

PHYSIOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

DR. AMJAAD ZUHIER ALROSAN

LECTURE 11, PARTS (1) & (2): FLUID COMPARTMENTS

1. Discuss **fluid compartments and fluid homeostasis.**
2. Explore **electrolytes in body fluids.**

(Pages 1024- 1037 of the reference)

FLUID COMPARTMENTS AND FLUID HOMEOSTASIS

في البالغين النحيلين، تشكل سوائل الجسم ما بين 55% و60% من إجمالي الجسم الكلية في الإناث والذكور، على التوالي.

- In lean adults, **body fluids constitute between 55% and 60% of total body mass in females and males, respectively.**

توجد سوائل الجسم في "مقصورتين" رئيسيتين - داخل الخلايا و **الخلايا الخارجية**. حوالي ثلثي سوائل الجسم هي سائل داخل الخلايا (ICF) أو

٢/٣ السيتوسول، السائل داخل الخلايا. الثالث الآخر، يسمى السائل خارج الخلية (ECF)، هي خلايا خارجية وتشمل جميع سوائل الجسم الأخرى.

- **Body fluids are present in two main "compartments"—inside cells and outside cells.** About two-thirds of body fluid is **intracellular fluid (ICF)** or cytosol, the fluid within cells. The other third, called **extracellular fluid (ECF)**, is outside cells and includes all other body fluids.

١/٣

حوالي 80% من ECF هو السائل الخلالي، الذي يشغل المجهر الفراغات بين خلايا الأنسجة، و20% من ECF هي البلازما، السائل جزء من الدم.

- **About 80% of the ECF is interstitial fluid**, which occupies the microscopic spaces between tissue cells, and **20% of the ECF is plasma**, the liquid portion of the blood.

FLUID COMPARTMENTS AND FLUID HOMEOSTASIS

هناك " حاجز" عامل يفصل السائل داخل الخلايا، والسائل الخلالي، و بلازما الدم:

□ Two general “barriers” separate intracellular fluid, interstitial fluid, and blood plasma:

يفصل غشاء البلازما للخلايا الفردية السائل داخل الخلايا عن الأنفلونزا الخلالية المحيطة

1. The plasma membrane of individual cells separates intracellular fluid from the surrounding interstitial fluid.

تقسم جدران الأوعية الدموية السائل الخلالي من بلازما الدم.

2. Blood vessel walls divide the interstitial fluid from blood plasma.

يشير مصطلح سائل الجسم إلى مياه الجسم و موادها الذائبة.

□ The term body fluid refers to body water and its dissolved substances.

يكون الجسم في توازن السوائل عندما تكون الكميات المطلوبة من الماء والمواد المذابة موجودة و تتناسب بشكل صحيح بين المقصورات المختلفة.

➤ The body is in fluid balance when the required amounts of water and solutes are present and are correctly proportioned among the various compartments.

➤ Water is by far the largest single component of the body. الماء هو إلى حد بعيد أكبر مكون منفرد في الجسم.

FLUID COMPARTMENTS AND FLUID HOMEOSTASIS

تسمح عمليات الترشيح وإعادة الامتصاص والانتشار والتناضح التبادل المستمر للمياه والمواد المذابة بين مقصورات سوائل الجسم.

- ❖ The processes of **filtration, reabsorption, diffusion, and osmosis** allow continual exchange of water and solutes among body fluid compartments.

لأن معظم المواد المذابة في سوائل الجسم هي إلكتروليتات، مركبات غير عضوية التي تنفصل إلى أيونات، يرتبط توازن السوائل ارتباطاً وثيقاً بتوزن المنحل بالكهرباء.

- ❖ Because **most solutes in body fluids** are electrolytes, inorganic compounds that dissociate into ions, **fluid balance is closely related to electrolyte balance**.

لأن تناول الماء والإلكتروليتات نادراً ما يحدث بنفس النسب تماماً و وجودها في سوائل الجسم، وقدرة الكلى على إفراز الماء الزائد عن طريق إنتاج البول المخفف، أو لإفراز الشوارد الزائدة عن طريق إنتاج البول المركب، هو أقصى حد الأهمية في الحفاظ على التوازن.

- ❖ Because intake of water and electrolytes rarely occurs in exactly the same proportions as their presence in body fluids, the ability of the kidneys to excrete excess water by producing dilute urine, or to excrete excess electrolytes by producing concentrated urine, is of utmost importance in the maintenance of homeostasis.

مستحيل تتساوى نسب الماء والالكترولايت

المصادر الرئيسية لمياه الجسم
هي السوائل التي يتم تناولها
(حوالي 1600 مل) والاطعمة
الرطبة (حوالي 700 مل)
يمتص من الجهاز الهضمي
(GI)، والذي يبلغ مجموعه
حوالي 2300 مل / يوم.

SOURCES OF BODY WATER GAIN AND LOSS

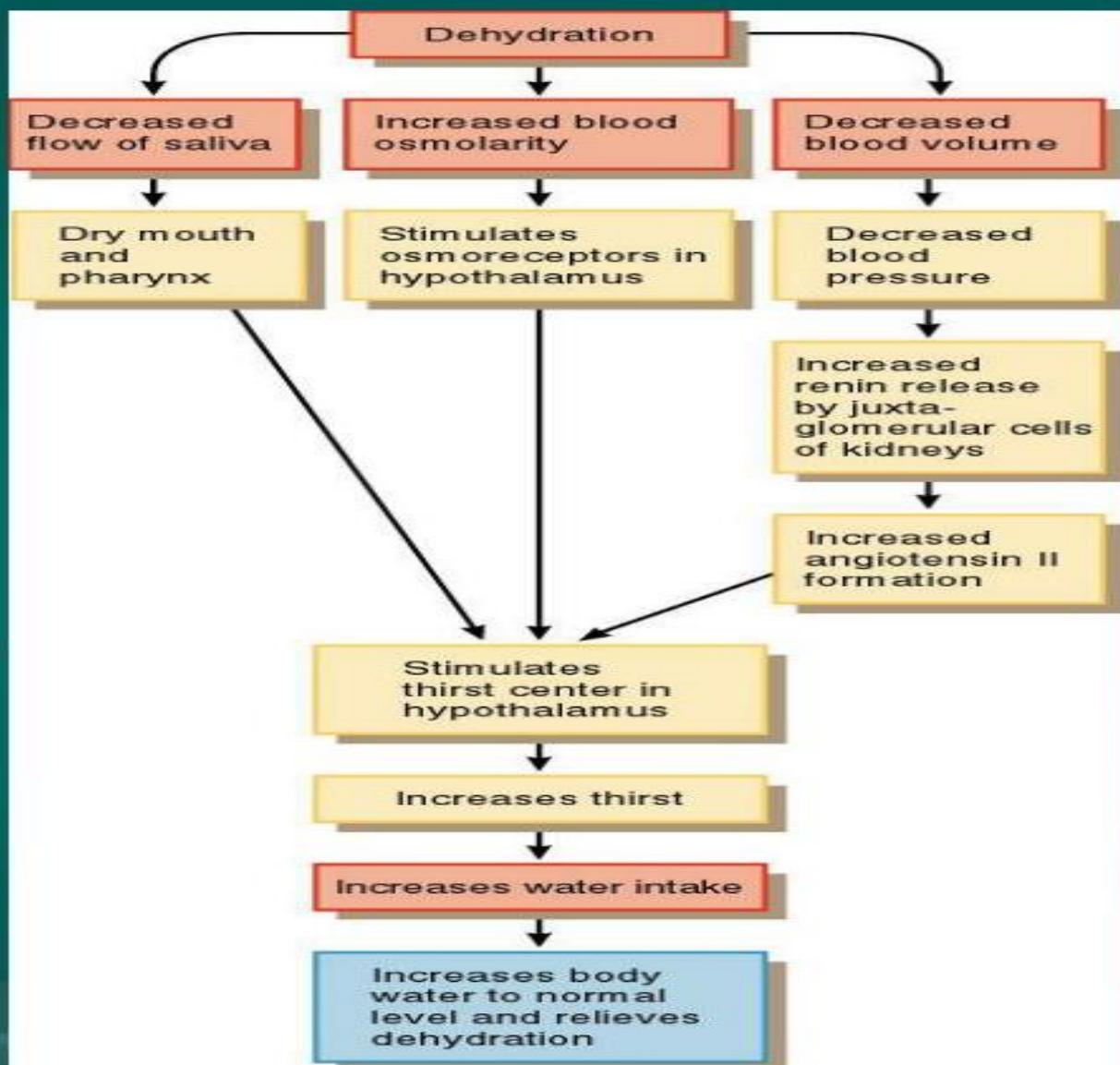
الماء يلي ينثره

- ❖ The main sources of body water are **ingested liquids** (about 1600 mL) and **moist foods** (about 700 mL) absorbed from the gastrointestinal (GI) tract, which **total about 2300 mL/day**.
المصدر الآخر للمياه هو الماء الأيضي الذي يتم إنتاجه في الجسم بشكل رئيسي عندما يتم قبول الإلكترونات بواسطة الأكسجين أثناء التنفس الهوائي.
- ❖ The other source of water is **metabolic water** that is **produced in the body mainly when** $\text{Zi H}^+ + \text{O}_2 \rightarrow \text{H}_2\text{O}$ بتفاعل مع اوكسجين بعطيه ماء.
- ❖ Normally, **body fluid volume remains constant because water loss equals water gain**. Water loss occurs in four ways. Each day the kidneys excrete about 1500 mL in urine, the skin evaporates about 600 mL (400 mL through insensible perspiration— sweat that evaporates before it is perceived as moisture—and 200 mL as sweat), the lungs exhale about 300 mL as water vapor, and the gastrointestinal tract eliminates about 100 mL in feces. In women of reproductive age, additional water is lost in menstrual flow. On average, daily water loss totals about 2500 mL.
زي تعرق

REGULATION OF BODY WATER GAIN

- ❖ An area in the hypothalamus known as the **thirst center** governs the urge to drink.

