

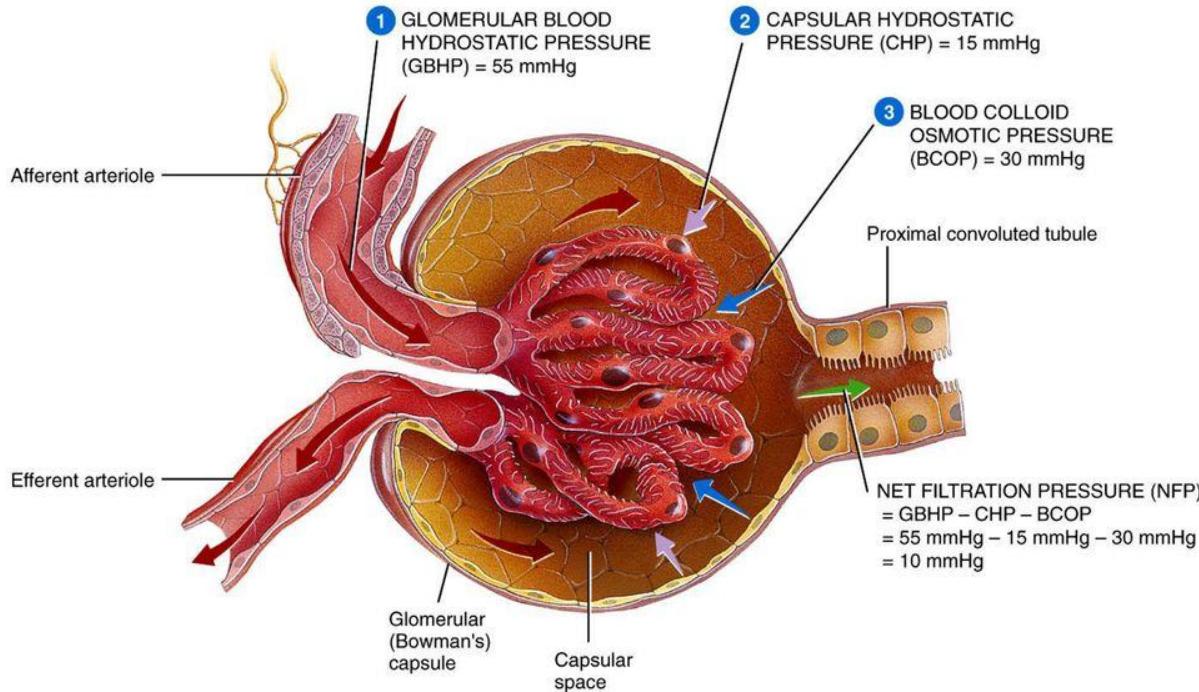
PHYSIOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

DR. AMJAAD ZUHIER ALROSAN

LECTURE 10, PART (2): RENAL PHYSIOLOGY

Objectives


1. Discuss **glomerular filtration rate and regulation of GFR**.
2. Describe **tubular reabsorption**.
3. Explore **homeostatic regulation of tubular reabsorption and tubular secretion**.
4. Discuss **production of dilute and concentrated urine, evaluation of kidney function, and renal plasma clearance**.

(Pages 993- 1014 of the reference)

NET FILTRATION PRESSURE

يعتمد الترشيح الكبيبي على على ثلاثة ضغوط رئيسية. واحد الضغط يعزز الترشيج، وضغطان يعارضان الترشيج.

Figure 26.9 The pressures that drive glomerular filtration

Glomerular filtration depends on three main pressures. One pressure promotes filtration, and two pressures oppose filtration.

الهيدrostاتيكي للدم الكبيبي الضغط يعزز الترشيج في حين أن الهيدrostاتيكي المحفظة الضغط وغروانية الدم الضغط التناضحي يعارض الترشيج

Glomerular blood hydrostatic pressure promotes filtration, whereas capsular hydrostatic and blood colloid osmotic pressure oppose filtration.

NET FILTRATION PRESSURE

الضغط الهيدروستاتيكي للدم الكبيبي (GBHP) هو ضغط الدم في الشعيرات الدموية الكبيبية. بشكل عام، يبلغ GBHP حوالي 55 مم زئبق (مليمتر من الزئبق). إنه يعزز الترشيح عن طريق إجبار الماء والمذابات في بلازما الدم من خلال غشاء الترشيح

- **Glomerular blood hydrostatic pressure (GBHP)** is the blood pressure in glomerular capillaries. Generally, GBHP is about 55 mmHg (millimetre of mercury). It promotes filtration by forcing water and solutes in blood plasma through the filtration membrane.

مجموعهم الاثنين 45

الضغط الهيدروستاتيكي الكبسولة (CHP) هو الضغط الهيدروستاتيكي الممارس ضد غشاء الترشيح بواسطة السائل الموجود بالفعل في الفضاء المحفظة والأنبوب الكلوي. يعارض CHP الترشيج ويمثل "ضغطا خلفيا" يبلغ حوالي 15 مم زئبق.

- **Capsular hydrostatic pressure (CHP)** is the hydrostatic pressure exerted against the filtration membrane by fluid already in the capsular space and renal tubule. CHP opposes filtration and represents a "back pressure" of about 15 mmHg.

الضغط التناضحي الغرواني للدم (BCOP)، والذي يرجع إلى وجود البروتينات مثل الألبومين والجلوبولين والفيبرينوجين في بلازما الدم، يعارض أيضا الترشيج. يبلغ متوسط BCOP في الشعيرات الدموية الكبيبية 30 مم زئبق.

- **Blood colloid osmotic pressure (BCOP)**, which is due to the presence of proteins such as albumin, globulins, and fibrinogen in blood plasma, also opposes filtration. The average BCOP in glomerular capillaries is 30 mmHg.

NET FILTRATION PRESSURE

Net filtration pressure (NFP), the total pressure that promotes filtration, is determined as follows:

$$\text{Net filtration pressure (NFP)} = \text{GBHP} - \text{CHP} - \text{BCOP}$$

By substituting the values just given, normal NFP may be calculated:

$$\begin{aligned}\text{NFP} &= 55 \text{ mmHg} - 15 \text{ mmHg} - 30 \text{ mmHg} \\ &= 10 \text{ mmHg}\end{aligned}$$

Thus, a pressure of only 10 mmHg causes a normal amount of blood plasma (minus plasma proteins) to filter from the glomerulus into the capsular space.

GLOMERULAR FILTRATION RATE

كمية الترشيح المكونة في جميع كريات الكلى لكليهما الكلى كل دقيقة هي معدل الترشيح الكبيبي (GFR).

- The amount of filtrate formed in all renal corpuscles of both kidneys each minute is the **glomerular filtration rate (GFR)**.
- In adults, the GFR averages 125 mL/min in males and 105 mL/min in females.

يتطلب توازن سوائل الجسم أن تحافظ الكلى على ثابت نسبيا GFR.
- Homeostasis of body fluids requires that the kidneys maintain a relatively constant GFR.

يتطلب توازن سوائل الجسم أن تحافظ الكلى على GFR ثابت نسبيا

GLOMERULAR FILTRATION RATE

إذا كان معدل الترشيح الكلوي مرتفعا جدا، فقد تمر المواد اللازمة بسرعة كبيرة من خلال الأنابيب الكلوية التي لا يتم إعادة امتصاص بعضها وهي كذلك ضائع في البول.

- **If the GFR is too high**, needed substances may pass so quickly through the renal tubules that some are not reabsorbed and are lost in the urine.

إذا كان معدل الترشيح الكلوي منخفضا جدا، فقد يتم إعادة امتصاص جميع الترشيحات تقريبا وقد لا تقرز بعض منتجات النفايات بشكل كاف.
- **If the GFR is too low**, nearly all the filtrate may be reabsorbed and certain waste products may not be adequately excreted.
- GFR is directly related to the pressures that determine net filtration pressure; any change in net filtration pressure will affect GFR.

يرتبط GFR ارتباطا مباشرا بالضغط الذي تحدده صافي ضغط الترشيح: أي تغيير في صافي ضغط الترشيح سوف يؤثر على معدل الترشيح الكلوي.

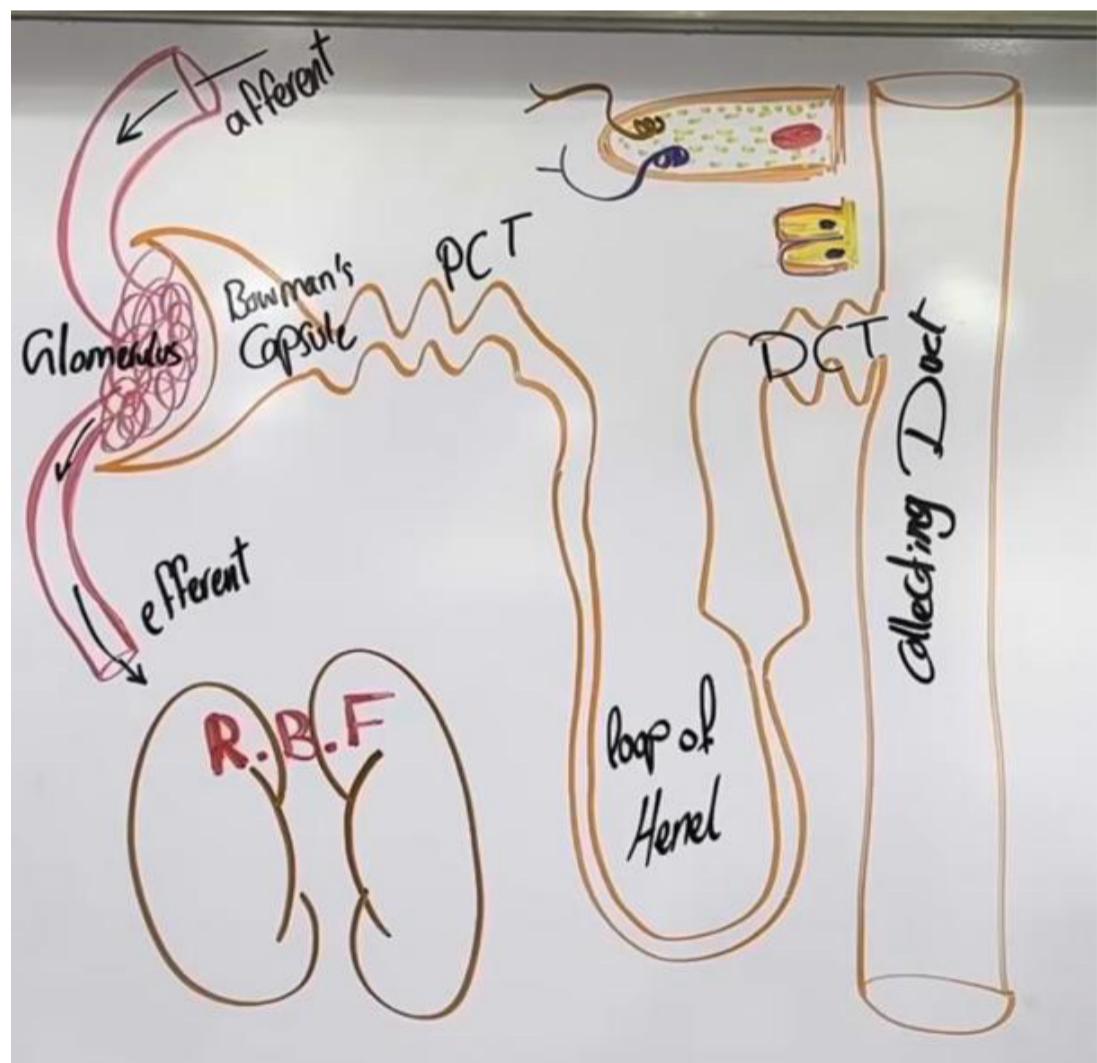
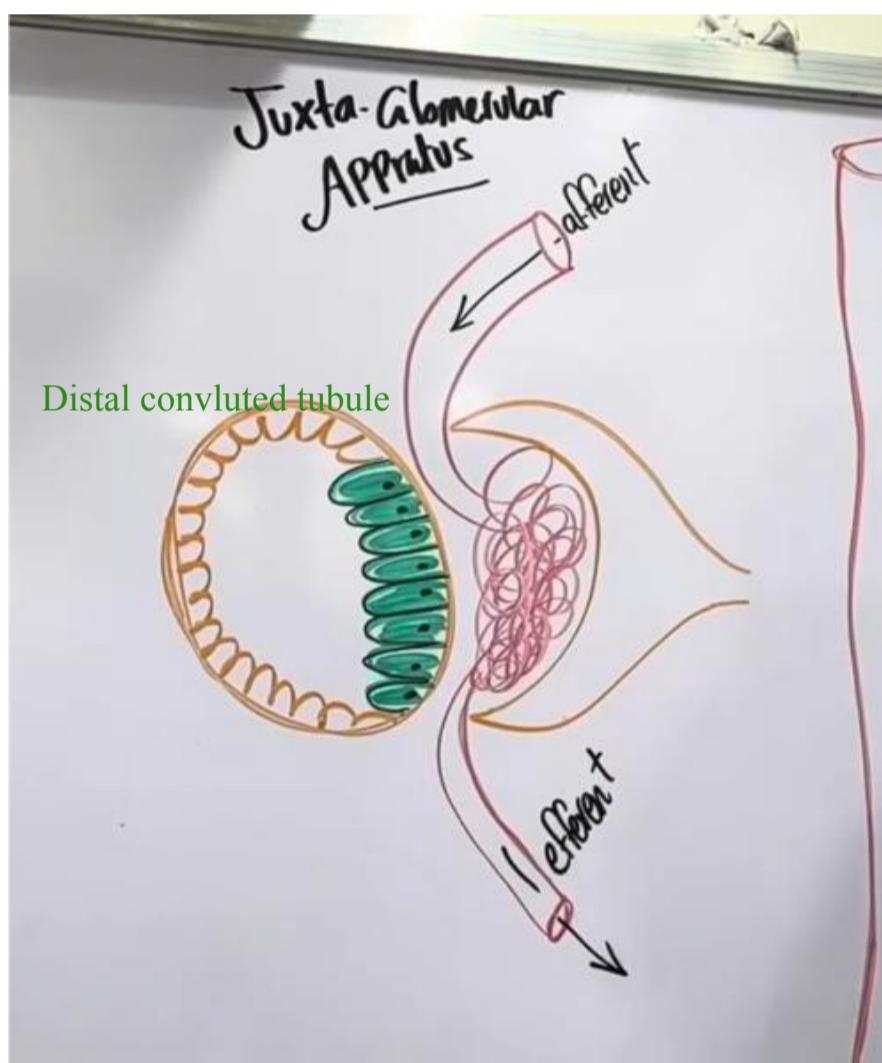
كل ما اثر على كمية الدم يلي بتدخل عن طريق
Afferent arteriol
بتتأثر عندي GFR

