم الحمراء (الكمية المذابة في البلازما هي 0.3 مل والكمية المرتبطة بالهيموغلوبين هي 19.7 مل).

معلومة مهمة : ال solubility CO₂ أكبر من O₂ بال tissues والعكس بال lungs

The 98.5% of the O₂ that is bound to hemoglobin is trapped inside RBCs, so only the dissolved O₂ (1.5%) can diffuse out of tissue capillaries into tissue cells. Thus, it is important to understand the factors that promote O₂ binding to and dissociation (separation) from hemoglobin.

The Relationship between Hemoglobin

fully saturated: the O₂
are completely binding
with hemoglobin 100%

partially saturated: the
O₂ are binding with
hemoglobin like about
50%

THE RELATIONSHIP BETWEEN HEMOGLOBIN AND OXYGEN PARTIAL PRESSURE

العامل الأكثر أهمية الذي يحدد كمية الأكسجين المرتبطة بالهيموغلوبين هو الضغط الجزيئي للأكسجين (PO₂).

- The most important factor that determines how much O₂ binds to hemoglobin is the PO₂; the higher the PO₂, the more O₂ combines with Hb.

عندما يتحول الهيموغلوبين المختزل (Hb) بالكامل إلى أوكسي هيموغلوبين (Hb-O₂), يقال إن الهيموغلوبين مشبع تماماً, وعندما يتكون الهيموغلوبين من خليط من Hb و Hb-O₂, فإنه يكون مشبعاً جزئياً. تعبر نسبة تشبّع الهيموغلوبين عن متوسط تشبّع الهيموغلوبين بالأكسجين. على سبيل المثال, إذا ارتبط كل جزيء هيموغلوبين بجزيئين من الأكسجين, فإن الهيموغلوبين يكون مشبعاً بنسبة 50% لأن كل جزيء هيموغلوبين يمكنه الارتباط بأربعة جزيئات أكسجين كحد أقصى.

- When reduced hemoglobin (Hb) is completely converted to oxyhemoglobin (Hb-O₂), the hemoglobin is said to be **fully saturated**; when hemoglobin consists of a mixture of Hb and Hb-O₂, it is **partially saturated**. The percent saturation of hemoglobin expresses the average saturation of hemoglobin with oxygen. For instance, if each hemoglobin molecule has bound two O₂ molecules, then the hemoglobin is 50% saturated because each Hb can bind a maximum of four O₂.

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

- 1. **Acidity (pH):** As acidity increases (pH decreases), the affinity of hemoglobin for O₂ decreases, and O₂ dissociates more readily from hemoglobin. **The Bohr effect** works both ways: An increase in hydrogen ion in blood causes O₂ to unload from hemoglobin, and the binding of O₂ to hemoglobin causes unloading of hydrogen ion from hemoglobin (hemoglobin can act as a buffer for hydrogen ions).

1. الحموضة (الأس الهيدروجيني): مع زيادة الحموضة (انخفاض الأس الهيدروجيني)، تقل ألفة الهيموغلوبين للأكسجين، وينفصل الأكسجين بسهولة أكبر عن الهيموغلوبين. يعمل تأثير بور في كلا الاتجاهين: زيادة أيون الهيدروجين في الدم تؤدي إلى إطلاق الأكسجين من الهيموغلوبين وارتباط الأكسجين بالهيموغلوبين يؤدي إلى إطلاق أيون الهيدروجين من الهيموغلوبين (يمكن أن يعمل الهيموغلوبين كمخزن لأيونات الهيدروجين).

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

- 2. Partial pressure of carbon dioxide: PCO₂ and pH are related factors because low blood pH (acidity) results from high PCO₂. As CO₂ enters the blood, much of it is temporarily converted to carbonic acid (H₂CO₃). The carbonic acid thus formed in red blood cells dissociates into hydrogen ions and bicarbonate ions. As the hydrogen ions concentration increases, pH decreases. Thus, an increased PCO₂ produces a more acidic environment, which helps release O₂ from hemoglobin.

بعضها البعض، لأن انخفاض درجة حموضة الدم (pH) ودرجة الحموضة (PCO₂) الضغط الجزئي لثاني أكسيد الكربون: يرتبط الضغط الجزئي لثاني أكسيد الكربون 02. (الحموضة) بارتفاع الضغط الجزئي لثاني أكسيد الكربون. عندما يدخل ثاني أكسيد الكربون إلى الدم، يتحول جزء كبير منه مؤقتاً إلى حمض الكربونيك يتفكك حمض الكربونيك المترافق في خلايا الدم الحمراء إلى أيونات الهيدروجين وأيونات البيكربونات. مع زيادة تركيز أيونات الهيدروجين، تنخفض درجة (H₂CO₃). الحموضة. وبالتالي، فإن زيادة الضغط الجزئي لثاني أكسيد الكربون تنتج بيئة أكثر حموضة، مما يساعد على إطلاق الأكسجين من الهيموجلوبين.

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

- 3. **Temperature:** Within limits, as temperature increases, so does the amount of O₂ released from hemoglobin. During hypothermia (lowered body temperature) cellular metabolism slows, the need for O₂ is reduced, and more O₂ remains bound to hemoglobin.

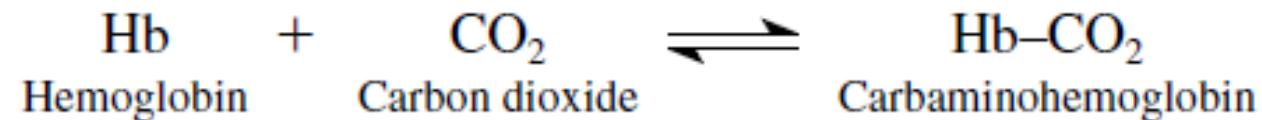
درجة الحرارة: ضمن حدود معينة، مع ارتفاع درجة الحرارة، تزداد كمية الأكسجين المطلقة من الهيموغلوبين. أثناء

انخفاض حرارة الجسم (انخفاض درجة حرارة الجسم)، يتباطأ التمثيل الغذائي الخلوي، وتقل الحاجة إلى الأكسجين، ويبقى المزيد من الأكسجين مرتبطة بالهيموغلوبين.