Body water
ـ قلـ


مركز العطش

Body volume
ـ قلواـ

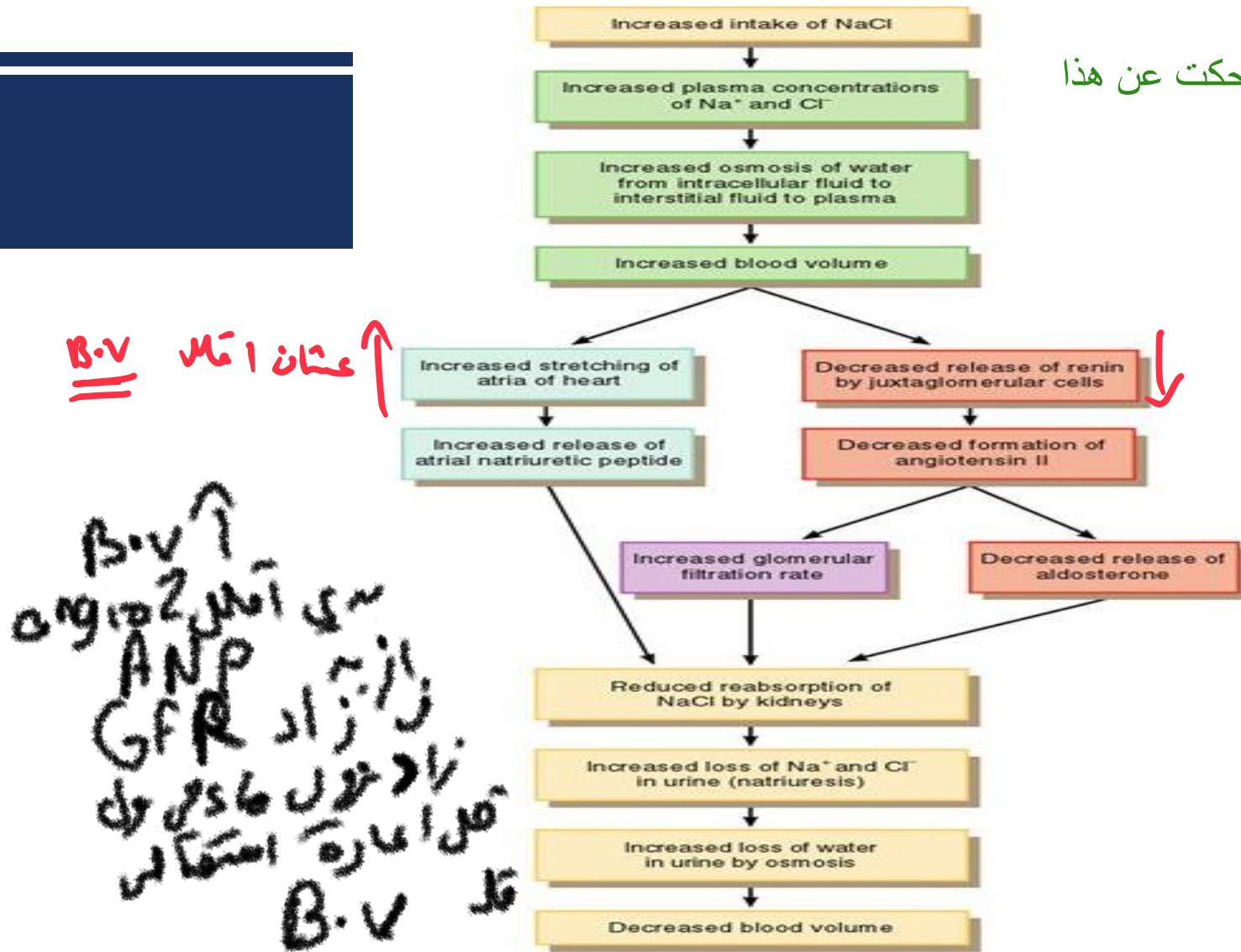
- ✓ When water loss is greater than water gain, **dehydration**—a decrease in volume and an increase in osmolarity of body fluids— stimulates thirst.

❖ منطقة في منطقة ما تحت المهد تعرف باسم مركز العطش يحكم الرغبة في الشرب.

✓ عندما يكون فقدان الماء أكبر من كسب الماء، فإن **الجفاف** - انخفاض في الحجم و زيادة الأسمولية لسوائل الجسم - تحفز العطش.

B.V ↓
B.P ↓
angiotensin ↑
↓
B.V ↑
B.P ↑

REGULATION OF WATER AND SOLUTE LOSS


على الرغم من فقدان الماء والمواد المذابة من خلال التعرق ويزيد الزفير أثناء التمارين، والقضاء على الجسم الزائد يحدث الماء أو المواد المذابة بشكل رئيسي عن طريق التحكم في فقدانها في البول.

Even though the loss of water and solutes through sweating and exhalation increases during exercise, elimination of excess body water or solutes occurs mainly by control of their loss in urine.

مدى فقدان الملح البولي (كلوريد الصوديوم) هو العامل الرئيسي الذي يحدد حجم سوائل الجسم. الثلاثة الأكثر أهمية الهرمونات التي تنظم مدى الصوديوم الكلوي والكلوريد إعادة امتصاص الأيونات (وبالتالي مقدار ما يتم فقدانه في البول) هما الأنجيوتنسين الثاني والألدوستيرون والببتيد الصوديوم الأذيني (ANP).

The extent of urinary salt (NaCl) loss is the main factor that determines body fluid volume. The three most important hormones that regulate the extent of renal sodium and chloride ions reabsorption (and thus how much is lost in the urine) are angiotensin II, aldosterone, and atrial natriuretic peptide (ANP).

في مراجعة حكت عن هذا

Summary of Factors That Maintain Body Water Balance

FACTOR	MECHANISM	EFFECT
Thirst center in hypothalamus	Stimulates desire to drink fluids.	Water gain if thirst is quenched.
Angiotensin II	Stimulates secretion of aldosterone.	Reduces loss of water in urine.
Aldosterone	By promoting urinary reabsorption of Na^+ and Cl^- , increases water reabsorption via osmosis.	Reduces loss of water in urine.
Atrial natriuretic peptide (ANP)	Promotes natriuresis, elevated urinary excretion of Na^+ (and Cl^-), accompanied by water.	Increases loss of water in urine.
Antidiuretic hormone (ADH), also known as vasopressin	Promotes insertion of water-channel proteins (aquaporin-2) into the apical membranes of principal cells in the collecting ducts of the kidneys. As a result, the water permeability of these cells increases and more water is reabsorbed.	Reduces loss of water in urine.

مهم

reabsorbed
باتالي قل في البول

MOVEMENT OF WATER BETWEEN BODY FLUID COMPARTMENTS

عادة، لا تتقاض الخلايا ولا تتنفس بداخل الخلايا والخلالية السوائل لها نفس الأسمولية. التغيرات في الأسمولية للسائل الخلالي، ومع ذلك، يسبب اختلالات السوائل. زيادة في الأسمولية الخلالية يسحب السائل الماء من الخلايا، ويقلص قليلاً. انخفاض في على النقيض من ذلك، تؤدي الأسمولية للسائل الخلالي إلى تضخم الخلايا.

- Normally, **cells neither shrink nor swell because intracellular and interstitial fluids have the same osmolarity**. Changes in the osmolarity of interstitial fluid, however, cause fluid imbalances. An increase in the osmolarity of interstitial fluid draws water out of cells, and they shrink slightly. A decrease in the osmolarity of interstitial fluid, by contrast, causes cells to swell.

السمم المائي هو حالة تتسرب فيها المياه المفرطة في الجسم في تورم الخلايا.

- Water intoxication** is a state in which excessive body water causes cells to swell.

كلما زادت الماء يلي داخلة للخلية
يعني زادت تضخم

اذا قلت osmolarity in interstitial
الماء به يتحرك الى داخل خلية: (swell)

اذا زادت osmolarity in interstitial
ف الماء به يتحرك خارج خلية:
(shrink)

Excessive blood loss, sweating, vomiting, or diarrhea coupled with intake of plain water

Decreased Na^+ concentration of interstitial fluid and plasma (hyponatremia)

Decreased osmolarity of interstitial fluid and plasma

Osmosis of water from interstitial fluid into intracellular fluid

Water intoxication (cells swell)

Convulsions, coma, and possible death

فقدان مفرط للدم، تعرق، قيء، أو إسهال مصحوب بتناول الماء العادي

انخفاض تركيز الصوديوم في السائل الخلالي والبلازما (نقص صوديوم الدم)

انخفاض أسموالية السائل الخلالي والبلازما

انقال الماء من السائل الخلالي إلى السائل داخل الخلايا عبر الخاصية الأسموزية

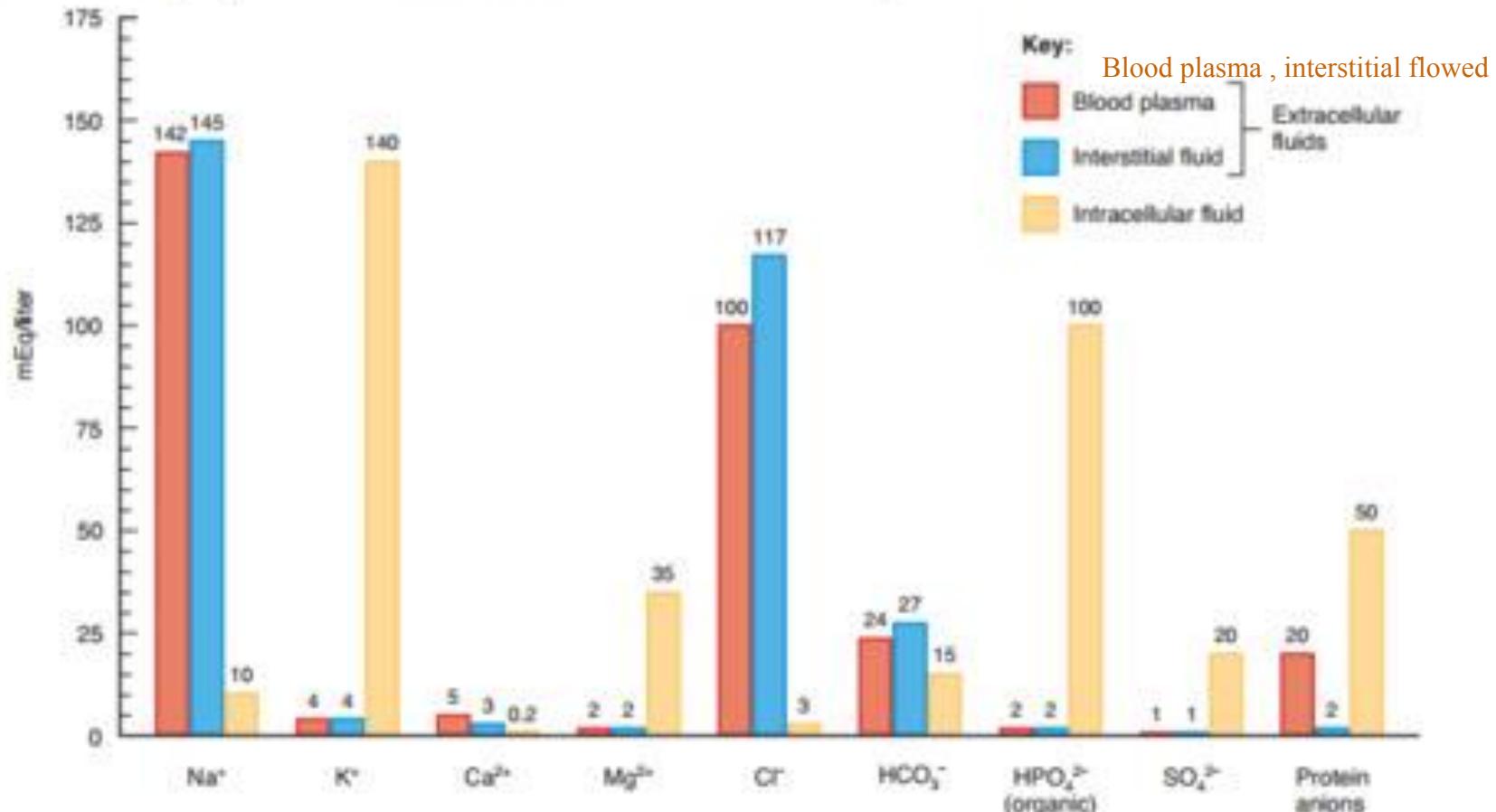
تضخم الماء (انتفاخ الخلايا)