المواد يلي ما
مفترض يصير لها
ما بصير لها ، reabsorption
و المواد يلي بصير لها
ما بصير لها secretion

GFR is high :
المواد يلي ما
مفترض يصير لها
ما بصير لها ، reabsorption
و المواد يلي بصير لها
ما بصير لها secretion

GFR is low
بدي يصير لها
بصير لها reabsorption
و
المواد يلي بدي يصير لها
ما بصير لها secretion

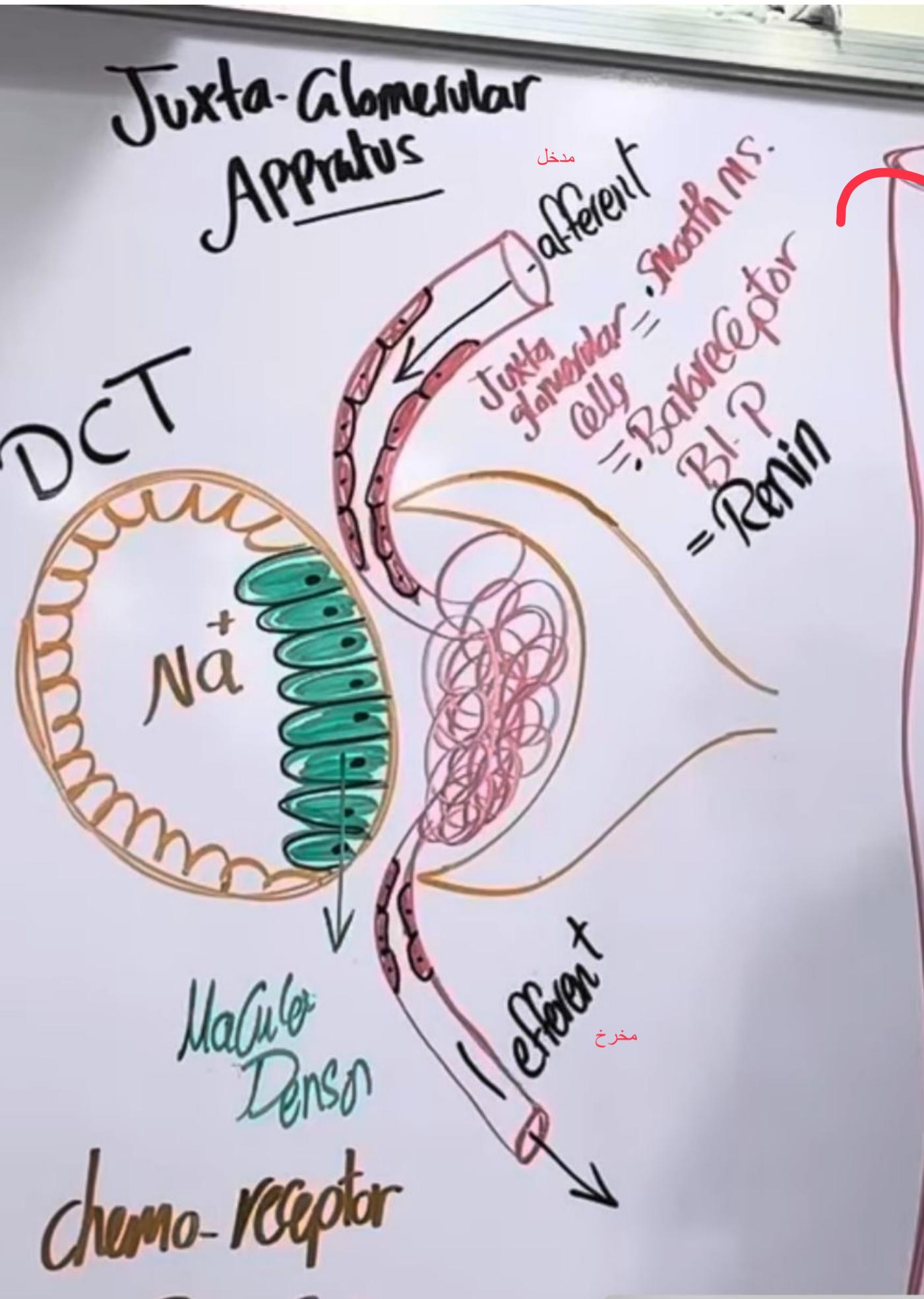
Tubuloglomerular feedback



ما غيرت ع
دخل كل الدم ع capsule و صار لها فلترة و دخل ع tubule
عالي blood flow عالي GFR
في عندك مستقبلات موجودة في Distal tube
های المستقبلات senssitive لكمية
العالية من صوديوم و الماء و قادرة ع
انتاج vasoconstriction

Myogenic mechanism

اذا كانت كمية الدم يلي
داخلة ع الكلى كبيرة ف انا
بدي اقللها ليش؟؟ عشان
ارجع GFR لوضعه
طبيعي ، بدي اعمل
(لـ vasoconstriction)
Afferent arteriole

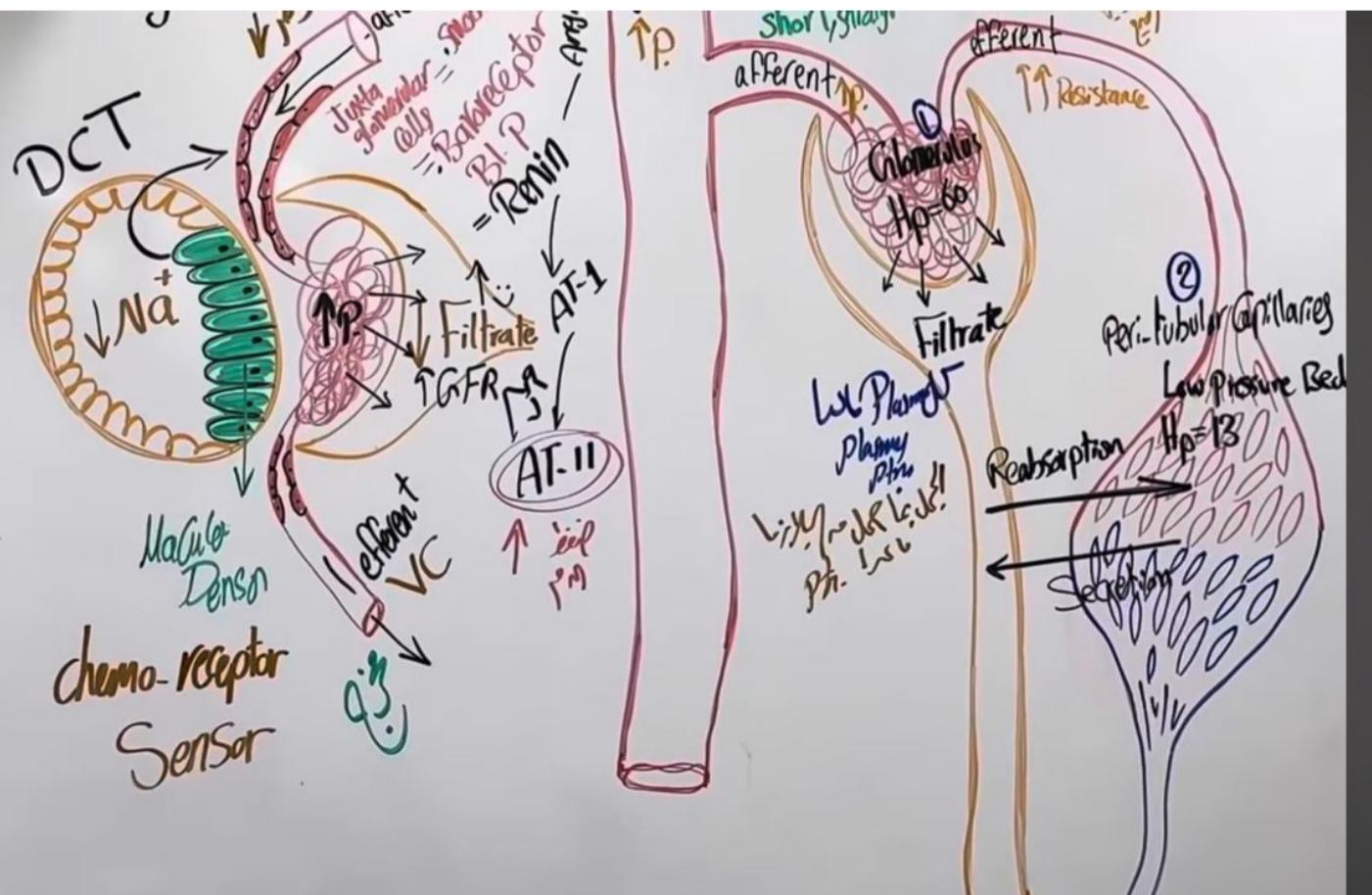
اعلى ضغط داخل


Glomerulus capillary هو : capillaries

Afferent Constriction \rightarrow \downarrow Blood flow into glomerulus \rightarrow \downarrow GFR \rightarrow \downarrow Renal blood flow

Efferent Constriction \rightarrow \uparrow Pressure inside glomerulus \rightarrow \uparrow GFR initially
BUT \rightarrow \uparrow Resistance \rightarrow \downarrow Blood flow out \rightarrow Backup \rightarrow \downarrow Total renal blood flow over time

Both constrict \rightarrow $\uparrow\uparrow$ Resistance \rightarrow $\downarrow\downarrow$ Blood flow into AND out of
glomerulus \rightarrow $\downarrow\downarrow$ Total renal blood flow



كلها مواصفات
juxtaglomerular

تركيز صوديوم قل
macula densa
بتكتشف هذا اشي ، و
معناتو انو الدم يلي
صارله فلترة قليل ، و
الدم يلي داخل من
affluent قليل
ف يعني انو ضغط قليل

طيب شو الحل ؟
بتجي macula dense بتعطي
اشارة انو صوديوم قليل ف
بتفرز juxtaglomerular cell
انجوتينس renin يلي بحول
انجوتينس 1 الى 1
بعدين بيجي انزيم بحوله الى
انجوتينس 2
بقدر هسا يرفعلي ضغط الدم

بصير vasoconstriction
ف بتراكم دم فيرتفع
ضغط دم
و يزداد كمان GFR

العملية التي تنظم معدل الترشيح الكبيبي في اثنين

الطرق الرئيسية:

عن طريق ضبط تدفق الدم من وإلى الكبيبة. (1) ?
يزيد معدل الترشيح الكبيبي عندما يزداد تدفق الدم إلى الشعيرات الدموية الكبيبية

عن طريق تغيير مساحة السطح الشعري (2) ?
الكبيبي المتاحة للترشيح. التحكم المنسق في قطر كل من الشعيرات الواردة والصادرة ينظم تدفق الدم الكبيبي.
انقباض الشريان الوارد يقلل من تدفق الدم إلى الكبيبة.
تمدد الشريان الوارد يزيد

GLOMERULAR FILTRATION RATE

- The mechanisms that regulate glomerular filtration rate operate in two main ways:
- (1) by adjusting blood flow into and out of the glomerulus. GFR increases when blood flow into the glomerular capillaries increases.
- (2) by altering the glomerular capillary surface area available for filtration. Coordinated control of the diameter of both afferent and efferent arterioles regulates glomerular blood flow. Constriction of the afferent arteriole decreases blood flow into the glomerulus; dilation of the afferent arteriole increases it.
- Three mechanisms control GFR: renal autoregulation, neural regulation, and hormonal regulation.