CARBON DIOXIDE TRANSPORT

Under normal resting conditions, each 100 mL of deoxygenated blood contains the equivalent of 53 mL of gaseous CO₂, which is transported in the blood in three main forms:

في ظل ظروف الراحة الطبيعية، يحتوي كل 100 مل من الدم غير المؤكسج على ما يعادل 53 مل من غاز ثاني أكسيد الكربون، والذي يتم نقله في الدم بثلاثة أشكال رئيسية:


1. **Dissolved CO₂.** The smallest percentage—about 7%—is dissolved in blood plasma. On reaching the lungs, it diffuses into alveolar air and is exhaled.

1. ثاني أكسيد الكربون المذاب. النسبة الأصغر - حوالي 7% - تذوب في بلازما الدم. عند وصولها إلى الرئتين، تنتشر في هواء الحويصلات الهوائية ويتم زفيرها.
2. **Carbamino compounds.** somewhat higher percentage, about 23%, combines with the amino groups of amino acids and proteins in blood to form carbamino compounds. **Because the most prevalent protein in blood is hemoglobin (inside red blood cells), most of the CO₂ transported in this manner is bound to hemoglobin.**

2. مركبات الكاربامينو. نسبة أعلى قليلاً، حوالي 23%، تتحدد مع مجموعات الأمين في الأحماض الأمينية والبروتينات الموجودة في الدم لتكوين مركبات الكاربامينو. ولأن الهيموغلوبين (داخل خلايا الدم الحمراء) هو البروتين الأكثر شيوعاً في الدم، فإن معظم ثاني أكسيد الكربون المنقول بهذه الطريقة يرتبط بالهيموغلوبين.

CARBON DIOXIDE TRANSPORT

chains. Hemoglobin that has bound CO_2 is termed **carbaminohemoglobin (Hb-CO₂)**:

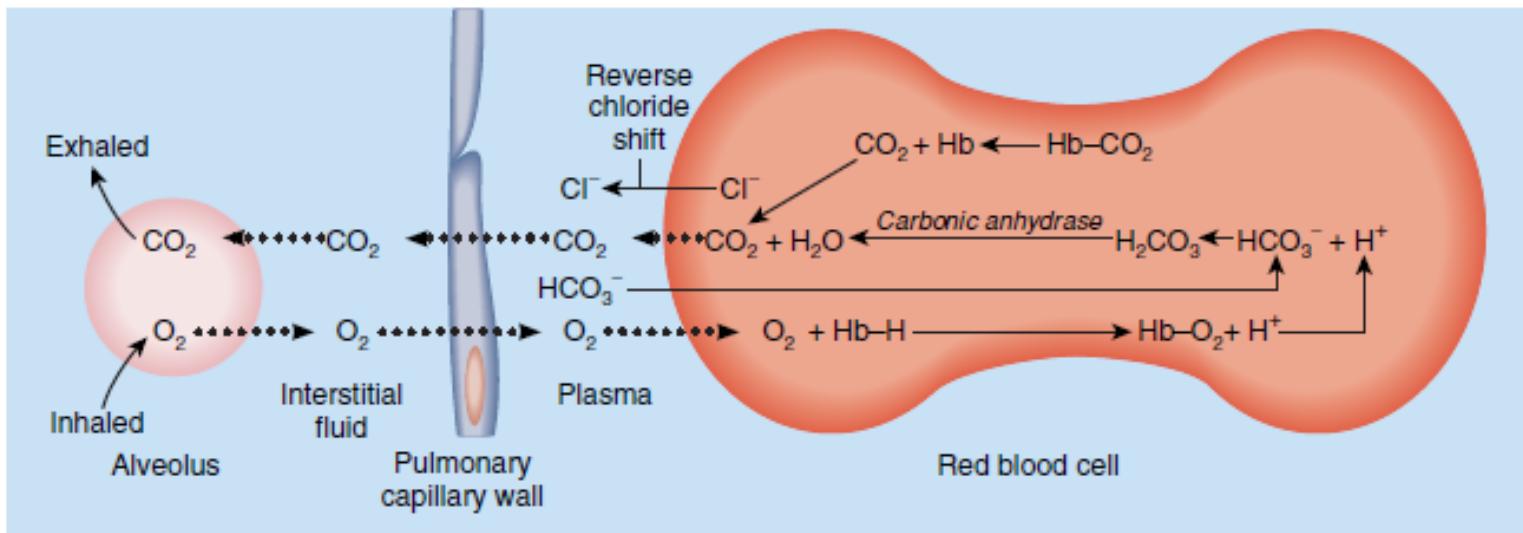
The formation of carbaminohemoglobin is greatly influenced by PCO₂. For example, in tissue capillaries PCO₂ is relatively high, which promotes formation of carbaminohemoglobin. But in pulmonary capillaries, PCO₂ is relatively low, and the CO₂ readily splits apart from globin and enters the alveoli by diffusion.

يتأثر تكوين كاربامينوهيموجلوبين بشكل كبير بضغط ثاني أكسيد الكربون الجزيئي (PCO₂). على سبيل المثال، في الشعيرات الدموية التنسجية، يكون ضغط ثاني أكسيد الكربون الجزيئي مرتفعاً نسبياً، مما يعزز تكوين كاربامينوهيموجلوبين. لكن في الشعيرات الدموية الرئوية، يكون ضغط ثاني أكسيد الكربون منخفضاً نسبياً، وينفصل ثاني أكسيد الكربون بسهولة عن الغلوبين ويدخل الحويصلات الهوائية عن طريق الانتشار.