تشنجات، غيبوبة، واحتمال الوفاة

ELECTROLYTES IN BODY FLUIDS

الأيونات التي تتشكل عندما تذوب الشوارد وتنفصل تخدم أربعة عامة وظائف في الجسم

- The **ions** formed when electrolytes dissolve and dissociate serve four general functions in the body.
 - (1) لأنها تقتصر إلى حد كبير على مقصورات سائلة معينة وهي كذلك أكثر عدداً من غير الإلكتروlytes، تتحكم بعض الأيونات في تناضج الماء بين مقصورات السوائل.
 - (2) Because they are **largely confined to particular fluid compartments** and are more numerous than nonelectrolytes, certain ions control the osmosis of water between fluid compartments.
 - (2) تساعد الأيونات في الحفاظ على توازن الحمض القاعدي المطلوب للخلايا الطبيعية الأنشطة.
 - (3) Ions help maintain the acid- base balance required for normal cellular activities.
 - (3) تحمل الأيونات تياراً كهربائياً، مما يسمح بإنتاج إمكانات العمل وإمكانات متدرجة.
 - (4) Several ions serve as **cofactors needed for optimal activity of enzymes**.
 - (4) تعمل العديد من الأيونات كعوامل مساعدة مطلوبة للنشاط الأمثل للإنزيمات.


CONCENTRATIONS OF ELECTROLYTES IN BODY FLUIDS

- The **concentration of ions** is typically expressed in units of **milliequivalents per liter (mEq/liter)**. These units give the concentration of cations or anions in a given volume of solution.

عادة ما يتم التعبير عن تركيز الأيونات بوحدات ملي مكافئ لكل لتر (ملي مكافئ/لتر). تعطي هذه الوحدات تركيز الكاتيونات أو الأنيونات في حجم معين من الحل.

Figure 27.6 Electrolyte and protein anion concentrations in plasma, interstitial fluid, and intracellular fluid. The height of each column represents milliequivalents per liter (mEq/liter).

 The electrolytes present in extracellular fluids are different from those present in intracellular fluid.

SODIUM

- Sodium ions **are the most abundant ions** in extracellular fluid, accounting for 90% of the extracellular cations. The normal blood plasma sodium ions concentration is 136–148 mEq/liter.
- Sodium ions plays a **pivotal role in fluid and electrolyte balance** because it accounts for almost half of the osmolarity of extracellular fluid. بزید من بو دیه ع
- The sodium ions level in the blood is **controlled by aldosterone, antidiuretic hormone (ADH), and atrial natriuretic peptide (ANP)**. رکزوا علیهم
- Aldosterone increases renal reabsorption of sodium ions.
- When the blood plasma concentration of sodium ions drops below 135 mEq/liter, a condition called **hyponatremia**, ADH release ceases.
- The lack of ADH in turn permits **greater excretion of water in urine and restoration of the normal sodium ions level in ECF**. **Atrial natriuretic peptide increases sodium ions excretion by the kidneys when the sodium ions level is above normal**, a condition called **hypernatremia**.

أيونات الصوديوم هي الأيونات الأكثر وفرة في السائل خارج الخلية، وهو ما يمثل 90% من الكاتيونات خارج الخلية. تركيز أيونات الصوديوم الطبيعي في بلازما الدم هو 148-136 mEq/liter.

تلعب أيونات الصوديوم دورا محوريا في توازن السوائل والكهارل لأنها تمثل ما يقرب من نصف الأسمولية للسائل خارج الخلية. يتم التحكم في مستوى أيونات الصوديوم في الدم بواسطة الألدوستيرون، هرمون مضاد لإدرار البول(ADH)، والببتيد الصوديوم الأذيني (ANP) يزيد الألدوستيرون من إعادة الامتصاص الكلوي لأيونات الصوديوم.

عندما ينخفض تركيز أيونات الصوديوم في بلازما الدم إلى أقل من 135 مللي مكافئ / لتر، حالة يسمى نقص صوديوم الدم، يتوقف إطلاق ADH. يسمح نقص ADH بدوره بإفراز أكبر للمياه في البول واستعادة مستوى أيونات الصوديوم الطبيعي في ECF. يزيد الببتيد الصوديوم الأذيني من أيونات الصوديوم إفراز الكلى عندما يكون مستوى أيونات الصوديوم أعلى من المعدل الطبيعي، وهي حالة تسمى فرط صوديوم الدم.

Aldosterone:

Renal reabsorption to sodium ions
kidney بترجعه ع

ADH :

بس يصير تركيزه في بلازما يصير أقل من نسبة طبيعية بصير عنا (hypotremia)

ف عشان هيك بوقف افراز ADH
عشان ازيد excretion for water

ANP:

اذا صار عندي Hypernatrmia
تحفز الكلى انها تعمل more excretion for sodium ion

CHLORIDE

أيونات الكلوريد هي الأيونات الأكثر انتشارا في السائل خارج الخلية.

- Chloride ions are the **most prevalent anions in extracellular fluid**.
 تركيز أيونات كلوريد البلازما الطبيعي في الدم هو 95-105 ملي مكافئ / لتر.
- The normal blood plasma chloride ions concentration is 95–105 mEq/liter.**
 يحرّك أيونات الكلوريد بسهولة نسبية بين خارج الخلية وداخل الخلية المقصورة لأن معظم أغشية البلازما تحتوي على العديد من أيونات الكلوريد قنوات التسرب ومضادات النقل.
- Chloride ions moves relatively easily between the extracellular and intracellular compartments** because most plasma membranes contain many chloride ions leakage channels and antiporters.
- Processes that increase or decrease renal reabsorption of sodium ions also affect reabsorption of chloride ions.**

العمليات التي تزيد أو تقلل من إعادة امتصاص الكلوي لأيونات الصوديوم تؤثر أيضا
 إعادة امتصاص أيونات الكلوريد.

نفس طريقة من ناحية الهرمون

حكت في مرجعك عن وظيفته

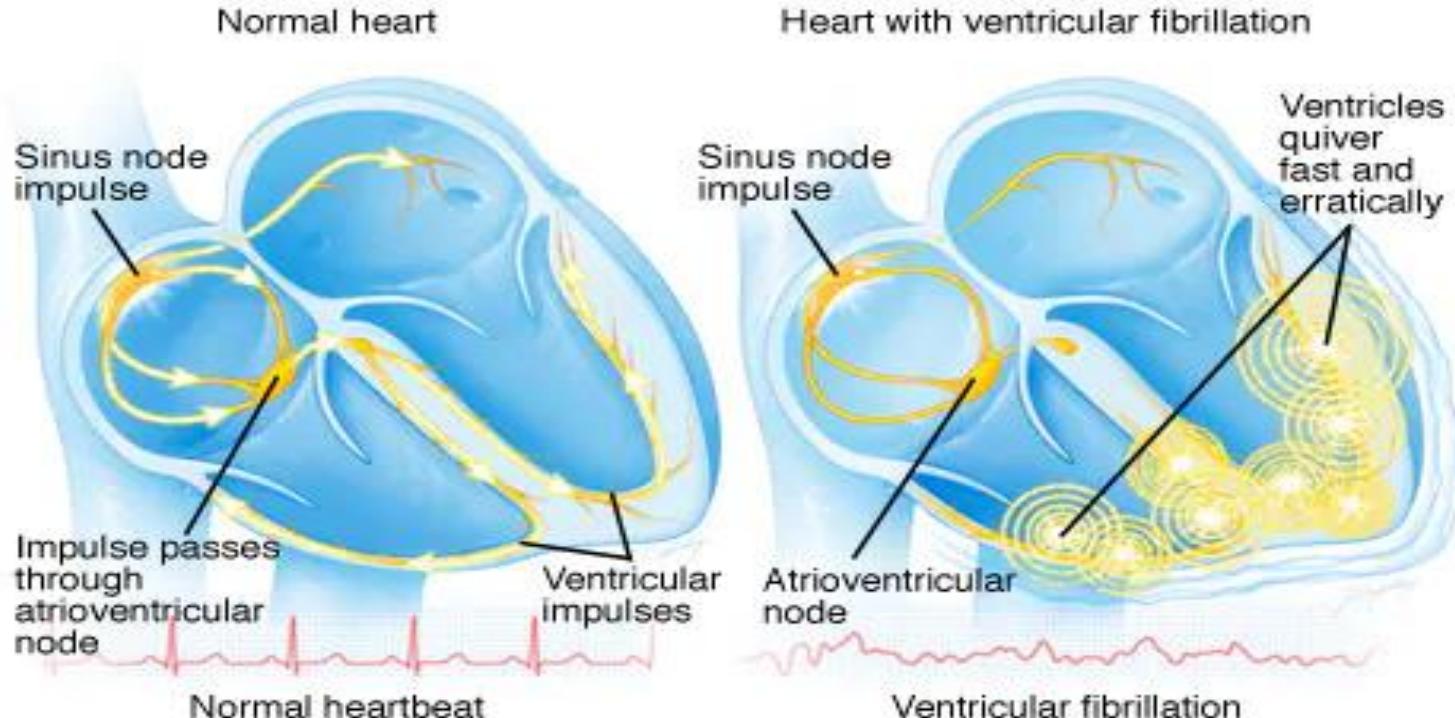
POTASSIUM

أيونات البوتاسيوم هي الكاتيونات الأكثر وفرة في السوائل داخل الخلايا (140 ملي مكافئ / لتر).