ثلاث آليات تتحكم في GFR: التنظيم الذاتي الكلوي، والتنظيم العصبي، والتنظيم الهرموني.

RENAL AUTOREGULATION OF GFR

تساعد الكلى نفسها في الحفاظ على تدفق الدم الكلوي المستمر و GFR على الرغم من التغيرات الطبيعية اليومية في ضغط الدم، مثل تلك التي تحدث أثناء التمرين. هذه القدرة تسمى الكلى التنظيم الذاتي

- The kidneys themselves help maintain a constant renal blood flow and GFR despite normal, everyday changes in blood pressure, like those that occur during exercise. This capability is called **renal autoregulation**.
يلي فايةة ع الكلية Blood flow
علاقة طردية GFR تكون عالية
اذا بدی اعمل های f
ثلاث طبقات
- It consists of two mechanisms—the **myogenic mechanism** and **tubuloglomerular feedback**. Working together, they can maintain nearly constant GFR over a wide range of systemic blood pressures.

يتكون من آليتين - الآلية العضلية و ردود الفعل الأنبوبية الكببية. العمل معا، يمكنهم الحفاظ على معدل الترشيح الكلوي ثابت تقريبا على نطاق واسع من ضغوط الدم الجهازية.

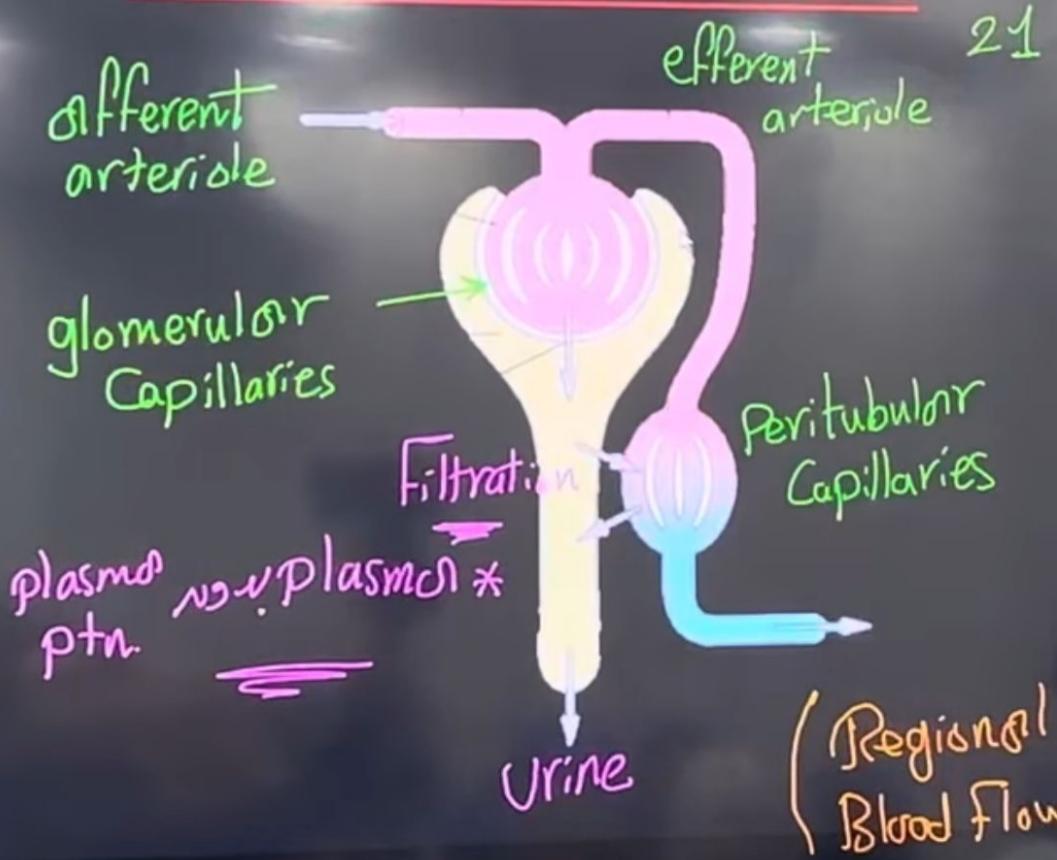
RENAL AUTOREGULATION OF GFR

تحدث الآلة العضلية المنشأة عندما يؤدى التمدد تقلص خلايا العضلات الملساء في جدران الواردات الشريانين. مع ارتفاع ضغط الدم، يرتفع معدل الترشيح الكلوي أيضاً بسبب الكلى يزداد تدفق الدم. ومع ذلك، فإن ارتفاع ضغط الدم يمتد جدران الشريانين الواردة، مما يضيق تجويف الشريان. نتيجة لذلك، ينخفض تدفق الدم الكلوي، وبالتالي تقليل معدل الترشيح الكلوي إلى مستوىه السابق.

- The **myogenic mechanism** occurs when stretching triggers contraction of smooth muscle cells in the walls of afferent arterioles. As blood pressure rises, GFR also rises because renal blood flow increases. However, the elevated blood pressure stretches the walls of the afferent arterioles, which narrows the arteriole's lumen. As a result, renal blood flow decreases, thus reducing GFR to its previous level.

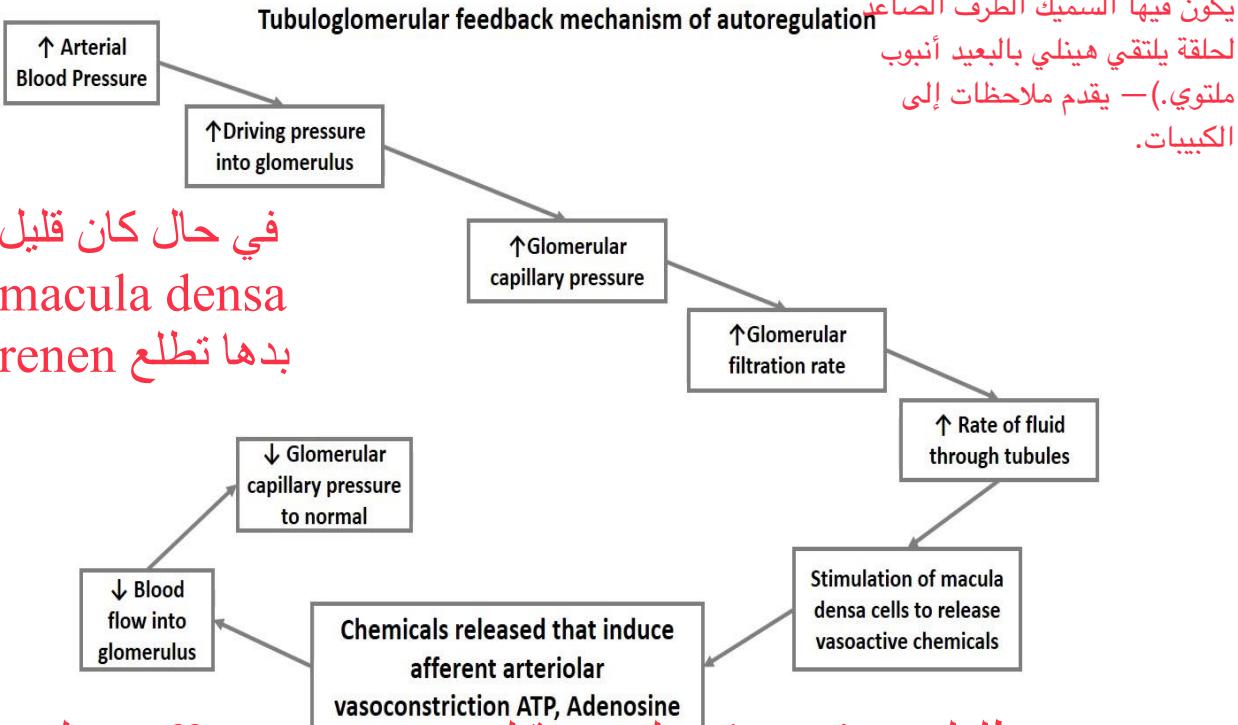
Auto-regulation

① Myogenic Mech..



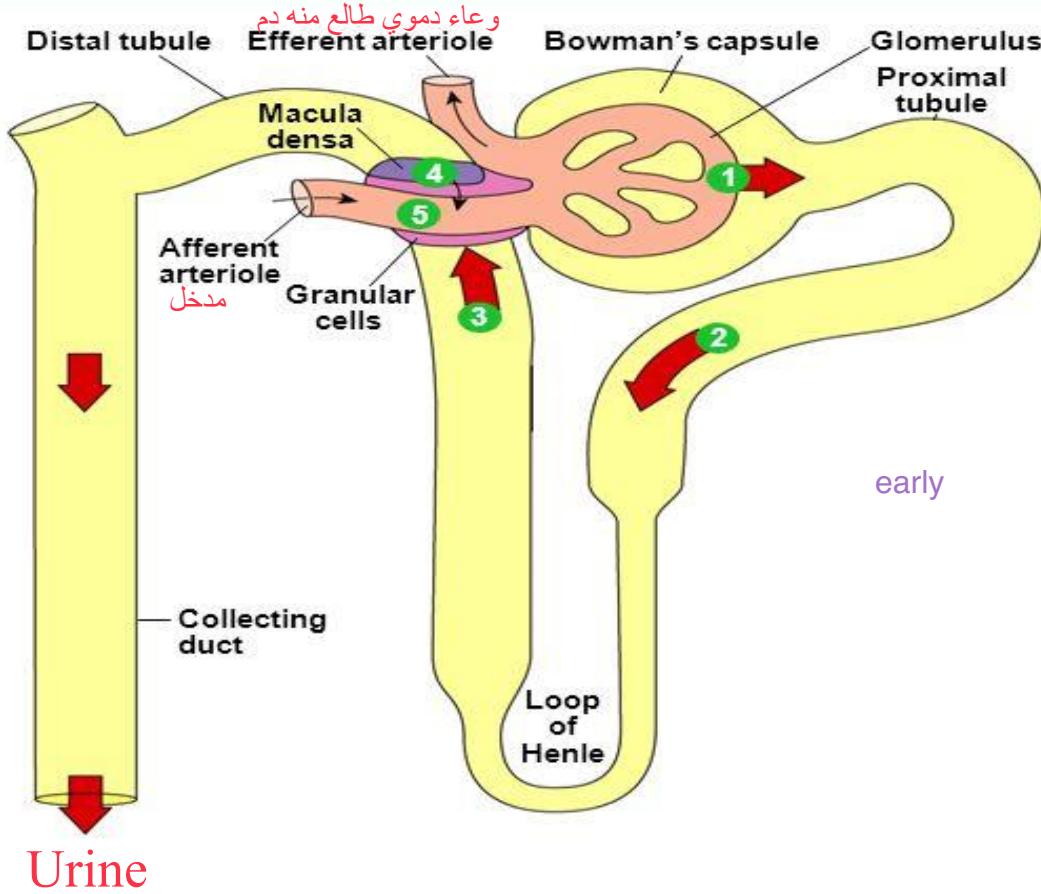
في حالة pressure عالي كالسيوم مفتاح الانقباض

Art
↑P.
e
n
-
tion
min
F
c


Low Pressure \rightarrow Relaxation

Renal Blood Flow : 1.2 ~

RENAL AUTOREGULATION OF GFR


- The second contributor to renal autoregulation, tubuloglomerular feedback, is so named because part of the renal tubules—the macula densa (is an area of closely packed specialized cells lining the wall of the distal tubule, at the point where the thick ascending limb of the Loop of Henle meets the distal convoluted tubule.)—provides feedback to the glomerulus.