CARBON DIOXIDE TRANSPORT

3. **Bicarbonate ions**. The greatest percentage of CO_2 —about 70%—is transported in blood plasma as bicarbonate ions. Thus, as blood picks up CO_2 , bicarbonate ion accumulates inside RBCs. Some bicarbonate ion moves out into the blood plasma, down its concentration gradient. In exchange, chloride ions move from plasma into the RBCs. This exchange of negative ions, which maintains the electrical balance between blood plasma and RBC cytosol, is known as the chloride shift. The net effect of these reactions is that CO_2 is removed from tissue cells and transported in blood plasma as bicarbonate ion. As blood passes through pulmonary capillaries in the lungs, all of these reactions reverse and CO_2 is exhaled.

3. أيونات البيكربونات. يتم نقل النسبة الأكبر من ثاني أكسيد الكربون - حوالي 70% - في بلازما الدم على شكل أيونات بيكربونات. وبالتالي، عندما يمتص الدم ثاني أكسيد الكربون، تتراءكم أيونات البيكربونات داخل خلايا الدم الحمراء. ينتقل بعض أيونات البيكربونات إلى بلازما الدم، وفقاً لتدرج تركيزها. في المقابل، تنتقل أيونات الكلوريد من البلازما إلى خلايا الدم الحمراء. يُعرف هذا التبادل للأيونات السالبة، الذي يحافظ على التوازن الكهربائي بين بلازما الدم وسيتوبلازم خلايا الدم الحمراء، باسم تحول الكلوريد. تمثل النتيجة النهائية لهذه التفاعلات في إزالة ثاني أكسيد الكربون من خلايا الأنسجة ونقله في بلازما الدم على شكل أيون البيكربونات. وعندما يمر الدم عبر الشعيرات الدموية الرئوية في الرئتين، تتعكس جميع هذه التفاعلات ويتم إخراج ثاني أكسيد الكربون مع الزفير.

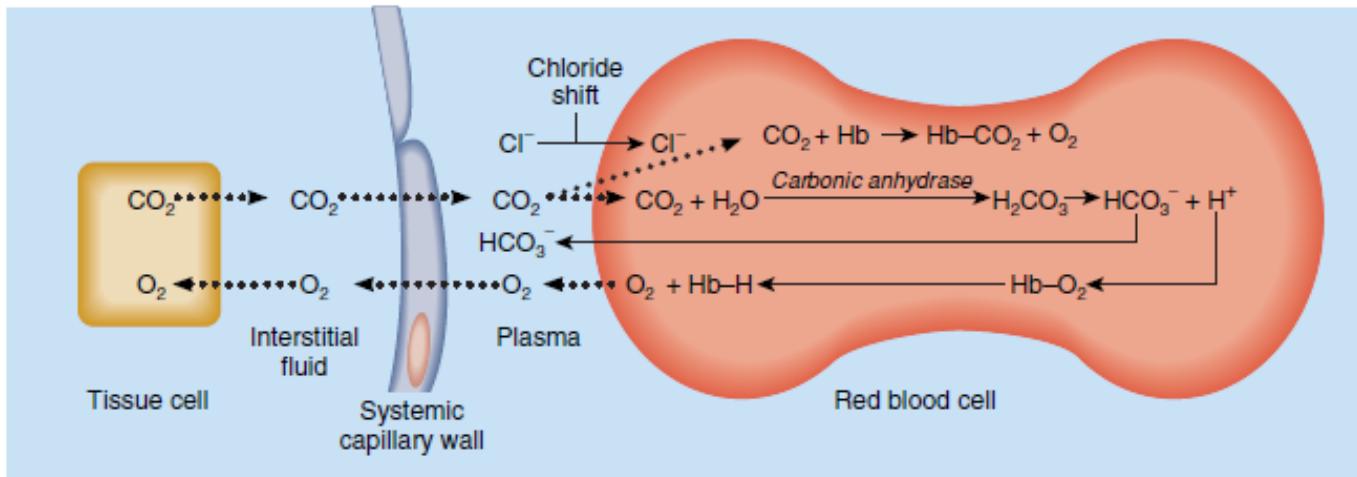

● CARBON DIOXIDE TRANSPORT

- ❖ The amount of CO₂ that can be transported in the blood is influenced by the percent saturation of hemoglobin with oxygen. The lower the amount of oxyhemoglobin (Hb–O₂), the higher the CO₂-carrying capacity of the blood, a relationship known as the Haldane effect.

تناول كمية ثاني أكسيد الكربون التي يمكن نقلها في الدم بنسبة تشعير الهيموغلوبين بالأكسجين. كلما انخفضت كمية أوكسي هيموغلوبين (Hb-O₂), زادت قدرة الدم على حمل ثاني أكسيد الكربون، وهي علاقة تُعرف بتأثير هالدين.

SUMMARY OF GAS EXCHANGE AND TRANSPORT IN LUNGS AND TISSUES

Hemoglobin inside red blood cells transports O_2 , CO_2 , and H^+ .


(a) Exchange of O_2 and CO_2 in pulmonary capillaries (external respiration)

Summary of chemical reactions that occur during gas exchange. (a) As carbon dioxide (CO_2) is exhaled, hemoglobin (Hb) inside red blood cells in pulmonary capillaries unloads CO_2 and picks up O_2 from alveolar air. Binding of O_2 to Hb–H releases hydrogen ions (H^+). Bicarbonate ions (HCO_3^-) pass into the RBC and bind to released H^+ , forming carbonic acid (H_2CO_3). The H_2CO_3 dissociates into water (H_2O) and CO_2 , and the CO_2 diffuses from blood into alveolar air. To maintain electrical balance, a chloride ion (Cl^-) exits the RBC for each HCO_3^- that enters (reverse chloride shift). (b) CO_2 diffuses out of tissue cells that produce it and enters red blood cells, where some of it binds to hemoglobin, forming carbaminohemoglobin (Hb– CO_2). This reaction causes O_2 to dissociate from oxyhemoglobin (Hb– O_2). Other molecules of CO_2 combine with water to produce bicarbonate ions (HCO_3^-) and hydrogen ions (H^+). As Hb buffers H^+ , the Hb releases O_2 (Bohr effect). To maintain electrical balance, a chloride ion (Cl^-) enters the RBC for each HCO_3^- that exits (chloride shift).