- Potassium ions are **the most abundant cations in intracellular fluid** (140 mEq/liter).
تلعب أيونات البوتاسيوم دوراً رئيسياً في إنشاء إمكانات غشاء الراحة وفي مرحلة إعادة الاستقطاب لإمكانات العمل في الخلايا العصبية والألياف العضلية.
- Potassium ions plays a key role in establishing the resting membrane potential and in the repolarization phase of action potentials in neurons and muscle fibers.
تساعد أيونات البوتاسيوم أيضاً في الحفاظ على حجم السوائل الطبيعي داخل الخلايا.
- Potassium ions also **helps maintain normal intracellular fluid volume**.
عندما تنتقل أيونات البوتاسيوم إلى الخلايا أو خارجها، غالباً ما يتم استبدالها بالهيدروجين الأيونات وبالتالي تساعد على تنظيم الرقم الهيدروجيني لسوائل الجسم
- When potassium ions moves into or out of cells, it often **is exchanged for hydrogen ions and thereby helps regulate the pH of body fluids.** Intera celler
Extracellular
- It is **controlled mainly by aldosterone.**
- Because potassium ions is needed during the repolarization phase of action potentials, abnormal potassium ions levels can be lethal. For instance, **hyperkalemia (above-normal concentration of K in blood) can cause death due to ventricular fibrillation.**
لأن هناك حاجة إلى أيونات البوتاسيوم خلال مرحلة إعادة الاستقطاب من العمل لإمكانات، يمكن أن تكون مستويات أيونات البوتاسيوم غير الطبيعية قاتلة. على سبيل المثال، فرط بوتاسيوم الدم (تركيز فوق الطبيعي من K في الدم) يمكن أن يسبب الوفاة بسبب الرجفان البطيني.

ركزوا عليهم

صوديوم و الكلورايد نفس طريقة تنظيم تبعث الهرمانات
بوتاسيوم عن طريق الديستيرون


حكت بدها ترتيب

حبس مين

first ,second

Cation ,anion

Normal
concentration on
blood

BICARBONATE

- Bicarbonate ions are the **second most prevalent extracellular anions**. محمّل بالأكسجين
- Normal blood plasma of bicarbonate ions concentration is 22–26 mEq/liter in systemic arterial blood and 23–27 mEq/liter in systemic venous blood. ثاني أكسد كربون
- **Bicarbonate ions concentration increases as blood flows through systemic capillaries** because the carbon dioxide released by metabolically active cells combines with water to form carbonic acid; the carbonic acid then dissociates into hydrogen ions and bicarbonate ions.
- **As blood flows through pulmonary capillaries, however, the concentration of bicarbonate ions decreases again as carbon dioxide is exhaled.**
- **The kidneys are the main regulators of blood bicarbonate ions concentration.**
- The intercalated cells of the renal tubule can either form bicarbonate ions and release it into the blood when the blood level is low or excrete excess bicarbonate ions in the urine when the level in blood is too high.

أيونات البيكربونات هي ثانوي أكثر الأيونات خارج الخلية انتشارا.

بلازما الدم الطبيعية لتركيز أيونات البيكربونات هي $26-22 \text{ mEq/liter}$ / لتر في الجهاز

الدم الشرياني $27-23 \text{ mEq/liter}$ في الدم الوريدي الجهازي.

يزداد تركيز أيونات البيكربونات مع تدفق الدم عبر الشعيرات الدموية الجهازية

لأن ثانوي أكسيد الكربون الذي تطلقه الخلايا النشطة الأيضية يتحد مع الماء من أجل

يتشكل حمض الكربونيك؛ ثم ينفصل حمض الكربونيك إلى أيونات الهيدروجين والبيكربونات

أيونات.

مع تدفق الدم عبر الشعيرات الدموية الرئوية، ومع ذلك، فإن تركيز

تنخفض أيونات البيكربونات مرة أخرى مع زفير ثانوي أكسيد الكربون.

الكلى هي المنظمين الرئيسيين لتركيز أيونات البيكربونات في الدم.

يمكن للخلايا المتدالة في الأنابيب الكلوي إما أن تتشكل أيونات البيكربونات وتطلقها في

الدم عندما يكون مستوى الدم منخفضاً أو تفرز أيونات البيكربونات الزائدة في البول عندما

المستوى في الدم مرتفع جداً.

سبحان الله
الحمد لله
الله أكبر

حکت عن مكان وجوده

CALCIUM

نظراً لأن مثل هذه الكمية الكبيرة من الكالسيوم يتم تخزينها في العظام، فهي المعادن الأكثر وفرة في الجسم. حوالي 98% من الكالسيوم في يوجد البالغون في الهيكل العظمي والأسنان، حيث يتم دمجها مع الفوسفات لتشكيل شبكة بلورية من الأملاح المعدنية.

- Because such **a large amount of calcium** is stored in bone, it is **the most abundant mineral in the body**. **About 98% of the calcium in adults is located in the skeleton and teeth**, where it is combined with phosphates to form a crystal lattice of mineral salts.

إلى جانب المساهمة في صلابة العظام والأسنان، الكالسيوم يلعب أيون أدولاراً مهمة في تخثر الدم، الناقل العصبي والإفراج، والحفاظ على قوة العضلات، واستئناف الجهاز العصبي والأنسجة العضلية

- Besides **contributing to the hardness of bones and teeth**, calcium ion plays important roles in **blood clotting, neurotransmitter release, maintenance of muscle tone, and excitability of nervous and muscle tissue**.

CALCIUM

- The most **important regulator** of calcium ion concentration in blood plasma is **parathyroid hormone (PTH)**.
- A **low level of calcium** ion in blood plasma promotes **release of more PTH**, which stimulates **osteoclasts in bone tissue** to release calcium (and phosphate) from **bone extracellular matrix**. Thus, **PTH increases bone resorption**.
- Parathyroid hormone also **enhances reabsorption of calcium ion** from glomerular filtrate through renal tubule cells and back into blood, and **increases production of calcitriol** (the form of vitamin D that acts as a hormone), which in turn **increases calcium ion absorption** from food in the **gastrointestinal tract**.

أهم منظم لتركيز أيون الكالسيوم في الدم باللازم هي هرمون الغدة الدرقية (PTH).

ارتفاع مستوى منخفض من أيون الكالسيوم في بلازما الدم يعزز إطلاق المزيد PTH، الذي يحفز الخلايا الأكلة للعظم في الأنسجة العظمية لإطلاق الكالسيوم (و الفوسفات) من مصفوفة العظام خارج الخلية. وبالتالي، يزيد PTH من ارتفاع العظام.

يعزز هرمون الغدة الدرقية أيضا إعادة امتصاص أيون الكالسيوم من الترشيح الكبيبي من خلال خلايا الأنابيب الكلوية والعودة إلى الدم، ويزيد من إنتاج الكالستريول (شكل فيتامين D الذي يعمل ك هرمون)، والذي بدوره يزيد من امتصاص أيون الكالسيوم من الطعام في الجهاز الهضمي.

حکت في مراجعة عن علاقة كالسيوم و parathyroid فوسفات

يوجد حوالي 85% من الفوسفات لدى البالغين على شكل أملاح فوسفات الكالسيوم، وهي المكونات الهيكلية للعظام والأسنان.

ثلاثة أيونات فوسفاتية هي أنيونات مهمة داخل الخلايا.

نفس الهرمونين اللذين يحكمان توازن الكالسيوم - هرمون الغدة الدرقية (PTH) و الكالستريول - ينظم أيضا مستوى أيونات الفوسفات في بلازما الدم.

يحفز PTH ارتفاع المصفوفة خارج الخلية للعظم بواسطة الخلايا الأكلة للعظم، مما يطلق كليهما أيونات الفوسفات والكالسيوم في مجرى الدم.

في الكلى، ومع ذلك، يمنع PTH إعادة امتصاص أيونات الفوسفات مع التحفيز إعادة امتصاص أيونات الكالسيوم بواسطة الخلايا الأنابيب الكلوية. وبالتالي، يزيد PTH من إفراز البول من الفوسفات ويخفض مستوى الفوسفات في الدم.

يعزز الكالستريول امتصاص كل من الفوسفات والكالسيوم من الجهاز الهضمي المساك.

PHOSPHATE

- About 85% of the phosphate in adults is present as **calcium phosphate salts**, which are **structural components of bone and teeth**.
- **Three phosphate ions are important intracellular anions**.
- The same two hormones that govern calcium homeostasis—**parathyroid hormone (PTH)** and **calcitriol**—also **regulate the level of phosphate ions in blood plasma**.
- PTH stimulates **resorption of bone extracellular matrix** by osteoclasts, which releases both phosphate and calcium ions into the bloodstream.
- In the kidneys, however, PTH inhibits **reabsorption of phosphate ions** while stimulating **reabsorption of calcium ions** by renal tubular cells. Thus, PTH increases urinary excretion of phosphate and lowers blood phosphate level.
- **Calcitriol promotes absorption of both phosphates and calcium from the gastrointestinal tract.**

في البالغين، حوالي 54% من إجمالي المغنيسيوم في الجسم هو جزء من مصفوفة العظام كأيونات المغنيسيوم. تحدث نسبة 46% المتبقية كأيونات المغنيسيوم في السائل داخل الخلايا (45%) وخارج الخلية سائل (1%).

عكسها بقل

MAGNESIUM

بزداد excretion urine

hypercalcemia

Hyper magnesiumia
extra celletur flowed volume
قل parathyroid

- In adults, about 54% of the total body magnesium **is part of bone matrix as magnesium salts**. The remaining 46% occurs as magnesium ions in intracellular fluid (45%) and extracellular fluid (1%).
أيونات المغنيسيوم هي ثانٍ أكثر الكاتيونات داخل الخلايا شيوعاً (35 مللي مكافئ / لتر).

- Magnesium ions **is the second most common intracellular cation** (35 mEq/liter).
أيون المغنيسيوم هو عامل مساعد لبعض الإنزيمات اللازمة لاستقلاب الكربوهيدرات والبروتينات ولضخة الصوديوم والبوتاسيوم.
- Functionally, وظيفياً

- Magnesium ion **is a cofactor for certain enzymes** needed for the metabolism of carbohydrates and proteins and for the sodium–potassium pump.
أيون المغنيسيوم ضروري للنشاط العصبي العضلي الطبيعي، والانتقال المشبكى، وعمل عضلة القلب

- Magnesium ion **is essential for normal neuromuscular activity, synaptic transmission, and myocardial functioning.**
» بالإضافة إلى ذلك، يعتمد إفراز هرمون الغدة الدرقية (PTH) على أيون المغنيسيوم.