بطلعي adenosine يلي مستقبله موجود ع affrenet بعمل
blood flow بزيد مقاومة بقل vasoconstriction

Tubuloglomerular Feedback

Capillary

- 1 GFR increases.
- 2 Flow through tubule increases.
- 3 Flow past macula densa increases.
- 4 Paracrine diffuses from macula densa to afferent arteriole.
- 5 Afferent arteriole constricts.

Resistance in afferent arteriole increases.

Hydrostatic pressure in glomerulus decreases.

GFR decreases.

Renal artery يلي بده يدخل ع الكلية

Afferent arteriole

دخل ع Bowman capsule

بتشعب ع شكل capillary

احجامها كبيرة و طولية

يللي مارح يصير لها فلترة بدها تطلع من جهة الثانية :

Bomwan capsule

Capillaries

Affernt arteriol تجمع بصير اسمه

capillaries بترجع هي نفسها بتتفرع ل

بتكون حولين

proximal ,descending ,ascending , distal , collecting duct

اسمها proximal حولين :

Peritubular capillary

اسمها حولين loop of Henal :

Vasa recta مستقيم vessel يعني

تعمل دور مهم في urine concentration

اسمها distal ,collecting حولين :

Varitcular capillary

بتطلع capillary على venal nerve شكل

Posterior vena

cave

بترجع الى right atrium

مكونات الاساسية عشان يصير عندي عملية فلترة :

Endothelial cell

Basel membrane كلما انتقلت الى داخل ثقب بتصغر

Slit membrane

دم بده يفوت ع endothelial بتفوت كل بروتينات بس ما بتفوت اي نوع من الخلايا يعني بتوقف (red blood cell,white blood cell,platelet)

طبقة الثانية صار حجم الثقب اصغر ، هون بتوقف (larg protein)

(medium protein) طبقة الثالثة ثقب بتصير اصغر بتوقف

يللي بفوت :

Amino acide ,small protein,glucose,water ,ammonia, Uriah ,ions

كيف بتصير ؟

انا في عندي خمسة لتر بطلع من الفلب بتوزعوا ع كل جسم يلي ranal artery 25% من خمسة لتر بس الكمية يلي بصير لها فلترة 25% من 25% من خمسة لتر

يللي رح يصير لها فلترة رح تمثلي من capsule على القنوات الموجودة جوا الكلى حسب الترتيب الاتي :

Proximal tubule

Descending loop of Henal
ascending loop of henle
early densing distal tube

Later distal tube

Collecting duct

فلترة :

صوديوم ،ماء ، كالسيوم ، كلورايد اعادة امتصاص من tubule الى tubular capillary

نسبة دم يلي صار لها فلترة في كابسولة الى نسبة كل دم يلي دخل ع الكلى Filtration fraction

افراز بس ما بدبي ياهما بتنتقل من

peritubular capillaries الى tubual of kidney

يللي صار لها فلترة blood جزء من

Glomerulus filtrate

يللي ما بمر :
protein,medium protein

NEURAL REGULATION OF GFR

مثل معظم الأوعية الدموية في الجسم، يتم تزويد الكلى بواسطة ألياف ANS المعاطة التي تطلق الورادرينالين.

- Like most **blood vessels** of the body, those of the kidneys are **supplied by sympathetic ANS fibers** that release norepinephrine.

عند الراحة، يكون التحفيز الودي منخفضاً إلى حد ما، الوارد والصادر تتوسع الشرايين، ويسود التنظيم الذاتي الكلوي لـ GFR.

- At rest, sympathetic stimulation is moderately low, **the afferent and efferent arterioles are dilated**, and renal autoregulation of GFR prevails.

مع التحفيز الودي المعتدل، سواء الوارد أو الصادر تضيق الشرايين بنفس الدرجة. تتفق الدم من وإلى الكبيبة بنفس القدر، مما يقلل من معدل الترشيح الكلوي فقط قليلاً.

- With **moderate sympathetic stimulation**, **both afferent and efferent arterioles constrict to the same degree**. Blood flow into and out of the glomerulus is restricted to the same extent, which **decreases GFR only slightly**.

زاد ضغط دخلت كل blood blood

قللت كمية الدم يلي بتدخل ع الكلى

عسان هييك بصير نقصان بسيط في GFR

NEURAL REGULATION OF GFR

مع تحفيز متعاطف أكبر، ومع ذلك، كما يحدث أثناء التمرين أو النزيف، يسود تضيق الأوعية الدموية في الشرايين الواردة. كما نتيجة لذلك، ينخفض تدفق الدم إلى الشعيرات الدموية الكببية بشكل كبير، و قطرات GFR.

- With greater sympathetic stimulation, however, as occurs during exercise or hemorrhage, **vasoconstriction of the afferent arterioles predominates**. As a result, **blood flow into glomerular capillaries is greatly decreased, and GFR drops.**
- This lowering of renal blood flow has two consequences: (1) It reduces urine output, which helps conserve blood volume. (2) It permits greater blood flow to other body tissues.

هذا الانخفاض في تدفق الدم الكلوي له نتائجتان: (1) إنه يقلل إنتاج البول، مما يساعد على الحفاظ على حجم الدم. (2) يسمح بالأكبر تدفق الدم إلى أنسجة الجسم الأخرى.

HORMONAL REGULATION OF GFR

Two hormones contribute to regulation of GFR:

1. **Angiotensin II** (very potent vasoconstrictor) reduces GFR.
Vasodilation
2. Atrial natriuretic peptide (ANP) increases GFR because ANP increases the capillary surface area available for filtration.

يساهم هرمونان في تنظيم GFR

1. يقلل الأنجيوتنسين الثاني (مضيق الأوعية القوي جداً) من GFR.
2. يزيد الببتيد الصوديوم الأذيني (ANP) من GFR لأن ANP يزيد من مساحة السطح الشعري المتاحة للترشيح.

يعني بجib من renal و cardiac مع بعض

جib عامل باثر ع C.O غهو اكيد
باثر ع renal

TABLE 26.2**Regulation of Glomerular Filtration Rate (GFR)**

TYPE OF REGULATION	MAJOR STIMULUS	MECHANISM AND SITE OF ACTION	EFFECT ON GFR
Renal autoregulation			
Myogenic mechanism	Increased stretching of smooth muscle fibers in afferent arteriole walls due to increased blood pressure.	Stretched smooth muscle fibers contract, thereby narrowing lumen of afferent arterioles.	Decrease.
Tubuloglomerular feedback	Rapid delivery of Na^+ and Cl^- to the macula densa due to high systemic blood pressure.	Decreased release of nitric oxide (NO) by juxtaglomerular apparatus causes constriction of afferent arterioles.	Decrease.
Neural regulation	Increase in activity level of renal sympathetic nerves releases norepinephrine.	Constriction of afferent arterioles through activation of α_1 receptors and increased release of renin.	Decrease.
Hormone regulation			
Angiotensin II	Decreased blood volume or blood pressure stimulates production of angiotensin II.	Constriction of afferent and efferent arterioles.	Decrease.
Atrial natriuretic peptide (ANP)	Stretching of atria of heart stimulates secretion of ANP.	Relaxation of mesangial cells in glomerulus increases capillary surface area available for filtration.	Increase.

عادةً معظم الماء الصافي والعديد من المواد المذابة المفلترة (مثل الصوديوم، أيونات البوتاسيوم والكلوريد والبيكربونات والفوسفات) إلى مجرى الدم.

TUBULAR REABSORPTION AND TUBULAR SECRETION

بعدين بترجم الى systemic circulation
□ **Reabsorption:** Tubules الى blood vessel Peritubular capillry

➤ The return of most of the filtered water and many of the filtered solutes (as sodium, potassium, chloride, bicarbonate and phosphate ions) to the bloodstream.

Peritubular capillary بعدين الى tubules

➤ نقل المواد (مثل الهيدروجين وأيونات البوتاسيوم وأيونات الأمونيوم، الكرياتينين، وبعض الأدوية مثل البنسلين) من خلايا الدم والأنبوب إلى الترشيح الكبيبي. الإفراز الأنبوي له نتائجتان مهمتان:

➤ (1) يساعد إفراز أيونات الهيدروجين على التحكم في درجة الحموضة في الدم.
➤ (2) يساعد إفراز المواد الأخرى على التخلص منها من الجسم في البول

□ **Tubular secretion:**

➤ the transfer of materials (as hydrogen, potassium ions and ammonium ions, creatinine, and certain drugs such as penicillin) from the blood and tubule cells into glomerular filtrate. Tubular secretion has two important outcomes:

➤ (1) The secretion of hydrogen ions helps control blood pH.
➤ (2) The secretion of other substances helps eliminate them from the body in urine

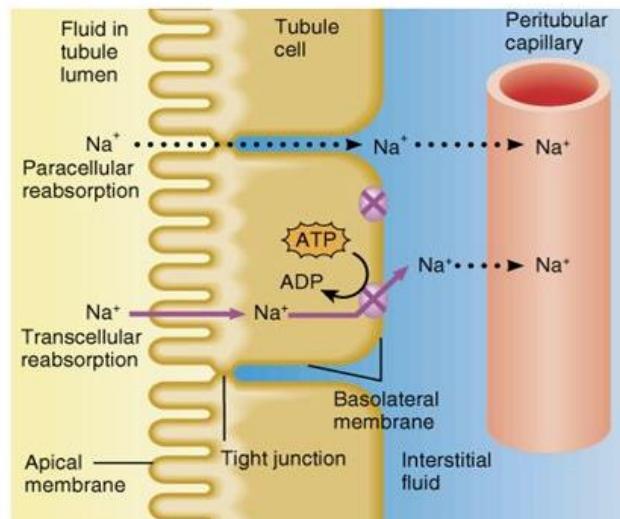
Substances Filtered, Reabsorbed, and Excreted in Urine per Day

TABLE 21.1

Substances Filtered, Reabsorbed, and Excreted in Urine per Day

SUBSTANCE	FILTERED* (ENTERS RENAL TUBULE)	REABSORBED (RETURNED TO BLOOD)	SECRETED IN URINE
Water	180 liters	178–179 liters	1–2 liters
Chloride ions (Cl^-)	640 g	633.7 g	6.3 g
Sodium ions (Na^+)	579 g	575 g	4 g
Bicarbonate ions (HCO_3^-)	275 g	274.97 g	0.03 g
Glucose	Reabsorption	162 g	0
Urea	54 g	24 g	30 g [†]
Potassium ions (K^+)	29.6 g	29.6 g	2.0 g [‡]
Uric acid	8.5 g	7.7 g	0.8 g
Creatinine	Secretion skeletal muscle	1.6 g	1.6 g

*Assuming glomerular filtration is 180 liters per day.

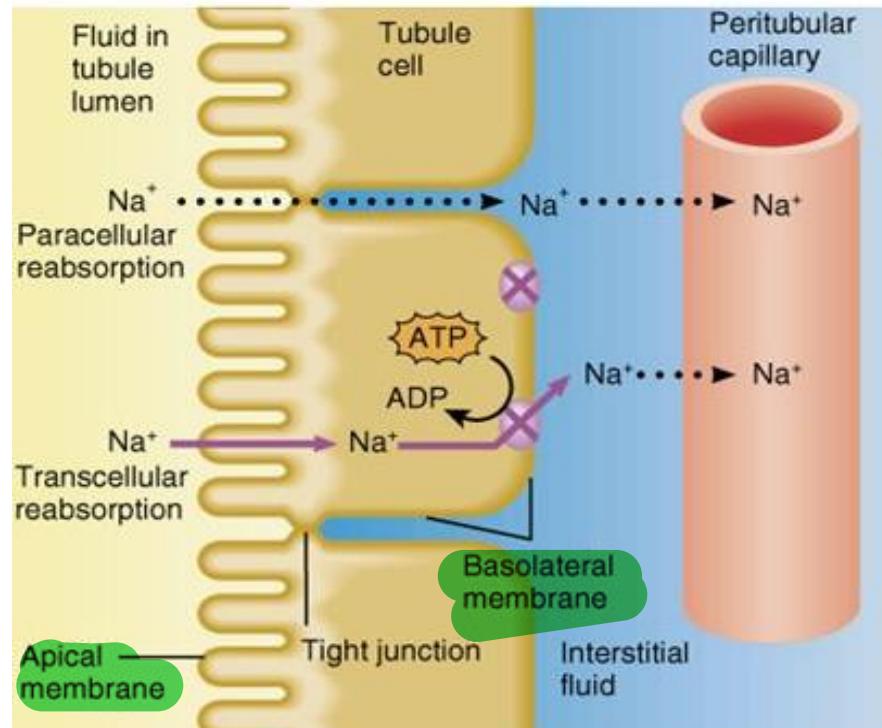

[†]In addition to being filtered and reabsorbed, urea is secreted.