ملخص التفاعلات الكيميائية التي تحدث أثناء تبادل الغازات. (أ) عند ذفير ثاني أكسيد الكربون (CO_2), يقوم الهيموجلوبين (Hb) داخل خلايا الدم الحمراء في الشعيرات الدموية الرئوية بتفريغ CO_2 , ويحلق O_2 من هواء الحويصلات الهوائية. يؤدي ارتباط Hb بـ O_2 إلى إخلال أيونات الهيدروجين (H^+). تنتقل أيونات البيكربونات (HCO_3^-) إلى خلايا الدم الحمراء وترتبط بأيونات الهيدروجين المتحررة (H^+), مكونة حمض الكربونيك (H_2CO_3). يتفكك حمض الكربونيك إلى ماء (H_2O) وثاني أكسيد الكربون (CO_2), وينتشر ثاني أكسيد الكربون من الدم إلى هواء الحويصلات الهوائية. وللحفاظ على التوازن الكهربائي, يخرج أيون كلوريد (Cl^-) من خلايا الدم الحمراء مقابل كل أيون بيكربيونات يدخلها (انتقال عكسي للكلوريد). (ب) ينتشر ثاني أكسيد الكربون من خلايا الأنسجة المنتجة له ويدخل خلايا الدم الحمراء, حيث يرتبط جزء منه بالهيموجلوبين, مكوناً كاربامينوهيموجلوبين (Hb-CO). يؤدي هذا التفاعل إلى انفصال الأكسجين (O_2) عن أوكسي هيموجلوبين (Hb-O_2). تتحد جزيئات أخرى من ثاني أكسيد الكربون مع الماء لإنتاج أيونات البيكربونات (HCO_3^-) وأيونات الهيدروجين (H^+). وبما أن الهيموجلوبين يعمل كمنظم للهيماتوكريت, فإنه يطلق الأكسجين تأثير بور. وللحفاظ على التوازن الكهربائي, يخرج أيون كلوريد (Cl^-) من خلايا الدم الحمراء مقابل كل أيون بيكربيونات يدخلها (انتقال عكسي للكلوريد). (ج) يدخل إلى خلايا الدم الحمراء لكل HCO_3^- , الذي يخرج (الانتقال الكلوريد).

SUMMARY OF GAS EXCHANGE AND TRANSPORT IN LUNGS AND TISSUES

(b) Exchange of O₂ and CO₂ in systemic capillaries (internal respiration)

ملخص التفاعلات الكيميائية التي تحدث أثناء تبادل الغازات. (أ) عند زفير ثانوي أكسيد الكربون (CO₂)، يقوم الهيموغلوبين (Hb) داخل خلايا الدم الحمراء في الشعيرات الدموية الرئوية بالهيموغلوبين إلى إطلاق أيونات الهيدروجين (H). تنتقل أيونات البيكربونات (HCO₃⁻) إلى خلايا الدم الحمراء وترتبط بأيونات الهيدروجين (H₂O) المحرر، مكونةً حمض الكربونيك (H₂CO₃). يتفكك H₂CO₃ إلى ماء (H₂O) وثاني أكسيد الكربون (CO₂)، ويترسّر من الدم إلى هواء الحويصلات الهوائية، وللحفاظ على التوازن الكهربائي، يخرج أيون كلوريد (Cl⁻) من خلايا الدم الحمراء مقابل كل أيون HCO₃⁻. يدخلها (انزياح عكسي للكلوريد). (ب) ينتشر من خلايا الأنسجة التي تنتجه ويدخل خلايا الدم الحمراء، حيث يرتبط جزء منه بالهيموغلوبين، مكونًا كاربامينوهيموغلوبين (Hb-CO). يؤدي هذا التفاعل إلى تفكك الأكسجين (O₂) من أوكسي هيموغلوبين (Hb-O). تتحدّر جزيئات أخرى من CO₂ مع الماء لإنفاذ أيونات البيكربونات (HCO₃⁻) وأيونات الهيدروجين (H₂O). وبما أن الهيموغلوبين يخفف من تركيز H₂O، فإنه يحرر O₂ (تأثير بور). وللحفاظ على التوازن الكهربائي، يخرج أيون كلوريد (Cl⁻) من خلايا الدم الحمراء مقابل كل أيون HCO₃⁻. يدخلها (انزياح عكسي للكلوريد). يدخل (Cl⁻) إلى خلايا الدم الحمراء الذي يخرج (تحول الكلوريد).

Summary of chemical reactions that occur during gas exchange. (a) As carbon dioxide (CO₂) is exhaled, hemoglobin (Hb) inside red blood cells in pulmonary capillaries unloads CO₂ and picks up O₂ from alveolar air. Binding of O₂ to Hb–H releases hydrogen ions (H⁺). Bicarbonate ions (HCO₃⁻) pass into the RBC and bind to released H⁺, forming carbonic acid (H₂CO₃). The H₂CO₃ dissociates into water (H₂O) and CO₂, and the CO₂ diffuses from blood into alveolar air. To maintain electrical balance, a chloride ion (Cl⁻) exits the RBC for each HCO₃⁻ that enters (reverse chloride shift). (b) CO₂ diffuses out of tissue cells that produce it and enters red blood cells, where some of it binds to hemoglobin, forming carbaminohemoglobin (Hb–CO₂). This reaction causes O₂ to dissociate from oxyhemoglobin (Hb–O₂). Other molecules of CO₂ combine with water to produce bicarbonate ions (HCO₃⁻) and hydrogen ions (H⁺). As Hb buffers H⁺, the Hb releases O₂ (Bohr effect). To maintain electrical balance, a chloride ion (Cl⁻) enters the RBC for each HCO₃⁻ that exits (chloride shift).