- In addition, **secretion of parathyroid hormone (PTH) depends on magnesium ion.**
- The kidneys **increase urinary excretion of magnesium ions** in response to hypercalcemia, hypermagnesemia, increases in extracellular fluid volume, decreases in parathyroid hormone, and acidosis. The opposite conditions decrease renal excretion of magnesium ions.

تزيد الكلى من إفراز البول لأيونات المغنيسيوم استجابة لفرط كالسيوم الدم، فرط المغنيسيوم في الدم، زيادة في حجم السوائل خارج الخلية، وانخفاض في هرمون الغدالدرقية، والحماض. تقلل الظروف المعاكسة من الإفراز الكلوى لأيونات المغنيسيوم.

TABLE 27-2

Blood Electrolyte Imbalances

DEFICIENCY		EXCESS		
ELECTROLYTE*	NAME AND CAUSES	SIGNS AND SYMPTOMS	NAME AND CAUSES	SIGNS AND SYMPTOMS
Sodium (Na⁺) 136–148 mEq/liter	Hyponatremia (SI:pH-klo-TRE-mL-a) may be due to decreased sodium intake; increased sodium loss through vomiting, diarrhea, aldosterone deficiency, or taking certain diuretics; and excessive water intake.	Muscular weakness, dizziness, headache, and hypertension; tachycardia and shock; mental confusion, stupor, and coma.	Hypernatremia may occur with dehydration, water deprivation, or excessive sodium in diet or intravenous fluid; causes hypertonicity of ECF, which pulls water out of body cells into ECF, causing cellular dehydration.	Intense thirst, hypertension, edema, agitation, and convulsions.
Chloride (Cl⁻) 95–105 mEq/liter	Hypochloremia (SI:pH-klo-RE-mL-a) may be due to excessive vomiting, overhydration, aldosterone deficiency, congestive heart failure, and therapy with certain diuretics such as furosemide (Lasix®).	Muscle spasms, metabolic alkalosis, shallow respirations, hypertension, and tetany.	Hyperchloremia may result from dehydration due to water loss or water deprivation, excessive chloride intake; or severe renal failure, hyperaldosteronism, certain types of acidosis, and some drugs.	Lethargy, weakness, metabolic acidosis, and rapid, deep breathing.
Potassium (K⁺) 3.5–5.0 mEq/liter	Hypokalemia (SI:pH-ka-LE-mL-a) may result from excessive loss due to vomiting or diarrhea, decreased potassium intake, hyperaldosteronism, kidney disease, and therapy with some diuretics.	Muscle fatigue, flaccid paralysis, mental confusion, increased urine output, shallow respirations, and changes in electrocardiogram, including flattening of T wave.	Hyperkalemia may be due to excessive potassium intake, renal failure, aldosterone deficiency, crushing injuries to body tissues, or transfusion of hemolyzed blood.	Irritability, nausea, vomiting, diarrhea, muscular weakness; can cause death by inducing ventricular fibrillation.
Calcium (Ca²⁺) Total = 9.0–10.5 mg/dL; ionized = 4.5–5.5 mEq/liter	Hypocalcemia (SI:pH-kal-SE-mL-a) may be due to increased calcium loss, reduced calcium intake, elevated phosphate levels, or hypoparathyroidism.	Numbness and tingling of fingers, hyperactive reflexes, muscle cramps, tetany, and convulsions; bone fractures; spasms of laryngeal muscles that can cause death by asphyxiation.	Hypercalcemia may result from hyperparathyroidism, some cancers, excessive intake of vitamin D, and Paget's disease of bone.	Lethargy, weakness, anorexia, nausea, vomiting, polyuria, itching, bone pain, depression, confusion, paresthesia, stupor, and coma.
Phosphate (HPO₄²⁻) 1.7–2.6 mEq/liter	Hypophosphatemia (SI:pH-fos-fa-TE-mL-a) may occur through increased urinary losses, decreased intestinal absorption, or increased utilization.	Confusion, seizures, coma, chest and muscle pain, numbness and tingling of fingers, decreased coordination, memory loss, and lethargy.	Hyperphosphatemia occurs when kidneys fail to excrete excess phosphate, as in renal failure; can also result from increased intake of phosphates or destruction of body cells, which releases phosphates into blood.	Anorexia, nausea, vomiting, muscular weakness, hyperactive reflexes, tetany, and tachycardia.
Magnesium (Mg²⁺) 1.3–2.1 mEq/liter	Hypomagnesemia (SI:pH-mag-nee-SE-mL-a) may be due to inadequate intake or excessive loss in urine or feces; also occurs in alcoholism, malnutrition, diabetes mellitus, and diuretic therapy.	Weakness, irritability, tetany, delirium, convulsions, confusion, anorexia, nausea, vomiting, paresthesia, and cardiac arrhythmias.	Hypermagnesemia occurs in renal failure or due to increased intake of Mg ²⁺ , such as Mg ²⁺ -containing antacids; also occurs in aldosterone deficiency and hypoparathyroidism.	Hypotension, muscular weakness or paralysis, nausea, vomiting, and altered mental functioning.

ما حكت عنه اشي
في مراجعة بس
بالشرح حكت مهم

Please, return back to this table (Table 27.2).

*Includes age-normal ranges of blood plasma levels in adults.

ELECTROLYTE*	DEFICIENCY		EXCESS	
	NAME AND CAUSES	SIGNS AND SYMPTOMS	NAME AND CAUSES	SIGNS AND SYMPTOMS
Sodium (Na⁺) 136–148 mEq/liter	Hyponatremia (hī'-pō-na-TRĒ-mē-a) may be due to decreased sodium intake; increased sodium loss through vomiting, diarrhea, aldosterone deficiency, or taking certain diuretics; and excessive water intake.	Muscular weakness; dizziness, headache, and hypotension; tachycardia and shock; mental confusion, stupor, and coma.	Hypernatremia may occur with dehydration, water deprivation, or excessive sodium in diet or intravenous fluids; causes hypertonicity of ECF, which pulls water out of body cells into ECF, causing cellular dehydration.	Intense thirst, hypertension, edema, agitation, and convulsions.
Chloride (Cl⁻) 95–105 mEq/liter	Hypochloremia (hī'-pō-klō-RĒ-mē-a) may be due to excessive vomiting, overhydration, aldosterone deficiency, congestive heart failure, and therapy with certain diuretics such as furosemide (Lasix [®]).	Muscle spasms, metabolic alkalosis, shallow respirations, hypotension, and tetany.	Hyperchloremia may result from dehydration due to water loss or water deprivation; excessive chloride intake; or severe renal failure, hyperaldosteronism, certain types of acidosis, and some drugs.	Lethargy, weakness, metabolic acidosis, and rapid, deep breathing.
Potassium (K⁺) 3.5–5.0 mEq/liter	Hypokalemia (hī'-pō-ka-LĒ-mē-a) may result from excessive loss due to vomiting or diarrhea, decreased potassium intake, hyperaldosteronism, kidney disease, and therapy with some diuretics.	Muscle fatigue, flaccid paralysis, mental confusion, increased urine output, shallow respirations, and changes in electrocardiogram, including flattening of T wave.	Hyperkalemia may be due to excessive potassium intake, renal failure, aldosterone deficiency, crushing injuries to body tissues, or transfusion of hemolyzed blood.	Irritability, nausea, vomiting, diarrhea, muscular weakness; can cause death by inducing ventricular fibrillation.
Calcium (Ca²⁺) Total = 9.0–10.5 mg/dL; ionized = 4.5–5.5 mEq/liter	Hypocalcemia (hī'-pō-kal-SĒ-mē-a) may be due to increased calcium loss, reduced calcium intake, elevated phosphate levels, or hypoparathyroidism.	Numbness and tingling of fingers; hyperactive reflexes, muscle cramps, tetany, and convulsions; bone fractures; spasms of laryngeal muscles that can cause death by asphyxiation.	Hypercalcemia may result from hyperparathyroidism, some cancers, excessive intake of vitamin D, and Paget's disease of bone.	Lethargy, weakness, anorexia, nausea, vomiting, polyuria, itching, bone pain, depression, confusion, paresthesia, stupor, and coma.
Phosphate (HPO₄²⁻) 1.7–2.6 mEq/liter	Hypophosphatemia (hī'-pō-fos-fa-TĒ-mē-a)	Confusion, seizures, coma, chest and muscle pain,	Hyperphosphatemia occurs when kidneys fail to excrete	Anorexia, nausea, vomiting, muscular weakness, hyperactive
Phosphate (HPO₄²⁻) 1.7–2.6 mEq/liter	Hypophosphatemia (hī'-pō-fos-fa-TĒ-mē-a) may occur through increased urinary losses, decreased intestinal absorption, or increased utilization.	Confusion, seizures, coma, chest and muscle pain, numbness and tingling of fingers, decreased coordination, memory loss, and lethargy.	Hyperphosphatemia occurs when kidneys fail to excrete excess phosphate, as in renal failure; can also result from increased intake of phosphates or destruction of body cells, which releases phosphates into blood.	Anorexia, nausea, vomiting, muscular weakness, hyperactive reflexes, tetany, and tachycardia.
Magnesium (Mg²⁺) 1.3–2.1 mEq/liter	Hypomagnesemia (hī'-pō-mag-ne-SĒ-mē-a) may be due to inadequate intake or excessive loss in urine or feces; also occurs in alcoholism, malnutrition, diabetes mellitus, and diuretic therapy.	Weakness, irritability, tetany, delirium, convulsions, confusion, anorexia, nausea, vomiting, paresthesia, and cardiac arrhythmias.	Hypermagnesemia occurs in renal failure or due to increased intake of Mg ²⁺ , such as Mg ²⁺ -containing antacids; also occurs in aldosterone deficiency and hypothyroidism.	Hypotension, muscular weakness or paralysis, nausea, vomiting, and altered mental functioning.

*Values are normal ranges of blood plasma levels in adults.