[‡]After virtually all filtered K^+ is reabsorbed in the convoluted tubules and loop of Henle, a variable amount of K^+ is secreted in the collecting duct.

REABSORPTION ROUTES

Reabsorption Routes

- Paracellular reabsorption
 - 50% of reabsorbed material moves between cells by diffusion in some parts of tubule
- Transcellular reabsorption
 - material moves through both the apical and basal membranes of the tubule cell by active transport

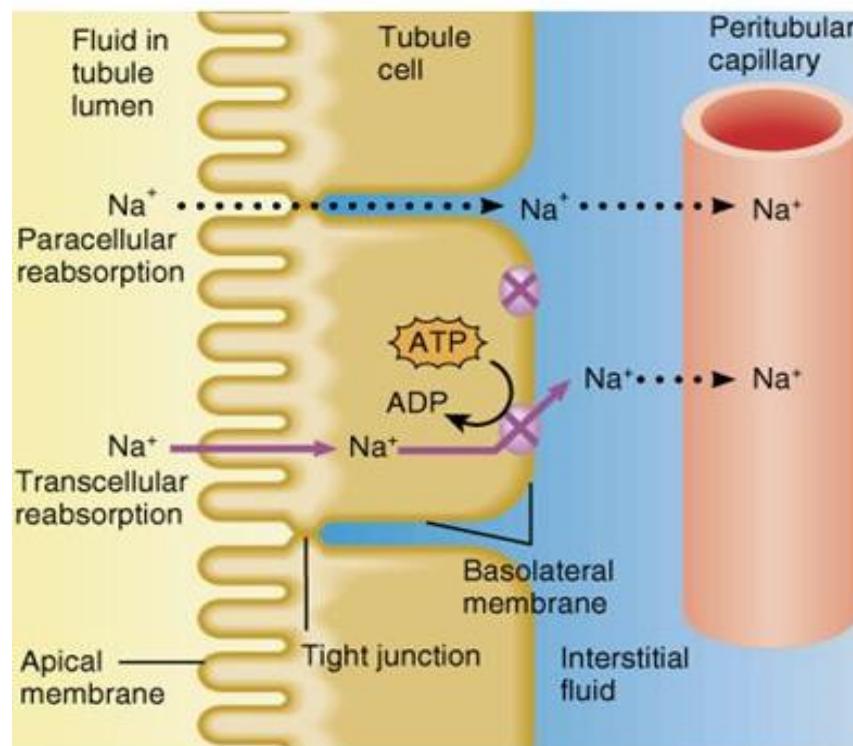

في الجهاز الكلوي، الشعيرات الدموية
المحيطة بالأنابيب هي أوعية دموية
صغريرة، تم توفيره من قبل المصادر
الشريان، الذي يسافر بجانب
النيفرونات السماح بإعادة الامتصاص
والإفراز بين الدم والداخل تجويف
النيفرون.

✓ In the renal system, peritubular capillaries are tiny blood vessels, supplied by the efferent arteriole, that travel alongside nephrons allowing reabsorption and secretion between blood and the inner lumen of the nephron.

REABSORPTION ROUTES

انتقال المواد عن طريق gap junction

يتصل الغشاء القمي بسائل الأنبوب، والقاعدية الجانبية يتصل الغشاء بالسائل الخلالي في قاعدة وجانب الخلية.


✓ The apical membrane contacts the tubular fluid, and the basolateral membrane contacts interstitial fluid at the base and sides of the cell.

واد رح تمر من apical membrane عشان تروح الى peritubular capillary بعدين بعديها interstitial fluid

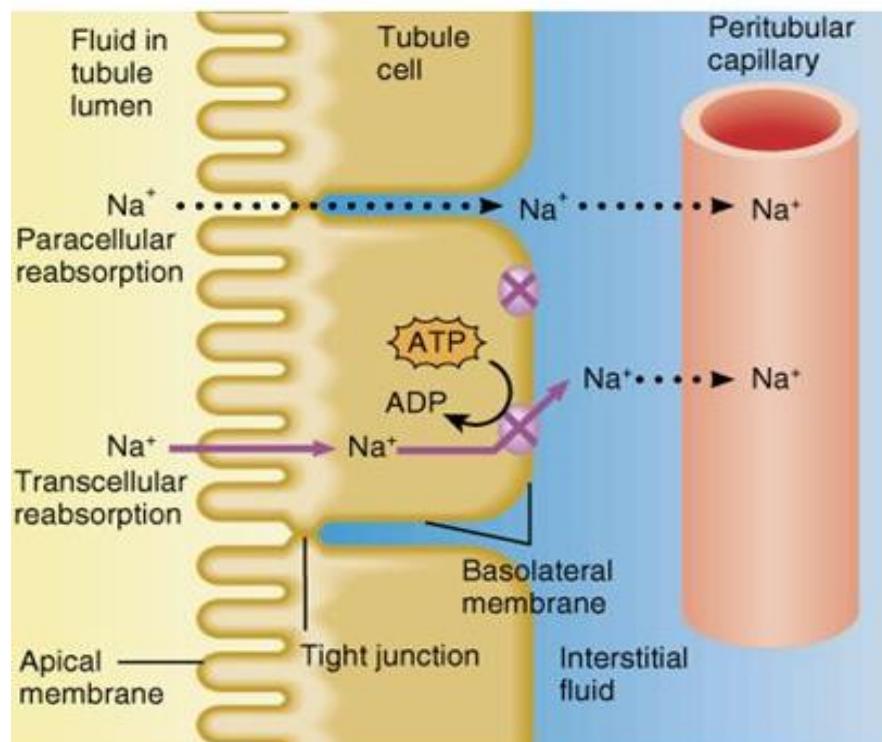
✓ Even though the epithelial cells are connected by tight junctions, the tight junctions between cells in the proximal convoluted tubules are “leaky” and permit some reabsorbed substances to pass between cells into peritubular capillaries.

على الرغم من أن الخلايا الظهارية متصل عن طريق تقاطعات ضيقة، ضيق تقاطعات بين الخلايا في القريب الأنابيب الملتوية "متسربة" و السماح لبعض المواد المعد امتصاصها تمر بين الخلايا إلى ما حول الأنابيب الشعيرات الدموية.

عندما تنقل الخلايا الكلوية المواد المذابة من أو إلى السائل الأنبوي، ينقلون مواد محددة في اتجاه واحد فقط. ليس من المستغرب، مختلف أنواع بروتينات النقل موجودة في الأغشية القمية والقاعدية الجانبي. الضيق تشكيل الوصلات حاجزاً يمنع اختلاط البروتينات في الغشاء القمي والقاعدي الجانبي المقصورات.

TRANSPORT MECHANISMS

في إعادة الامتصاص عبر الخلايا، تمر المادة من السائل في التجويف الأنبوي من خلال الغشاء القمي للخلية الأنبوبية، عبر السيتوبول، والخروج إلى السائل الخلالي من خلال الغشاء القاعدي الجانبي.


من خلال الخلية

- ✓ In **transcellular reabsorption**, a substance passes from the fluid in the tubular lumen through the apical membrane of a tubule cell, across the cytosol, and out into interstitial fluid through the basolateral membrane.
- ✓ When renal cells transport solutes out of or into tubular fluid, they move specific substances in **one direction only**. Not surprisingly, different types of transport proteins are present in the apical and basolateral membranes. The tight junctions form a barrier that prevents mixing of proteins in the apical and basolateral membrane compartments.

الخلايا المبطنة للأنابيب الكلوية، مثل الخلايا الأخرى في جميع أنحاء الجسم، لديك تركيز منخفض من أيونات الصوديوم في السيتوكسول بسبب نشاط مضخات الصوديوم والبوتاسيوم. هذه المضخات هي تقع في الأغشية القاعدية الجانبية وتطرد أيونات الصوديوم من خلايا الأنابيب الكلوية. ال غياب مضخات الصوديوم والبوتاسيوم في يضمن الغشاء القاعدي إعادة امتصاص أيونات الصوديوم هي عملية أحادية الاتجاه.

كل نوع من الناقلات له حد أعلى على ما مدى سرعة عمله، تماماً كما يحتوي المصعد على الحد من عدد الأشخاص الذين يمكن أن يحملهم من شخص واحد المستوى إلى آخر في فترة معينة. هذا الحد، يسمى الحد الأقصى للنقل (T_m)، يتم قياسه بالملخ/دقيقة.

TRANSPORT MECHANISMS

- ✓ Each type of transporter has an upper limit on how fast it can work, just as an escalator has a limit on how many people it can carry from one level to another in a given period. This limit, called the transport maximum (T_m), is measured in mg/min.
- ✓ Cells lining the renal tubules, like other cells throughout the body, have a low concentration of sodium ions in their cytosol due to the activity of sodium-potassium pumps. These pumps are located in the basolateral membranes and eject sodium ions from the renal tubule cells. The absence of sodium-potassium pumps in the apical membrane ensures that reabsorption of sodium ions is a one-way process.

TUBULAR REABSORPTION

إعادة امتصاص الماء يدفع إعادة امتصاص الماء لأن كل إعادة امتصاص الماء يحدث عن طريق التناضح. حوالي 90٪ من إعادة امتصاص المياه التي تمت تصفيتها بواسطة الكلى يحدث جنباً إلى جنب مع إعادة امتصاص المواد المذابة مثل أيونات الصوديوم والكلوريد، والجلوكوز.

- ✓ **Solute reabsorption drives water reabsorption because all water reabsorption occurs via osmosis. About 90% of the reabsorption of water filtered by the kidneys occurs along with the reabsorption of solutes such as sodium and chloride ions, and glucose.** يطلق على الماء المعاد امتصاصه مع المواد المذابة في السائل الأنبوبى اسم الماء الإلزامي إعادة الامتصاص لأن الماء "ملزم" باتباع المواد المذابة عندما تكون أعيد امتصاصه. يحدث هذا النوع من إعادة امتصاص الماء في الم��وى القريب الأنبوب والطرف الهاابط لحلقة التيفرون.
- ✓ **Water reabsorbed with solutes in tubular fluid is termed obligatory water reabsorption because the water is "obliged" to follow the solutes when they are reabsorbed. This type of water reabsorption occurs in the proximal convoluted tubule and the descending limb of the nephron loop.**
- ✓ **Reabsorption of the final 10% of the water, a total of 10–20 liters per day, is termed facultative water reabsorption. Facultative water reabsorption is regulated by antidiuretic hormone and occurs mainly in the collecting ducts.** يطلق على إعادة امتصاص آخر 10٪ من الماء، أي ما مجموعه 10-20 لترًا يوميًا، إعادة امتصاص الماء الاختياري. يتم تنظيم إعادة امتصاص الماء الاختياري بواسطة هرمون مضاد لإدرار البول ويحدث بشكل رئيسي في قنوات التجميع.

REABSORPTION AND SECRETION IN THE PROXIMAL CONVOLUTED TUBULE

- ✓ The largest amount of solute and water reabsorption from filtered fluid occurs in the proximal convoluted tubules. أكبر كمية من المذاب وإعادة امتصاص الماء من السائل المصفى يحدث في الأنابيب الملتوية القريبة.