CONTROL OF BREATHING

❖ At rest, about 200 mL of O₂ is used each minute by body cells. During strenuous exercise, however, O₂ use typically increases 15- to 20-fold in normal healthy adults.

* في حالة الراحة، تستهلك خلايا الجسم حوالي 200 مل من الأكسجين كل دقيقة. ومع ذلك، أثناء التمارين الشاقة، يزداد استهلاك الأكسجين عادةً من 15 إلى 20 ضعفًا لدى البالغين الأصحاء.

✓ Respiratory Center:

- The size of the thorax is altered by the action of the breathing muscles, which contract as a result of nerve impulses transmitted from centers in the brain and relax in the absence of nerve impulses.

يتغير حجم القفص الصدري بفعل عضلات التنفس، التي تنقبض نتيجة للنبضات العصبية المنقولة من مراكز في الدماغ وتسترخي في حالة عدم وجود نبضات عصبية.

CONTROL OF BREATHING

✓ Respiratory Center:

- These nerve impulses are sent from clusters of neurons located bilaterally in the brain stem. This widely dispersed group of neurons, collectively called the respiratory center, can be divided into two principal areas on the basis of location and function: (1) the medullary respiratory center in the medulla oblongata and (2) the pontine respiratory group in the pons.

ترسل هذه النبضات العصبية من مجموعات من الخلايا العصبية الموجودة بشكل ثنائي في جذع الدماغ. يمكن تقسيم هذه المجموعة المنتشرة على نطاق واسع من الخلايا العصبية، والتي تسمى مجتمعة مركز التنفس، إلى منطقتين رئيسيتين على أساس الموقع والوظيفة: (1) مركز التنفس النخاعي - في النخاع المستطيل و(2) مجموعة التنفس الجسرية في الجسر.

MEDULLARY RESPIRATORY CENTER

- The medullary respiratory center is **made up of two collections of neurons** called the **dorsal respiratory group** (DRG), formerly called the **inspiratory area**, and the **ventral respiratory group** (VRG), formerly called the **expiratory area**.

يتكون مركز التنفس النخاعي من مجموعتين من الخلايا العصبية تسمى المجموعة التنفسية الظهرية (DRG)، والتي كانت تسمى سابقاً منطقة الشهيق، والمجموعة التنفسية البطنية (VRG)، والتي كانت تسمى سابقاً منطقة الزفير.

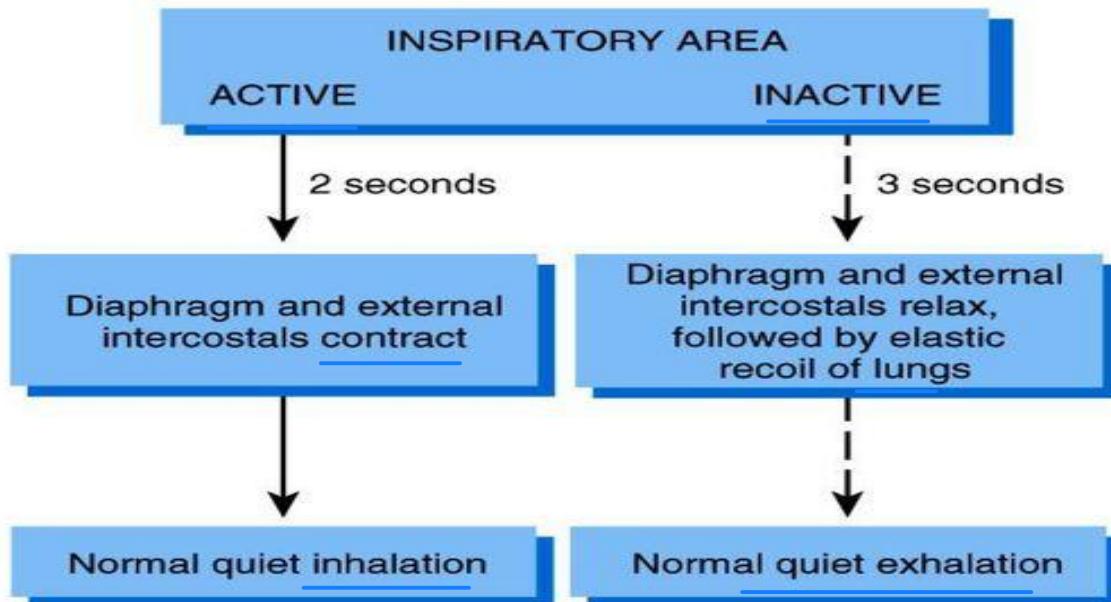
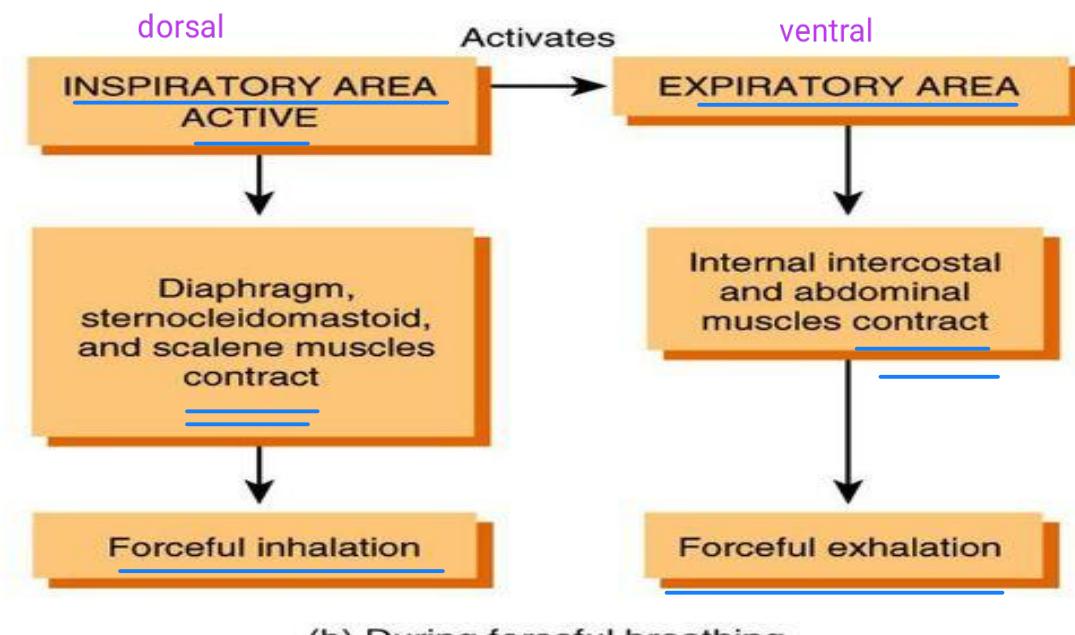