- تلعب الأيونات المختلفة أدوارا مختلفة تساعده في الحفاظ على التوازن.
- يمثل التحدي الرئيسي في التوازن في الحفاظ على تركيز أيونات الهيدروجين (الرقم الهيدروجيني) للجسم السوائل عند مستوى مناسب.
- هذه المهمة - الحفاظ على التوازن الحمضي القاعدي - ذات أهمية حاسمة للوضع الطبيعي الوظيفة الخلوية. على سبيل المثال، الشكل ثلاثي الأبعاد لجميع بروتينات الجسم، والتي تمكّنهم من أداء وظائف محددة، وهي حساسة جداً لغيرات الرقم الهيدروجيني.

ACID-BASE BALANCE

- Various ions play different roles that **help maintain homeostasis**.
- A major homeostatic challenge is keeping the **hydrogen ions concentration** (pH) of body fluids at an appropriate level.
- This task—**the maintenance of acid-base balance**—is of critical importance to normal **cellular function**. For example, the three-dimensional shape of all **body proteins**, which enables them to perform specific functions, is very **sensitive to pH changes**.
- Because metabolic reactions often produce a huge excess of hydrogen ions , the lack of any mechanism for the disposal of hydrogen ions would cause hydrogen ions in body fluids to rise quickly to a lethal level.
- **Homeostasis of hydrogen ions concentration within a narrow range is thus essential to survival.**
 - لأن التفاعلات الأيضية غالباً ما تنتج فائضاً كبيراً من أيونات الهيدروجين، فإن عدم وجود أي من شأن آلية التخلص من أيونات الهيدروجين أن تسبب في أيونات الهيدروجين في سوائل الجسم ترتفع بسرعة إلى مستوى مميت.
 - وبالتالي فإن توازن تركيز أيونات الهيدروجين ضمن نطاق ضيق ضروري لبقاء.

ACID-BASE BALANCE

إزالة أيونات الهيدروجين من سوائل الجسم والقضاء عليها لاحقاً من يعتمد الجسم على الآليات الرئيسية الثلاث التالية:

- **The removal of hydrogen ions from body fluids and its subsequent elimination from the body depend on the following three major mechanisms:**

أنظمة المخزن المؤقت. تعمل المخازن المؤقتة بسرعة لربط أيونات الهيدروجين مؤقتاً، وإزالة تفاعل أيونات الهيدروجين الزائدة من المحلول. وبالتالي ترفع المخازن المؤقتة الرقم الهيدروجيني لسوائل الجسم ولكنها لا تقم بإزالة أيونات الهيدروجين من الجسم.

1. **Buffer systems.** Buffers act quickly to temporarily bind hydrogen ions, removing the highly reactive, excess hydrogen ions from solution. Buffers thus raise pH of body fluids but do not remove hydrogen ions from the body.
زفير ثاني أكسيد الكربون. من خلال زيادة معدل وعمق التنفس، المزيد من الكربون يمكن رفير ثاني أكسيد الكربون. في غضون دقائق، يقلل هذا من مستوى حمض الكربونيك في الدم، الذي يرفع درجة الحموضة في الدم (يقلل من مستوى أيونات الهيدروجين في الدم).
2. **Exhalation of carbon dioxide.** By increasing the rate and depth of breathing, more carbon dioxide can be exhaled. Within minutes this reduces the level of **carbonic acid** in blood, which raises the blood pH (reduces blood hydrogen ions level).
لأنو بده ينفكك و يعطيني **H ion**
فإذا قل بقل مستوى الأيون
3. **Kidney excretion of hydrogen ions.** The slowest mechanism, but the only way to eliminate acids other than carbonic acid, is through their excretion in urine.

بترود ع urine

إفراز الكلى لأيونات الهيدروجين. أبطأ آلية، ولكن الطريقة الوحيدة للقضاء عليها الأحماض الأخرى غير حمض الكربونيك، هي من خلال إفرازها في البول.

THE ACTIONS OF BUFFER SYSTEMS

ت تكون معظم الأنظمة العازلة في الجسم من حمض ضعيف وملح ذلك الحمض، الذي يعمل كقاعدة ضعيفة.

- **Most buffer systems** in the body consist of a weak acid and the salt of that acid, which functions as a weak base.
تنبع المخازن المؤقتة للتغيرات السريعة والجسم في درجة الحموضة لسوائل الجسم عن طريق تحويل الأحماض والقواعد القوية إلى أحماض ضعيفة وقواعد ضعيفة داخل أجزاء من الثانية.
- **Buffers prevent rapid, drastic changes in the pH of body fluids by converting strong acids and bases into weak acids and weak bases within fractions of a second.**
- **Strong acids lower pH more than weak acids** because strong acids release hydrogen ions more readily and thus contribute more free hydrogen ions.
Similarly, **strong bases raise pH more than weak ones.**
الأحماض القوية تخفض الرقم الهيدروجيني أكثر من الأحماض الضعيفة لأن الأحماض القوية تطلق أيونات الهيدروجين بسهولة أكبر وبالتالي تساهم في المزيد من أيونات الهيدروجين الحرة. وبالمثل، ترفع القواعد القوية الرقم الهيدروجيني أكثر من القواعد الضعيفة.

Strong base
بزيادة PH

Strong acid
بقلل pH

PROTEIN BUFFER SYSTEM

- It is the most abundant buffer in intracellular fluid and blood plasma.
- For example, the **protein hemoglobin** is an especially good buffer within red blood cells, and **albumin** is the main protein buffer in blood plasma.
- Proteins are composed of **amino acids**, organic molecules that contain at least **one carboxyl group** ($-\text{COOH}$) and at least **one amino group** ($-\text{NH}_2$); **these groups are the functional components of the protein buffer system.**
- The free carboxyl group at one end of a protein acts like an acid by releasing hydrogen ions **when pH rises**. The hydrogen ions is then able to react with any excess OH^- in the solution to form water.
- The free amino group at the other end of a protein can act as a base by combining with hydrogen ions **when pH falls**.
- So, proteins can buffer both acids and bases.

Base بزيده PH

بتحد مع H^+ ف بقل مستواها
ف برتفع PH

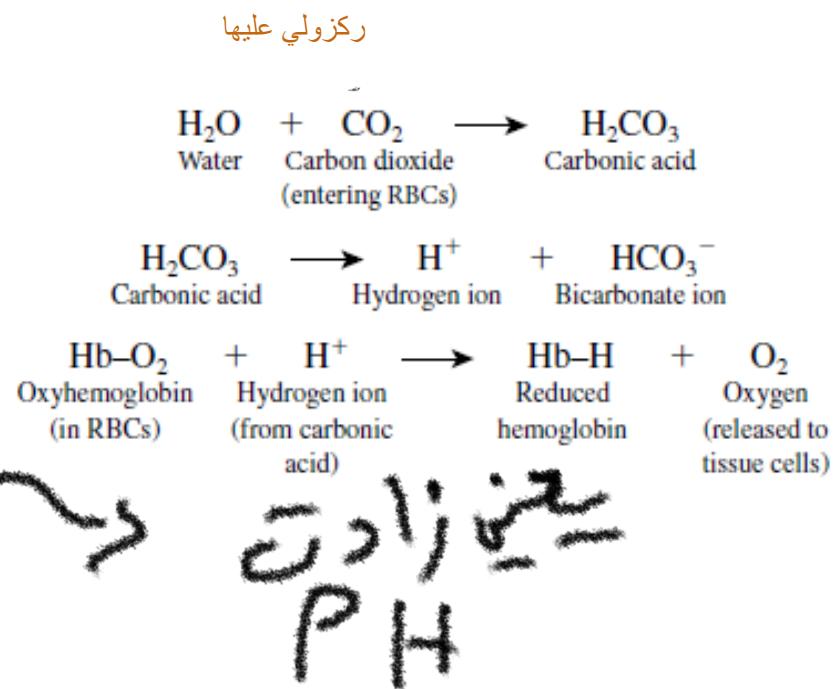
لأنه H^+ بقل من PH

إنه المخزن المؤقت الأكثر وفرة في السوائل داخل الخلايا ويلازم الدم.

► على سبيل المثال، الهيموغلوبين البروتيني هو عازلة جيدة بشكل خاص داخل الدم الأحمر الخلية، والألبومين هو المخزن المؤقت الرئيسي للبروتين في بلازما الدم.

► تتكون البروتينات من الأحماض الأمينية والجزئيات العضوية التي تحتوي على واحد على الأقل مجموعة الكربوكسيل (-COOH) ومجموعة أمينية واحدة على الأقل (-NH2)؛ هذه المجموعات هي المكونات الوظيفية لنظام عازلة البروتين.

► تعمل مجموعة الكربوكسيل الحرة في أحد طرفي البروتين مثل الحمض عن طريق إطلاقه أيونات الهيدروجين عندما يرتفع الرقم الهيدروجيني. بعد ذلك تكون أيونات الهيدروجين قادرة على التفاعل مع أي فائض OH- في محلول لتكوين الماء.

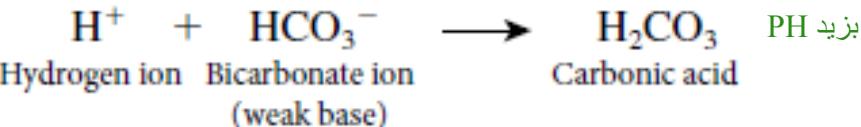

► يمكن للمجموعة الأمينية الحرة في الطرف الآخر من البروتين أن تعمل كقاعدة عن طريق الجمع مع أيونات الهيدروجين عندما ينخفض الرقم الهيدروجيني.

► لذلك، يمكن للبروتينات تخزين كل من الأحماض والقواعد.