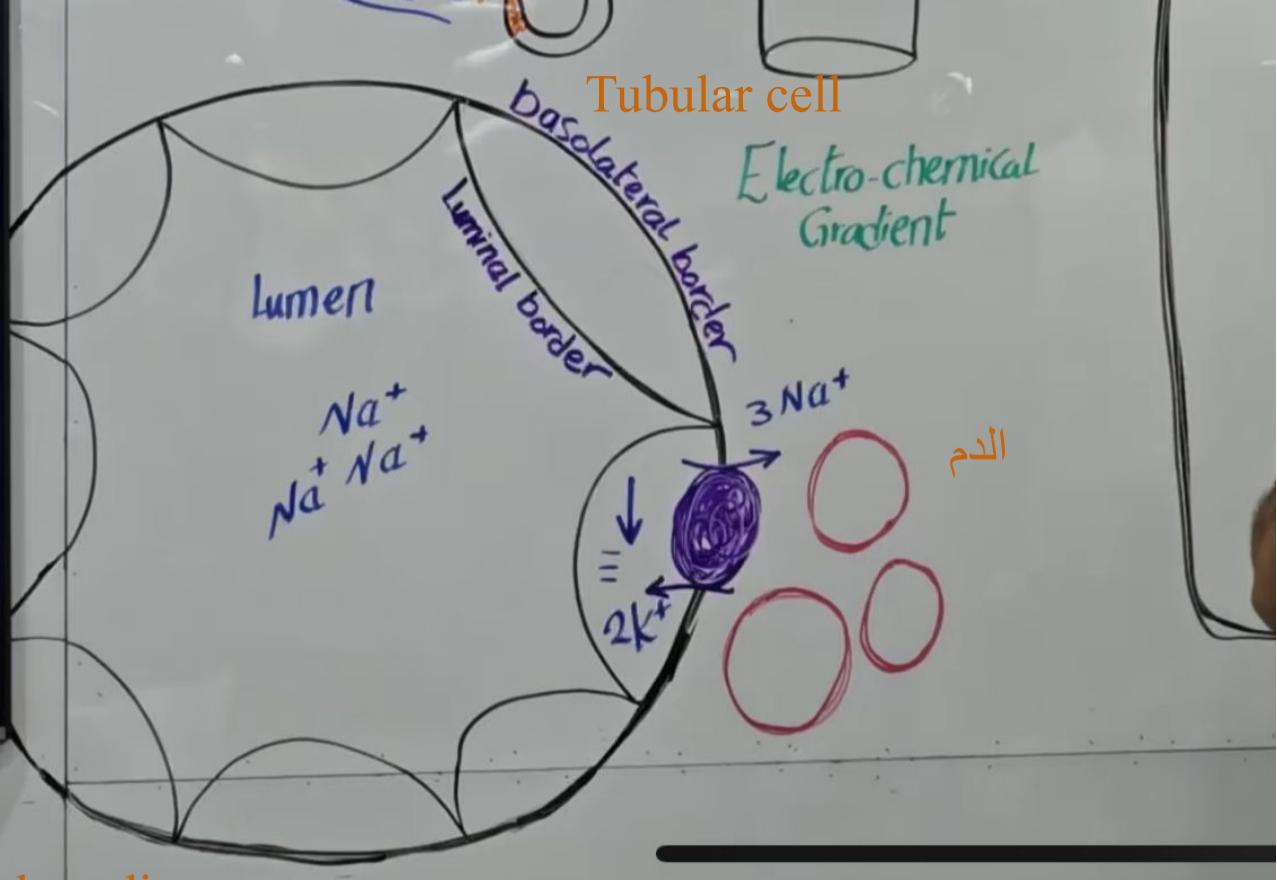
واحد ما بشرب مي كثير: كل المي
لي بتدخل ع الكلى بدها يصير لها
إعادة امتصاص دخلت ع
بعدين (proxmial,descending)
دخلت ع Ascending عملی إعادة
امتصاص لصوديوم و كلورايد
يعني زادت اسماوز الریتی (تركيز)
سلیوت زاد (وصلنا ع
distal ,collecting بده يشتعل
ADH هون
Blood volume قليل
بس عندي اوسمولاریزیتی عالیة ف
البول بطلع مركز

واحد بشرب مي
blood volume كثير ، عالی:
ما تكون موجود ف ADH
بتالي ما بصير إعادة
امتصاص للماء ف بصير
له افراز ف بصير عندي
بول مخف

Reabsorption of Glucose in PCT

Na⁺ ~ Na⁺
Na⁺ ~ Na⁺
Na⁺ ~ Na⁺

Key:


Na⁺-glucose symporter

Glucose facilitated diffusion transporter

Diffusion

Sodium-potassium pump

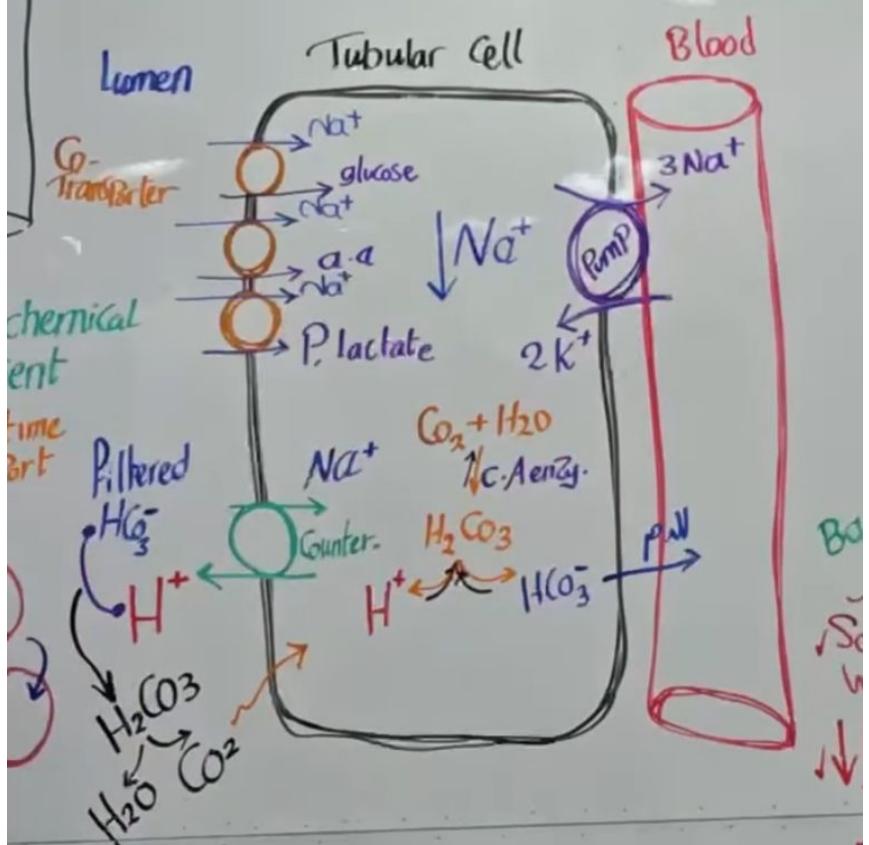
- Intracellular sodium levels are kept low due to Na^+/K^+ ATPase pump on basolateral membrane
- Low intracellular Na^+ creates **concentration gradient**
 - high in filtrate – low in cell
- Na^+ **symporters** on apical membrane use energy from gradient to bring in glucose
 - **Secondary active transport**
- 2 Na^+ and 1 glucose attach to symporter and enter cell together
- Glucose then diffuses out of cell and into peritubular capillaries

chemical gradient

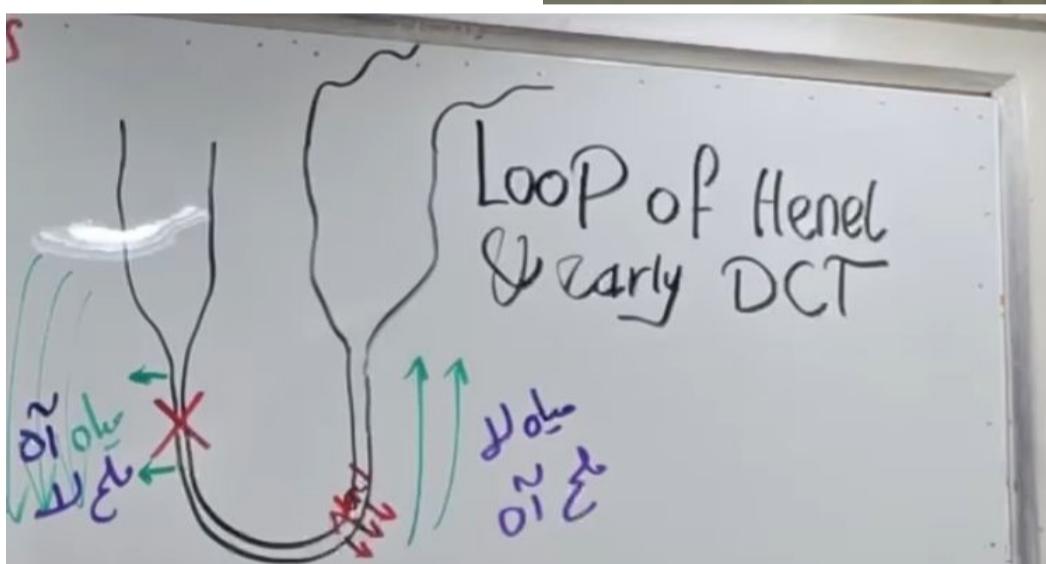
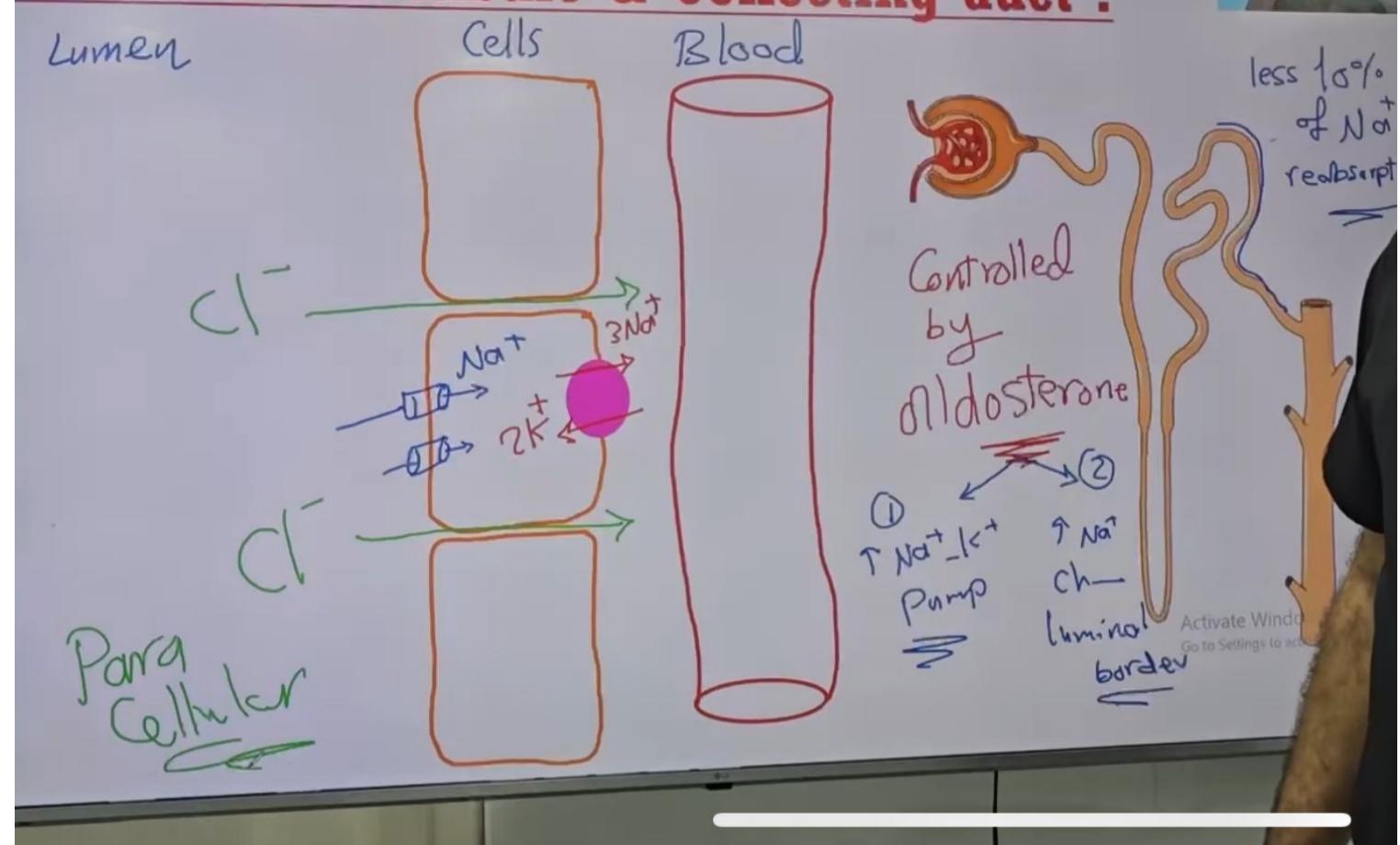
مضخة صوديوم وبوتاسيوم قاعدة بطلع من خلية صوديوم ف يعني بصير عندي تركيز صوديوم جوا قليل يعني سالب اكثر جوا