MEDULLARY RESPIRATORY CENTER

Figure 23.25 Role of the medullary rhythmicity area during normal quiet breathing


if we talk about normal inhalation the two centers will be activated

اذا فاهم الكلام يلي هون بتكون فهمت السلايد يلي بعده كامل

if we talk about forceful inhalation the ventral center will be activated and the dorsal center will be inhibited

(a) During normal quiet breathing

(b) During forceful breathing

أثناء الشهيق القوي، تكون العقدة الجذرية الظهرية غير نشطة جنباً إلى جنب مع الخلايا العصبية للعقدة الجذرية البطنية التي تؤدي إلى الشهيق القوي، لكن الخلايا العصبية للعقدة الجذرية البطنية المشاركة في الرزفير القوي ترسل نبضات عصبية إلى العضلات المساعدة للرزفير (أي العضلات الوربية الداخلية).

MEDULLARY RESPIRATORY CENTER

أثناء الشهيق القوي، لا تحفز النبضات العصبية من DRG الحجاب الحاجز والعضلات الوربية الخارجية على الانقباض فحسب، بل تنشط أيضاً الخلايا العصبية في VRG المشاركة في الشهيق القوي لإرسال نبضات إلى العضلات المساعدة (مثل العضلة القصية الترقوية الخشائية) للشهيق.

- The **VRG becomes activated when forceful breathing is required**, such as during exercise, when playing a wind instrument, or at high altitudes.

يتم تنشيط VRG عند الحاجة إلى تنفس قوي، كما هو الحال أثناء التمرين، أو عند العزف على آلة نفخ، أو على ارتفاعات عالية.

- ✓ During forceful inhalation, nerve impulses from the DRG not only stimulate the diaphragm and external intercostal muscles to contract, they also activate neurons of the VRG involved in forceful inhalation to send impulses to the accessory muscles (i.e. sternocleidomastoid) of inhalation.
- ✓ During forceful exhalation, the DRG is inactive along with the neurons of the VRG that result in forceful inhalation, but neurons of the VRG involved in forceful exhalation send nerve impulses to the accessory muscles of exhalation (i.e. internal intercostals).

PONTINE RESPIRATORY GROUP

- ✓ The pontine respiratory group (PRG), formerly called the pneumotaxic area, is a collection of neurons in the pons.

✓ مجموعة التنفس الجسري (PRG)، والتي كانت تسمى سابقاً منطقة تنظيم التنفس، هي مجموعة من الخلايا العصبية في الجسر.

- The neurons in the PRG are active during inhalation and exhalation.

تنشط الخلايا العصبية في PRG أثناء الشهيق والزفير.

- ✓ The PRG transmits nerve impulses to the DRG in the medulla.

✓ تنقل PRG النبضات العصبية إلى DRG في النخاع المستطيل.

- ✓ The PRG may play a role in both inhalation and exhalation by modifying the basic rhythm of breathing generated by the VRG, as when exercising, speaking, or sleeping.

✓ قد يلعب PRG دوراً في كل من الشهيق والزفير عن طريق تعديل الإيقاع الأساسي للتنفس الناتج عن VRG، كما هو الحال عند ممارسة الرياضة أو التحدث أو النوم.

REGULATION OF THE RESPIRATORY CENTER

- ✓ **Activity of the respiratory center can be modified in response to receptors in the peripheral nervous system, and other factors in order to maintain the homeostasis of breathing.**

يمكن تعديل نشاط مركز التنفس استجابةً للمستقبلات في الجهاز العصبي المحيطي، وعوامل أخرى من أجل الحفاظ على استتاب التنفس.