الهيموغلوبين البروتيني هو عازلة مهمة من أيون الهيدروجين في خلايا الدم الحمراء. مع تدفق الدم من خلال الشعيرات الدموية الجهازية، ثاني أكسيد الكربون (CO2) ينتقل من خلايا الأنسجة إلى خلايا الدم الحمراء حيث يتحد مع الماء (H2O) ليتشكل حمض الكربونيك (H2CO3). بمجرد تشكيلها، H2CO3 ينفصل إلى أيون الهيدروجين وHCO3-. في نفس الوقت الذي يدخل فيه ثاني أكسيد الكربون خلايا الدم الحمراء، يتخلّى أوكسيهيموغلوبين (Hb-O2) عن أكسجينه إلى خلايا الأنسجة. انخفاض الهيموغلوبين (ديوكسيهيموغلوبين) يلتقط معظم الهيدروجين أيون. لهذا السبب، عادة ما يكون الهيموغلوبين المنخفض مكتوب باسم -H. ردود الفعل التالية تلخص هذه العلاقات:

PROTEIN BUFFER SYSTEM

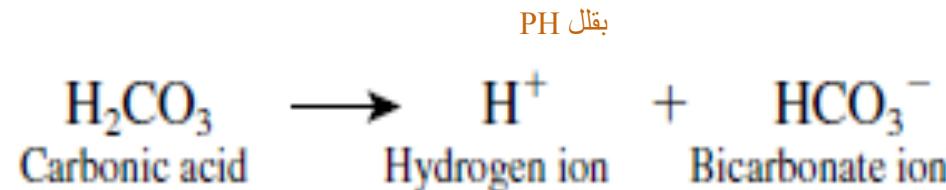
➤ The protein hemoglobin is an important buffer of hydrogen ion in red blood cells. As blood flows through the systemic capillaries, carbon dioxide (CO_2) passes from tissue cells into red blood cells, where it combines with water (H_2O) to form carbonic acid (H_2CO_3). Once formed, H_2CO_3 dissociates into hydrogen ion and HCO_3^- . At the same time that CO_2 is entering red blood cells, oxyhemoglobin ($\text{Hb}-\text{O}_2$) is giving up its oxygen to tissue cells. Reduced hemoglobin (deoxyhemoglobin) picks up most of the hydrogen ion. For this reason, reduced hemoglobin usually is written as $\text{Hb}-\text{H}$. The following reactions summarize these relationships:



CARBONIC ACID–BICARBONATE BUFFER SYSTEM

5

- ✓ The carbonic acid–bicarbonate buffer system is based on the bicarbonate ion (HCO_3^-), which can act as a weak base, and carbonic acid (H_2CO_3), which can act as a weak acid. As you have already learned, **HCO_3^- is a significant anion in both intracellular and extracellular fluids.**
- ✓ **Because the kidneys also synthesize new HCO_3^- and reabsorb filtered HCO_3^- , this important buffer is not lost in the urine.** If there is an excess of hydrogen ion, the HCO_3^- can function as a weak base and remove the excess hydrogen ion as follows:

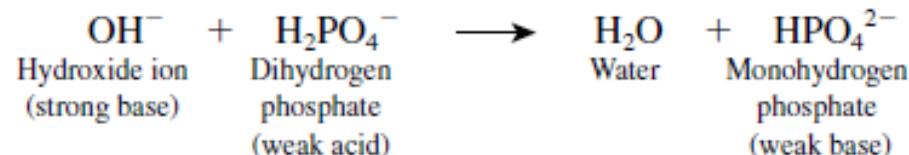

لأن الكلى تقوم أيضا بتوليف HCO_3^- - جيد وإعادة امتصاص الترشيح HCO_3^- -، لا يضيع هذا المخزن المؤقت المهم في البول. إذا كان هناك فائض من أيون الهيدروجين، يمكن أن يعمل HCO_3^- - كقاعدة ضعيفة ويزيل الفائض أيون الهيدروجين على النحو التالي:

CARBONIC ACID–BICARBONATE BUFFER SYSTEM

بعد ذلك، ينفصل H_2CO_3 إلى الماء وثاني أكسيد الكربون، وثاني أكسيد الكربون هو بالذفير من الرئتين. على العكس من ذلك، إذا كان هناك نقص في أيون الهيدروجين، فإن يمكن أن يعمل H_2CO_3 كحمض ضعيف ويوفر أيون الهيدروجين على النحو التالي:

- ✓ Then, H_2CO_3 dissociates into water and carbon dioxide, and the CO_2 is exhaled from the lungs. Conversely, if there is a shortage of hydrogen ion, the H_2CO_3 can function as a weak acid and provide hydrogen ion as follows:

- ✓ Because CO_2 and H_2O combine to form H_2CO_3 , this buffer system cannot protect against pH changes due to respiratory problems in which there is an excess or shortage of CO_2 .

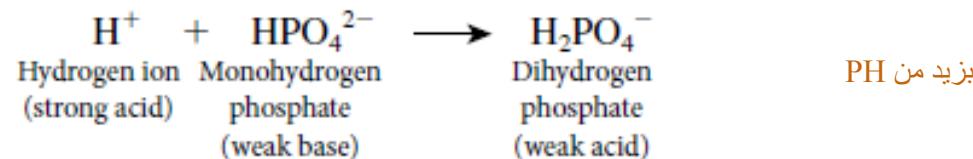

نظراً لأن CO_2 و H_2O يتحدآن لتشكيل H_2CO_3 , لا يمكن لهذا النظام العازلة الحماية من تغيرات الرقم الهيدروجيني بسبب مشاكل الجهاز التنفسى التي يوجد فيها فائض أو نقص ثانى أكسيد الكربون.

PHOSPHATE BUFFER SYSTEM

مكونات النظام العازلة للفوسفات هي أيونات ثنائي الهيدروجين الفوسفات والفوسفات أحادي الهيدروجين.

- ✓ The components of the phosphate buffer system are the ions dihydrogen phosphate and monohydrogen phosphate.

the one for the carbonic acid–bicarbonate buffer system. The components of the phosphate buffer system are the ions *dihydrogen phosphate* (H_2PO_4^-) and *monohydrogen phosphate* (HPO_4^{2-}). Recall that phosphates are major anions in intracellular fluid and minor ones in extracellular fluids (see [Figure 27.6](#)). The dihydrogen phosphate ion acts as a weak acid and is capable of buffering strong bases such as OH^- , as follows:



بس يتفاعل Mono
بزيد PH

PHOSPHATE BUFFER SYSTEM

لأن تركيز الفوسفات هو الأعلى في السائل داخل الخلايا، فإن نظام عازلة الفوسفات هو منظم مهم للدرجة الحموضة في السيتوكسول. هو يعمل أيضا بدرجة أقل في السوائل خارج الخلية والأحماض العازلة في بول.

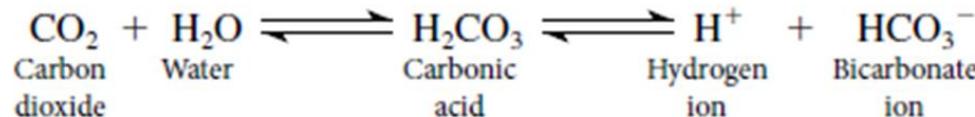
The monohydrogen phosphate ion is capable of buffering the H^+ released by a strong acid such as hydrochloric acid (HCl) by acting as a weak base:

- ✓ Because the concentration of phosphates is highest in intracellular fluid, the phosphate buffer system is an important regulator of pH in the cytosol. It also acts to a smaller degree in extracellular fluids and buffers acids in urine.

EXHALATION OF CARBON DIOXIDE

يلعب فعل التنفس البسيط أيضا دورا مهما في الحفاظ على الرقم الهيدروجيني من سوائل الجسم. زيادة في تركيز ثاني أكسيد الكربون (CO₂) في الجسم تزيد السوائل من تركيز أيون الهيدروجين وبالتالي تخفض الرقم الهيدروجيني (تصنف سوائل الجسم أكثر حموضة).

- ✓ The simple act of breathing also plays an important role in maintaining the pH of body fluids. An increase in the carbon dioxide (CO₂) concentration in body fluids increases hydrogen ion concentration and thus lowers the pH (makes body fluids more acidic).


على العكس من ذلك، فإن الانخفاض في تركيز ثاني أكسيد الكربون في سوائل الجسم يرفع الرقم الهيدروجيني (يجعل سوائل الجسم أكثر قلوية).
يتضح هذا التفاعل الكيميائي من خلال ردود الفعل القابلة للعكس التالية:

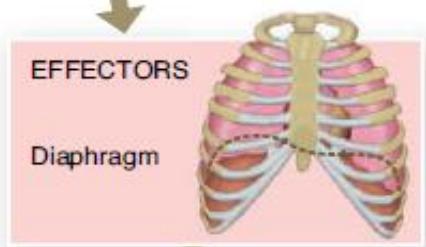
- ✓ Conversely, a decrease in the CO₂ concentration of body fluids raises the pH (makes body fluids more alkaline). This chemical interaction is illustrated by the following reversible reactions:

احفظوا تفاعلات

EXHALATION OF CARBON DIOXIDE

مع زيادة التهوية، يتم زفير المزيد من ثاني أكسيد الكربون. عندما تنخفض مستويات ثاني أكسيد الكربون، يتم دفع التفاعل إلى اليسار (السهام الزرقاء)، تركيز أيون الهيدروجين ينخفض، ويزداد الرقم الهيدروجيني للدم.

- ✓ With increased ventilation, more CO₂ is exhaled. When CO₂ levels decrease, the reaction is driven to the left (blue arrows), hydrogen ion concentration falls, and blood pH increases.
✓ إذا كانت التهوية أبطأ من المعتاد، يتم زفير كمية أقل من ثاني أكسيد الكربون. عندما يكون ثاني أكسيد الكربون تزداد المستويات، يتم دفع التفاعل إلى اليمين (السهام الحمراء)، والهيدروجين يزداد تركيز الأيونات، وينخفض الرقم الهيدروجيني في الدم.
- ✓ If ventilation is slower than normal, less carbon dioxide is exhaled. When CO₂ levels increase, the reaction is driven to the right (red arrows), the hydrogen ion concentration increases, and blood pH decreases.


Figure 27.7 Negative feedback regulation of blood pH by the respiratory system.

Exhalation of carbon dioxide lowers the H^+ concentration of blood.

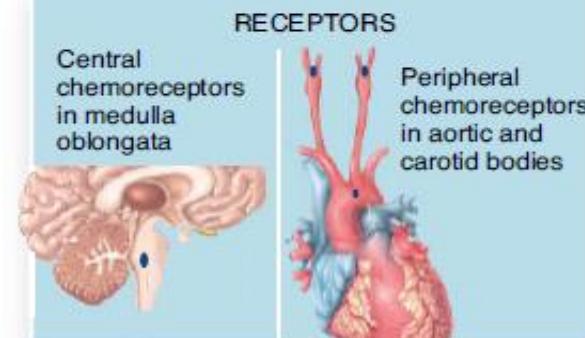
Output Nerve impulses

Contracts more forcefully and frequently so more CO_2 is exhaled

RESPONSE
As less H_2CO_3 forms and fewer H^+ are present, blood pH increases (H^+ concentration decreases)

Return to homeostasis when response brings blood pH or H^+ concentration back to normal

Excretion of urine


محفز

Disrupts homeostasis by decreasing

STIMULUS

انخفاض في pH

CONTROLLED CONDITION
Blood pH (increase in H^+ concentration)

Input Nerve impulses

(-)

تنظيم pH الدم بواسطة الجهاز التنفسي (Negative Feedback)

1 Stimulus (المثير):

انخفاض pH الدم (زيادة تركيز H^+).