Electrical gradient

Na^+ Handling by Renal Tubules


1st 1/2 of PCT
65%

طلع صوديوم من cell بروح ع دم
طيب صار عندي نقص في صوديوم
شو بدبي اساوي ؟ بتيجي
بترجمي صوديوم وو مع اشياء



Na^+ Handling by Renal Tubule

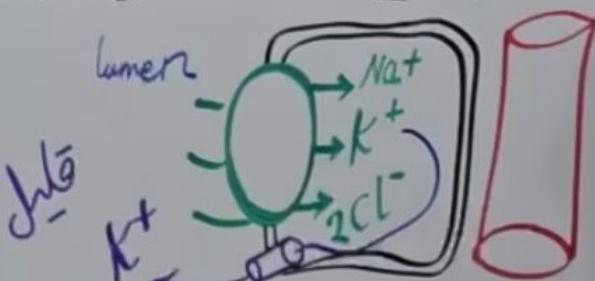
1st 1/2 of PCT
65%

Late distal tubule & Collecting duct :

1:27:11 / 1:27:30

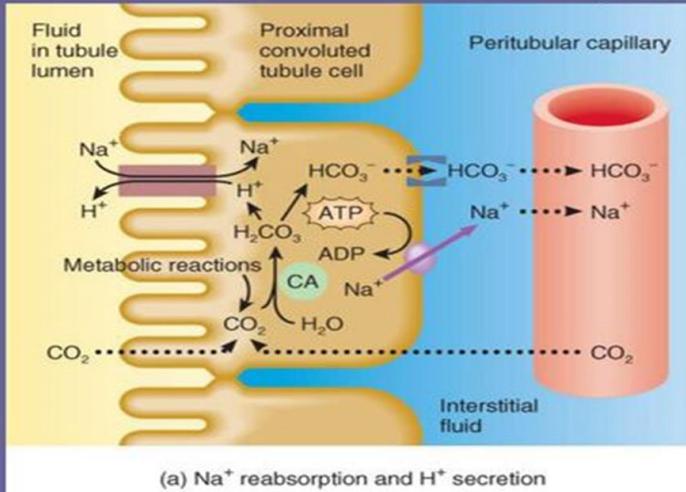
1. Thin descending limb

No Na^+ Reab.

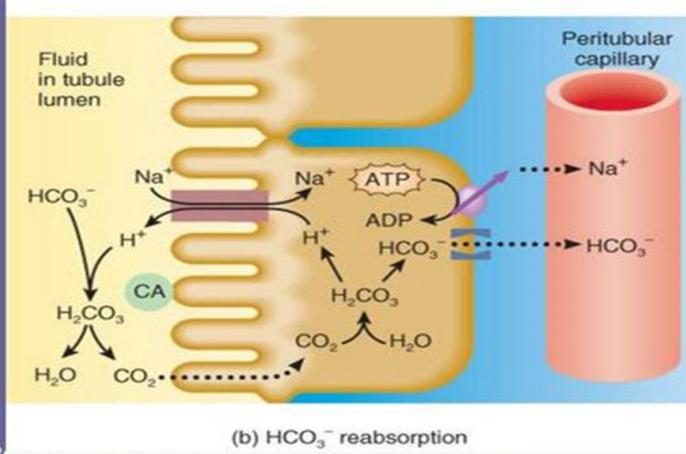

2. Thin ascending limb

NaCl Reab. Passive H_2O \downarrow Osmo

Diluting segment


H_2O \downarrow

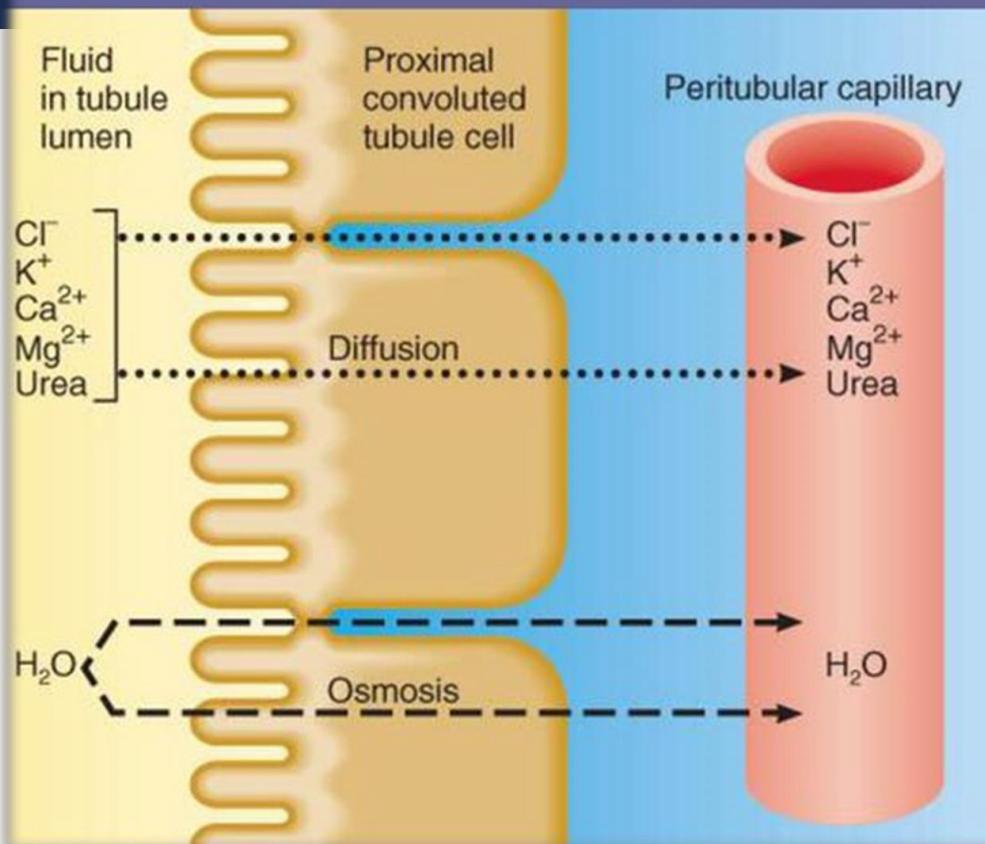
3. Thick ascending & early DCT



4. Early DCT

Reabsorption of Bicarbonate, Na^+ & H^+ Ions

(a) Na^+ reabsorption and H^+ secretion


(b) HCO_3^- reabsorption

- Na^+ antiporters reabsorb Na^+ and secrete H^+
 - PCT cells produce the H^+ & release bicarbonate ion to the peritubular capillaries
 - important buffering system
- For every H^+ secreted into the tubular fluid, one filtered bicarbonate eventually returns to the blood

Key:

- Na^+-H^+ antiporter
- HCO_3^- facilitated diffusion transporter
- Diffusion
- Sodium-potassium pump

Passive Reabsorption in the 2nd Half of PCT


- Electrochemical gradients produced by symporters & antiporters causes passive reabsorption of other solutes
- Cl^- , K^+ , Ca^{2+} , Mg^{2+} and urea passively diffuse into the peritubular capillaries
- Promotes osmosis in PCT (especially permeable due to aquaporin-1 channels)

REABSORPTION IN THE NEPHRON LOOP

لأن جميع الأنابيب الملتوية القريبة تعيد امتصاص حوالي 65٪ من الماء المصفى (حوالي 80 مل/دقيقة)، يدخل السائل الجزء التالي من النيفرون، حلقة النيفرون، بمعدل 40-45 مل/دقيقة.

Because all of the proximal convoluted tubules reabsorb about 65% of the filtered water (about 80 mL/min), fluid enters the next part of the nephron, the nephron loop, at a rate of 40–45 mL/min.

Symporters in the Loop of Henle

- Thick limb of loop of Henle has Na⁺ K⁺ Cl⁻ symporters that reabsorb these ions
- K⁺ leaks through K⁺ channels back into the tubular fluid leaving the interstitial fluid and blood with a negative charge
- Cations passively move to the vasa recta

Key:

- Na⁺–K⁺–2Cl⁻ symporter
- Leakage channels
- Sodium–potassium pump
- Diffusion

REABSORPTION IN THE EARLY DISTAL CONVOLUTED TUBULE

يدخل السائل إلى الأنابيب الملتوية البعيدة بمعدل حوالي 25 مل / دقيقة لأن 80٪ من المياه المصفى قد تم إعادة امتصاصها الآن

- Fluid enters the distal convoluted tubules at a rate of about 25 mL/ min because 80% of the filtered water has now been reabsorbed.

يعيد الجزء المبكر أو الأولي من الأنابيب الملتوية البعيد (DCT) امتصاصه حوالي 10-15٪ من المياه المصفى، و5٪ من أيونات الصوديوم المصفرة، و5٪ من أيونات Cl المفلترة
- The early or initial part of the distal convoluted tubule (DCT) reabsorbs about 10–15% of the filtered water, 5% of the filtered Na ions, and 5% of the filtered Cl ions.

يحدث إعادة امتصاص أيونات Na و Cl عن طريق أيونات Na-Cl symporters في الأغشية القمية.
- Reabsorption of Na and Cl ions occurs by means of Na-Cl ions symporters in the apical membranes.

REABSORPTION IN THE EARLY DISTAL CONVOLUTED TUBULE

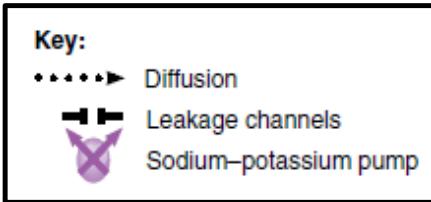
مضخات الصوديوم والبوتاسيوم وقنوات تسرب أيونات Cl^- في القاعدية الجانبية تسمح الأغشية بعد ذلك بإعادة امتصاص أيونات الصوديوم وأيونات Cl^- في الشعيرات الدموية المحيطة بالأنابيب

- Sodium-potassium pumps and Cl^- ions leakage channels in the basolateral membranes then permit reabsorption of Na^+ ions and Cl^- ions into the peritubular capillaries.
- The early DCT also is a major site where parathyroid hormone (PTH) stimulates reabsorption of calcium ions. The amount of calcium ions reabsorption in the early DCT varies depending on the body's needs.

اعادة امتصاص الكالسيوم حكت ركزت عليها
Parathyroid gland

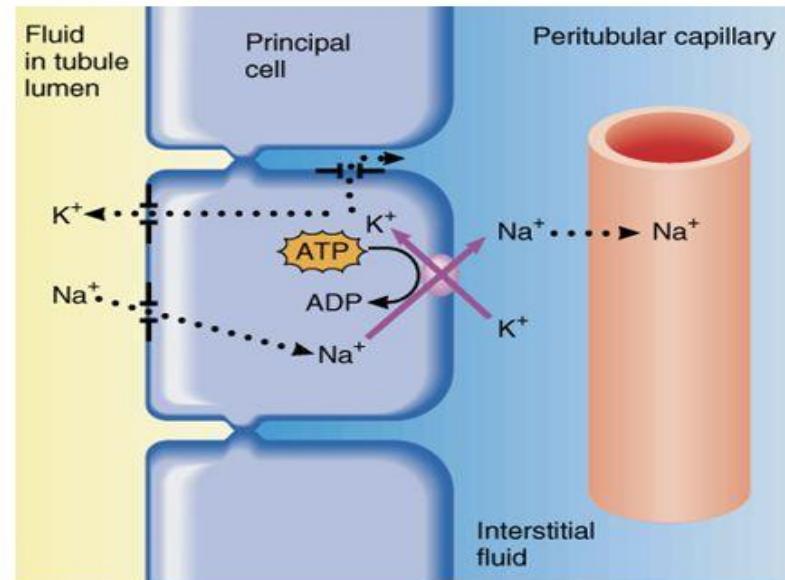
يحفز إعادة امتصاص أيونات الكالسيوم. كمية أيونات (PTH) المبكر هو أيضا موقع رئيسي حيث هرمون الغدة الدرقية O DCT
المبكر اعتمادا على احتياجات الجسم DCT الكالسيوم يختلف إعادة الامتصاص في

REABSORPTION AND SECRETION IN THE LATE DISTAL CONVOLUTED TUBULE AND COLLECTING DUCT


هناك نوعان مختلفان من الخلايا - الخلايا الرئيسية والخلايا المترادلة - هما موجود في الجزء المتأخر أو الطرفي من الأنابيب الملتوي البعيد وفي جميع أنحاء قناة التحبيط.