CHEMORECEPTOR REGULATION OF BREATHING

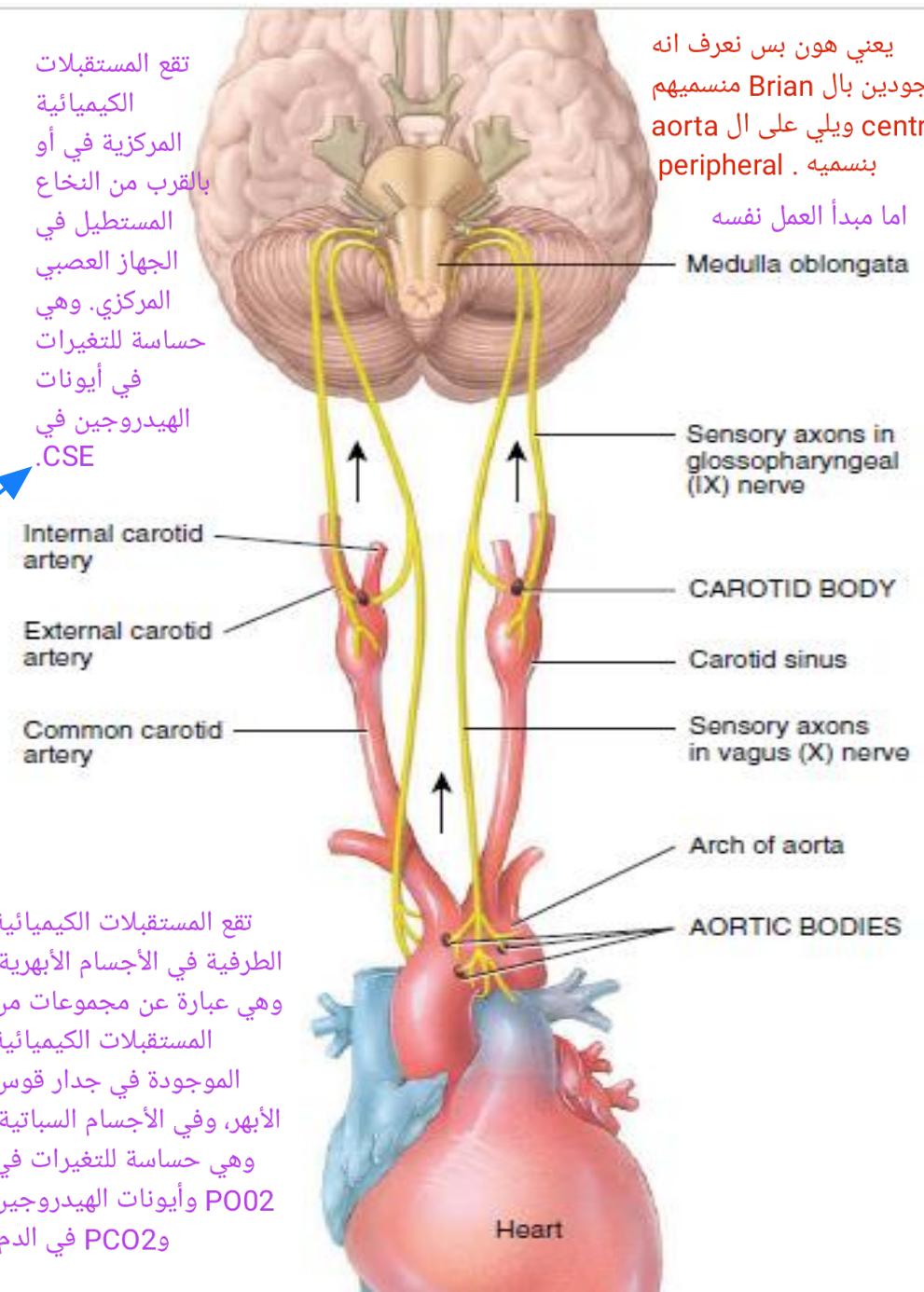
- ✓ Certain chemical stimuli modulate how quickly and how deeply we breathe. The respiratory system functions to maintain proper levels of CO₂ and O₂ and is very responsive to changes in the levels of these gases in body fluids.
تعمل بعض المحفزات الكيميائية على تعديل سرعة وعمق تنفسنا. يعمل الجهاز التنفسي على الحفاظ على مستويات مناسبة من ثاني أكسيد الكربون والأكسجين، وهو شديد الاستجابة للتغيرات في مستويات هذه الغازات في سوائل الجسم.
- We introduced sensory neurons that are responsive to chemicals, called chemoreceptors.
لقد قدمنا الخلايا العصبية الحسية التي تستجيب للمواد الكيميائية، والتي تسمى المستقبلات الكيميائية.

LOCATIONS OF PERIPHERAL CHEMORECEPTORS

المستقبلات الكيميائية هي خلايا عصبية حسية تستجيب للتغيرات في مستويات بعض المواد الكيميائية في الجسم.

✓ **Chemoreceptors** are sensory neurons that respond to changes in the levels of certain chemicals in the body.

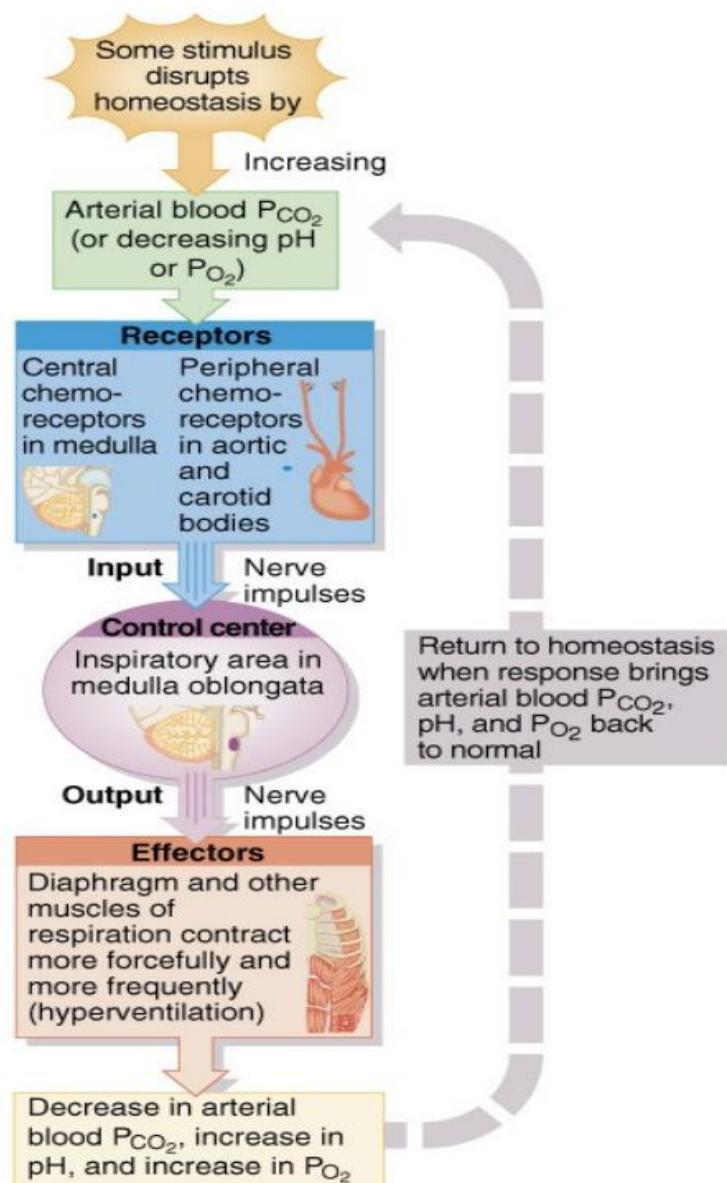
Central chemoreceptors are located in or near the medulla oblongata in the central nervous system. They are sensitive to changes in hydrogen ions in the CSF.