2 Receptors (المستقبلات):

• مستقبلات كيميائية مركزية في النخاع المستطيل

• مستقبلات كيميائية طرفية في السباتي والأبهري

3 Control Center (مركز التحكم):

المجموعة التنفسية الظهرية في النخاع المستطيل.

4 Output (الخرج):

إشارات عصبية للعضلات التنفسية.

5 Effectors (الأعضاء المنفذة):

الحجاب الحاجز والعضلات التنفسية.

6 Response (الاستجابة):

زيادة سرعة وعمق التنفس → إخراج CO_2 أكثر.

7 Result (النتيجة):

$\downarrow CO_2 \rightarrow \downarrow H_2CO_3 \rightarrow \downarrow +H \rightarrow \uparrow pH$

عودة الدم للحالة الطبيعية (Homeostasis).

Acid–Base Balance

لختیص

TABLE 27.3

Mechanisms That Maintain pH of Body Fluids

MECHANISM	COMMENTS
Buffer systems	Most consist of a weak acid and its salt, which functions as a weak base. They prevent drastic changes in body fluid pH.
Proteins	The most abundant buffers in body cells and blood. Hemoglobin inside red blood cells is a good buffer.
Carbonic acid–bicarbonate	Important regulator of blood pH. The most abundant buffers in extracellular fluid (ECF).
Phosphates	Important buffers in intracellular fluid and urine.
Exhalation of CO ₂	With increased exhalation of CO ₂ , pH rises (fewer H ⁺). With decreased exhalation of CO ₂ , pH falls (more H ⁺).
Kidneys	Renal tubules secrete H ⁺ into urine and reabsorb HCO ₃ [–] so it is not lost in urine.

مین هو
abundent buffer in
extra cellular

مین هون
buffer in body cell and
blood

جدا مهم حکت فی مراجعة

ACID-BASE IMBALANCES

- ❖ The normal pH range of systemic arterial blood is between 7.35 and 7.45.

توقف انتاج **action potential** **blood pH is below 7.35.**

- ❖ Acidosis (or acidemia) is a condition in which **blood pH is below 7.35.**

التأثير الفسيولوجي الرئيسي للحموض هو اكتئاب الجهاز العصبي المركزي من خلال الاكتئاب للانتقال المنشبكي. إذا انخفض الرقم الهيدروجيني للدم الشرياني الجهازي إلى أقل من 7، اكتئاب الجهاز العصبي شديد لدرجة أن الفرد يصبح مشوشًا، ثم في غيبوبة، وقد يموت. عادة ما يموت المرضى الذين يعانون من الحموض الحاد أثناة وجودهم في غيبوبة.

- ❖ alkalosis (or alkalemia) is a condition in which **blood pH is higher than 7.45.**

التأثير الفسيولوجي الرئيسي للقلوية هو الإفراط في الاستثارة في كل من الجهاز العصبي المركزي والأعصاب الطرفية. تحرى الخلايا العصبية النبضات بشكل متكرر، حتى عندما لا تحفزها المحفزات الطبيعية. **The major physiological effect of acidosis is depression of the central nervous system** through depression of synaptic transmission. If the systemic arterial blood pH falls below 7, depression of the nervous system is so severe that the individual becomes disoriented, then comatose, and may die. **Patients with severe acidosis usually die while in a coma.**

بصیر انتاج **action potential** **كثير**

- ❖ The major physiological effect of alkalosis, by contrast, is overexcitability in both the central nervous system and peripheral nerves. Neurons conduct impulses repetitively, even when not stimulated by normal stimuli; the results are nervousness, muscle spasms, and even convulsions and death.

التأثير الفسيولوجي الرئيسي للقلوية، على النقيض من ذلك، هو الإفراط في الاستثارة في كل من الجهاز العصبي المركزي والأعصاب الطرفية. تحرى الخلايا العصبية النبضات بشكل متكرر، حتى عندما لا تحفزها المحفزات الطبيعية؛ النتائج هي العصبية وتشنجات العضلات و حتى التشنجات والموت.

ACID-BASE IMBALANCES

يمكن مواجهة التغير في درجة الحموضة في الدم الذي يؤدي إلى الحماض أو القلوية عن طريق التعويض، الاستجابة الفسيولوجية لعدم التوازن الحمضي القاعدي الذي يعمل على تطبيع درجة الحموضة في الدم الشرياني. قد يكون التعويض إما كاملا، إذا تم إحضار الرقم الهيدروجيني بالفعل ضمن النطاق الطبيعي، أو جزئيا، إذا كان نظاميا لا يزال الرقم الهيدروجيني للدم الشرياني أقل من 7.35 أو أعلى من 7.45.

- ✓ Change in blood pH that leads to acidosis or alkalosis may be countered by **compensation**, the physiological response to an acid-base imbalance that acts to **normalize arterial blood pH**. Compensation may be either **complete**, if pH indeed is brought within the normal range, or **partial**, if systemic arterial blood pH is still lower than 7.35 or higher than 7.45.

ACID-BASE IMBALANCES: RESPIRATORY ACIDOSIS

Bicarbonit بتفاعل مع H^+

لأنو CO_2 عالي

- Inadequate exhalation of CO_2 causes the blood pH to drop.
- Such conditions include pulmonary edema, injury to the respiratory center of the medulla oblongata, airway obstruction, or disorders of the muscles involved in breathing. إذا لم تكن مشكلة الجهاز التنفسى شديدة جدا، فيمكن أن تساعد الكلى في رفع الرقم الهيدروجيني للدم في النطاق الطبيعي عن طريق زيادة إفراز أيون الهيدروجين وإعادة امتصاص HCO_3^- (التعويض الكلوى).
- If the respiratory problem is not too severe, the kidneys can help raise the blood pH into the normal range by increasing excretion of hydrogen ion and reabsorption of HCO_3^- (renal compensation).
- The goal in treatment of respiratory acidosis is to increase the exhalation of CO_2 , as, for instance, by providing ventilation therapy. In addition, intravenous administration of HCO_3^- may be helpful.

Decreases CO_2

ACID-BASE IMBALANCES: RESPIRATORY ALKALOSIS

السبب هو زيادة الرقم الهيدروجيني (فرط التهوية).

تشمل هذه الحالات نقص الأكسجين بسبب الارتفاع العالمي أو الرئة المرض أو الحوادث الدماغية الوعائية (السكتة الدماغية) أو القلق الشديد.

- The cause is the increase of pH (hyperventilation).
- Such conditions include oxygen deficiency due to high altitude or pulmonary disease, cerebrovascular accident (stroke), or severe anxiety.
مرة أخرى، قد يؤدي التعويض الكلوي إلى رفع درجة الحموضة في الدم إلى المعدل الطبيعي إذا كان الكلي قادر على تقليل إفراز أيون الهيدروجين وإعادة امتصاصه HCO_3^- .
- Again, renal compensation may bring blood pH into the normal range if the kidneys are able to decrease excretion of hydrogen ion and reabsorption of HCO_3^- .
يهدف علاج القلوية التنفسية إلى زيادة مستوى ثاني أكسيد الكربون في جسم. أحد العلاجات البسيطة هو أن يستنشق الشخص ويزفر في كيس ورقي لفترة قصيرة؛ ونتيجة لذلك، يستنشق الشخص الهواء الذي يحتوي على تركيز ثاني أكسيد الكربون أعلى من المعتاد.
- Treatment of respiratory alkalosis is aimed at increasing the level of CO_2 in the body. One simple treatment is to have the person inhale and exhale into a paper bag for a short period; as a result, the person inhales air containing a higher-than-normal concentration of CO_2 .

ACID-BASE IMBALANCES: METABOLIC ACIDOSIS

الاتزالات الحمضية القاعدية:

الحماس الأيضي

- The causes the blood pH to decrease.

ثلاث حالات قد تخفض مستوى HCO_3^- في الدم

- Three situations may lower the blood level of HCO_3^- :

الخسارة الفعلية ل HCO_3^- ، مثل ما قد يحدث مع الإسهال الشديد أو الكلي خلل وظيفي.

(1) actual loss of HCO_3^- , such as may occur with severe diarrhea or renal dysfunction.

() تراكم حمض آخر غير حمض الكربونيك، كما قد يحدث في الكيتوزية

(2) accumulation of an acid other than carbonic acid, as may occur in ketosis.

فشل الكلي في إفراز أيونات الهيدروجين من التمثيل الغذائي الغذائي البروتينات.

(3) failure of the kidneys to excrete hydrogen ions from metabolism of dietary proteins.

إذا لم تكن المشكلة شديدة جدا، يمكن أن يساعد فرط التنفس في جلب درجة الحموضة في الدم إلى المعدل الطبيعي (تعويض الجهاز التنفس).

- If the problem is not too severe, hyperventilation can help bring blood pH into the normal range (respiratory compensation).

دخل أكثر من HCO_3^- - يتكون علاج الحماس الأيضي من إعطاء الوريد محليل بيكربونات الصوديوم وتصحيح سبب الحماس.

- Treatment of metabolic acidosis consists of administering intravenous solutions of sodium bicarbonate and correcting the cause of the acidosis.

ACID-BASE IMBALANCES: METABOLIC ALKALOSIS

يؤدي فقدان الحمض غير التنفسi أو الإفراط في تناول الأدوية القلوية إلى درجة الحموضة في الدم لزيادة فوق 7.45. القيء المفرط لمحويات المعدة، مما يؤدي إلى فقدان كبير لحمض الهيدروكلوريك، ربما يكون الأكثر السبب المتكرر للقلوية الأيضية.

- A nonrespiratory loss of acid or excessive intake of alkaline drugs causes the blood pH to increase above 7.45. Excessive vomiting of gastric contents, which results in a substantial loss of hydrochloric acid, is probably the most frequent cause of metabolic alkalosis. بس يخسر كثير من H^+
- Respiratory compensation through hypoventilation may bring blood pH into the normal range. Treatment of metabolic alkalosis consists of giving fluid solutions to correct chloride ions, potassium ions, and other electrolyte deficiencies plus correcting the cause of alkalosis.

قد يؤدي التهوية غير الكافية من خلال نقص التهوية إلى جلب درجة الحموضة في الدم إلى النطاق الطبيعي. يتكون علاج القلوية الأيضية من إعطاء السوائل حلول لتصحيح أيونات الكلوريد وأيونات البوتاسيوم والكهارل الأخرى أوجه القصور بالإضافة إلى تصحيح سبب القلوية.

THANK YOU

AMJADZ@HU.EDU.JO