Peripheral chemoreceptors are located in the aortic bodies. They are clusters of chemoreceptors located in the wall of the arch of the aorta, and in the carotid bodies. They are sensitive to changes in PO_2 , hydrogen ions, and PCO_2 in the blood.

يعني هون بس نعرف انه موجودين بال Brian منسمهم aorta ويللي على ال central peripheral . بنسميه .

اما مبدأ العمل نفسه

Medulla oblongata


تقع المستقبلات الكيميائية المركزية في أو بالقرب من النخاع المستطيل في الجهاز العصبي المركزي. وهي حساسة للتغيرات في أيونات الهيدروجين في CSE.

تقع المستقبلات الكيميائية الطرفية في الأجسام الأبهريه. وهي عبارة عن مجموعات من المستقبلات الكيميائية الموجودة في جدار قوس الأبهري، وفي الأجسام السباتية. وهي حساسة للتغيرات في أيونات الهيدروجين PO_2 و PCO_2 في الدم.

Heart

Negative Feedback Regulation of Breathing

- Negative feedback control of breathing
- Increase in arterial pCO_2
- Stimulates receptors
- Inspiratory center
- Muscles of respiration contract more frequently & forcefully
- pCO_2 Decreases

THE INFLATION REFLEX

على غرار تلك الموجودة في الأوعية الدموية، توجد مستقبلات حساسة للتمدد تسمى مستقبلات الضغط أو مستقبلات التمدد في جدران القصبات الهوائية والشعيبات الهوائية.

- Similar to those in the blood vessels, **stretch-sensitive receptors** called **baroreceptors** or **stretch receptors** are located in the walls of bronchi and bronchioles.
- When these receptors become stretched during overinflation of the lungs, nerve impulses are sent along the vagus (X) nerves to the dorsal respiratory group (DRG) in the medullary respiratory center. In response, the DRG is inhibited and the diaphragm and external intercostals relax. As a result, further inhalation is stopped and exhalation begins.

عندما تمدد هذه المستقبلات أثناء فرط تمدد الرئتين، ترسل نبضات عصبية على طول العصب المبهم (X) إلى المجموعة التنفسية الظهرية (DRG) في مركز التنفس النخاعي. استجابةً لذلك، يتم تبييض المجموعة التنفسية الظهرية ويسترخي الحجاب الحاجز والعضلات الوربية الخارجية. ونتيجة لذلك، يتوقف الشهيق ويبدأ الزفير.

THE INFLATION REFLEX

- As air leaves the lungs during exhalation, the lungs deflate and the stretch receptors are no longer stimulated. Thus, the DRG is no longer inhibited, and a new inhalation begins. This reflex is referred to as the inflation reflex.

عندما يخرج الهواء من الرئتين أثناء الزفير،
تنكمش الرئتان ولا يتم تحفيز مستقبلات التمدد.
وبالتالي، لا يتم تبييط العقدة الجذرية الظهرية،
ويبدأ استنشاق جديد. يشار إلى هذا المعكس
باسم معكس التمدد.

OTHER INFLUENCES ON BREATHING

- **Limbic system stimulation:** Anticipation of activity or emotional anxiety may stimulate the limbic system, which then sends excitatory input to the DRG, increasing the rate and depth of breathing.

تحفيز الجهاز الحوفي: قد يؤدي توقع النشاط أو القلق العاطفي إلى تحفيز الجهاز الحوفي، الذي يرسل بعد ذلك مدخلات متيرة إلى العقدة الجذرية الظهرية، مما يزيد من معدل وعمق التنفس،

- **Temperature** درجة الحرارة
- **Pain** الألم
- **Stretching the anal sphincter muscle**
- **Irritation of airways:** Physical or chemical irritation of the pharynx or larynx brings about an immediate cessation of breathing followed by coughing or sneezing.
- **Blood pressure** ضغط الدم

تهيج المسالك الهوائية: يؤدي التهيج الفيزيائي أو الكيميائي للبلعوم أو الحنجرة إلى توقف فوري للتنفس يتبعه سعال وعطس.

TABLE 23.3**Summary of Stimuli That Affect Breathing Rate and Depth**

ملخص لكل ال simulations وقالت
اكيد جاي بالامتحان

STIMULI THAT INCREASE BREATHING RATE AND DEPTH

Voluntary hyperventilation controlled by cerebral cortex and anticipation of activity by stimulation of limbic system.

Increase in arterial blood P_{CO_2} above 40 mmHg (causes an increase in H^+) detected by peripheral and central chemoreceptors.

Decrease in arterial blood P_{O_2} from 105 mmHg to 50 mmHg.

Increased activity of proprioceptors.

Increase in body temperature.

Prolonged pain.

Decrease in blood pressure.

Stretching of anal sphincter.

STIMULI THAT DECREASE BREATHING RATE AND DEPTH

Voluntary hypoventilation controlled by cerebral cortex.

Decrease in arterial blood P_{CO_2} below 40 mmHg (causes a decrease in H^+) detected by peripheral and central chemoreceptors.

Decrease in arterial blood P_{O_2} below 50 mmHg.

Decreased activity of proprioceptors.

Decrease in body temperature (decreases respiration rate), sudden cold stimulus (causes apnea).

Severe pain (causes apnea).

Increase in blood pressure.

Irritation of pharynx or larynx by touch or chemicals (causes brief apnea followed by coughing or sneezing).

THANK YOU

AMJADZ@HU.EDU.JO