- ✓ **Two different types of cells—principal cells and intercalated cells**—are present at the late or terminal part of the distal convoluted tubule and throughout the collecting duct.

على النقيض من الأجزاء السابقة من النيفرون، تمر أيونات الصوديوم عبر الغشاء القمي للخلايا الرئيسية عبر قنوات تسرب الصوديوم بدلاً من ذلك أكثر من ذلك عن طريق المستوردين أو المضادين.
- ✓ **In contrast to earlier segments of the nephron**, sodium ions pass through the apical membrane of principal cells via sodium leakage channels rather than by means of symporters or antiporters.


✓ في الغشاء القمي للخلايا الرئيسية، تسمح قنوات تسرب الصوديوم دخول أيونات الصوديوم بينما تسمح قنوات تسرب أيونات البوتاسيوم بالخروج من أيونات البوتاسيوم في السائل الأنبوبي.
- ✓ **In the apical membrane of principal cells**, sodium leakage channels allow entry of sodium ions while potassium ions leakage channels allow exit of potassium ions into the tubular fluid.

Actions of the Principal Cells

عشان تعوض صوديوم
يللي فادعه بتفقده نتيجة
مضخة

- Na^+ enters principal cells through leakage channels
- Na^+ pumps keep the concentration of Na^+ in the cytosol low
- Cells secrete variable amounts of K^+ , to adjust for dietary changes in K^+ intake
 - down concentration gradient due to Na^+/K^+ pump
- Aldosterone increases this Na^+ reabsorption (and passive water reabsorption) & K^+ secretion by principal cells by stimulating the synthesis of new pumps and channels.

انتقال صوديوم و البوتاسيوم عكس بعض

blood في

HOMEOSTATIC REGULATION OF TUBULAR REABSORPTION AND TUBULAR SECRETION

- Five hormones affect the extent of sodium, calcium and chloride ions, and water reabsorption as well as potassium ions secretion by the renal tubules. **These hormones include: angiotensin II, aldosterone, antidiuretic hormone, atrial natriuretic peptide, and parathyroid hormone.**

تؤثر خمسة هرمونات على مدى أيونات الصوديوم والكالسيوم والكلوريد، و

إعادة امتصاص الماء وكذلك إفراز أيونات البوتاسيوم عن طريق الكلى

الأتبوب. تشمل هذه الهرمونات: **الأنجيوتينسين الثاني، الألدوستيرون، مضادات البول**

هرمون، بيتيد الصوديوم الأذيني، وهرمون الغدة الدرقية.

TABLE 26.4**Hormonal Regulation of Tubular Reabsorption and Tubular Secretion**

HORMONE	MAJOR STIMULI THAT TRIGGER RELEASE	MECHANISM AND SITE OF ACTION	EFFECTS
Angiotensin II	Low blood volume or low blood pressure stimulates renin-induced production of angiotensin II.	Stimulates activity of $\text{Na}^+ - \text{H}^+$ antiporters in proximal tubule cells.	Increases reabsorption of Na^+ , other solutes, and water, which increases blood volume and blood pressure.
Aldosterone	Increased angiotensin II level and increased level of plasma K^+ promote release of aldosterone by adrenal cortex.	Enhances activity of sodium-potassium pumps in basolateral membrane and Na^+ channels in apical membrane of principal cells in collecting duct.	Increases secretion of K^+ and reabsorption of Na^+ , Cl^- ; increases reabsorption of water, which increases blood volume and blood pressure.
Antidiuretic hormone (ADH)	Increased osmolarity of extracellular fluid or decreased blood volume promotes release of ADH from posterior pituitary gland.	Stimulates insertion of water channel proteins (aquaporin-2) into apical membranes of principal cells.	Increases facultative reabsorption of water, which decreases osmolarity of body fluids.
Atrial natriuretic peptide (ANP)	Stretching of atria of heart stimulates ANP secretion.	Suppresses reabsorption of Na^+ and water in proximal tubule and collecting duct; inhibits secretion of aldosterone and ADH.	Increases excretion of Na^+ in urine (natriuresis); increases urine output (diuresis) and thus decreases blood volume and blood pressure.
Parathyroid hormone (PTH)	Decreased level of plasma Ca^{2+} promotes release of PTH from parathyroid glands.	Stimulates opening of Ca^{2+} channels in apical membranes of early distal tubule cells.	Increases reabsorption of Ca^{2+} .

PRODUCTION OF DILUTE AND CONCENTRATED URINE

على الرغم من أن كمية السوائل التي تتناولها يمكن أن تكون متغيرة للغاية، إلا أن إجمالي حجم السوائل في يظل جسمك مستقراً عادة.

- Even though your fluid intake can be highly variable, **the total volume of fluid in your body normally remains stable.**

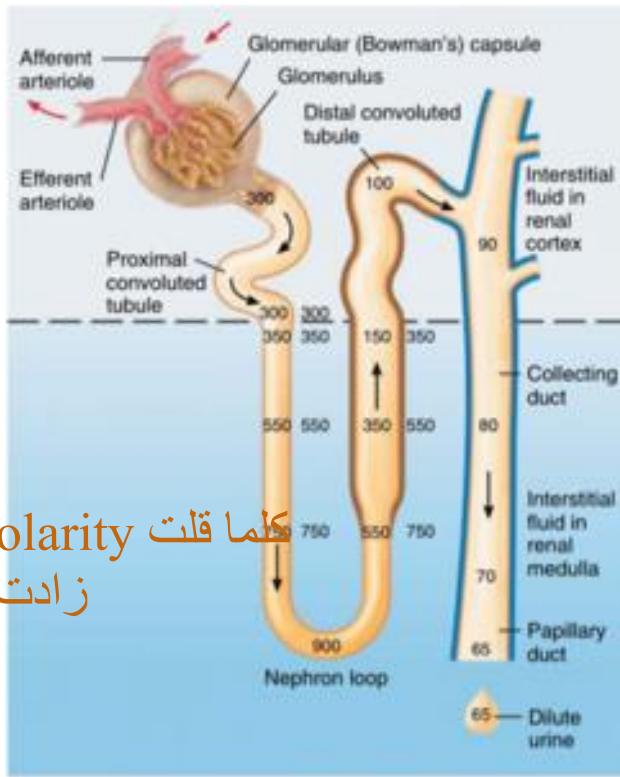
يعتمد توازن حجم سوائل الجسم إلى حد كبير على قدرة الكلى لتنظيم معدل فقدان الماء في البول

- Homeostasis of body fluid volume depends in large part on **the ability of the kidneys to regulate the rate of water loss in urine.**

تنتج الكلى التي تعمل بشكل طبيعي كمية كبيرة من البول المخفف
عندما يكون السائل المدخل مرتفع، وكمية صغيرة من البول المركز
عندما يكون تناول السوائل خسارة منخفضة أو سائلة كبيرة.

- Normally functioning kidneys produce a large volume of dilute urine when fluid intake is high, and a small volume of concentrated urine when fluid intake is low or fluid loss is large.**

يتحكم ADH في ما إذا كان البول المخفف أو البول المركز يتكون. في حال غياب ADH، البول مخفف جداً. ومع ذلك، فإن


المستوى العالٍ من ADH يحفز إعادة امتصاص المزيد من الماء في الدم، مما ينتج عنه بول مركز

- ADH controls whether dilute urine or concentrated urine is formed. In the absence of ADH, urine is very dilute. However, a high level of ADH stimulates reabsorption of more water into blood, producing a concentrated urine.**

غير منفذ للماء منفذ للبول

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

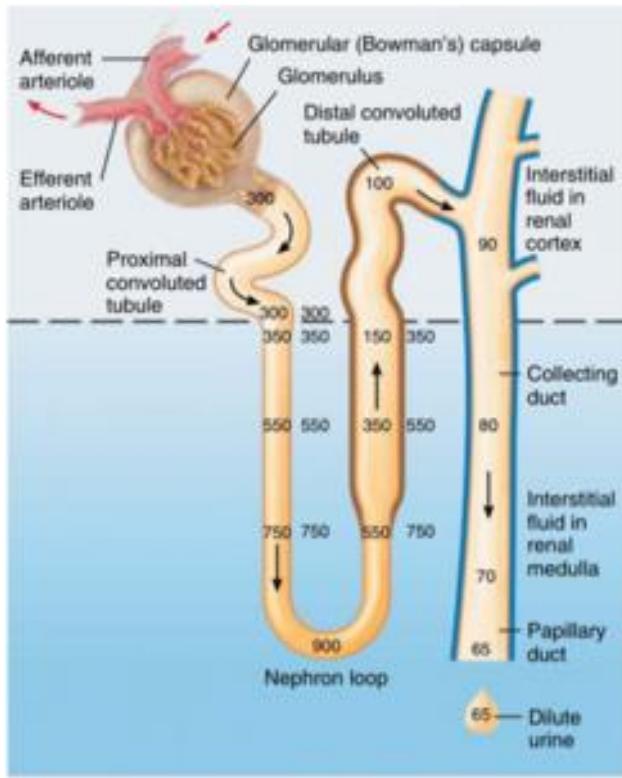
When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

FORMATION OF DILUTE URINE

الترشح الكبيبي له نفس نسبة الماء والجسيمات المذابة مثل الدم؛ الأسمولية هي حوالي 300 mOsm/liter.

- Glomerular filtrate has the same ratio of water and solute particles as blood; its osmolarity is about 300 mOsm/liter.

السائل الذي يترك الأنبوب الملتوي القريب هو لا يزال متساوي التوتر للبلازما.


- Fluid leaving the proximal convoluted tubule is still isotonic to plasma.

عندما يتشكل البول المخفف، فإن الأسمولية من السائل في التجويف الأنبوبي يزداد كما هو يتدفق أسفل الطرف الهابط للنيفرون حلقة، تتفاوت أشأاء تدفقها إلى الطرف الصاعد، ويتناقض أكثر أشأاء تدفقه من خلال بقية النيفرون وقناة التجمیع.

- When dilute urine is being formed, the osmolarity of the fluid in the tubular lumen increases as it flows down the descending limb of the nephron loop, decreases as it flows up the ascending limb, and decreases still more as it flows through the rest of the nephron and collecting duct.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

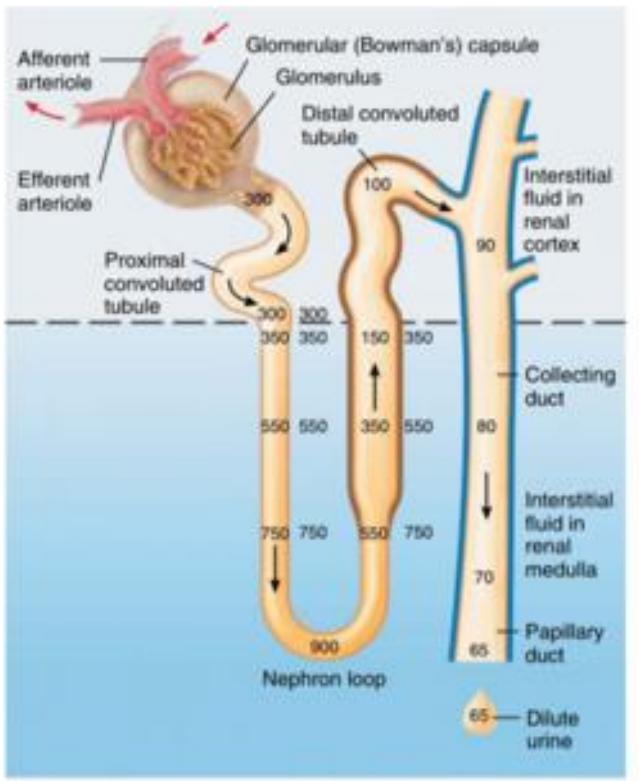
When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

تكوين البول المخفف

FORMATION OF DILUTE URINE

لأن الأسمولية للسائل الخلالي من يصبح النخاع الكلوي أكبر تدريجياً، يتم إعادة امتصاص المزيد والمزيد من المياه عن طريق التناضح مثل يتدفق السائل الأنبوبي على طول الطرف الهازي نحو طرف حلقة التفرون.

- Because the **osmolarity of the interstitial fluid of the renal medulla becomes progressively greater, more and more water is reabsorbed by osmosis as tubular fluid flows along the descending limb toward the tip of the nephron loop.**
- Cells lining the thick ascending limb of the loop have symporters that actively reabsorb sodium, potassium, and chloride ions from the tubular fluid.

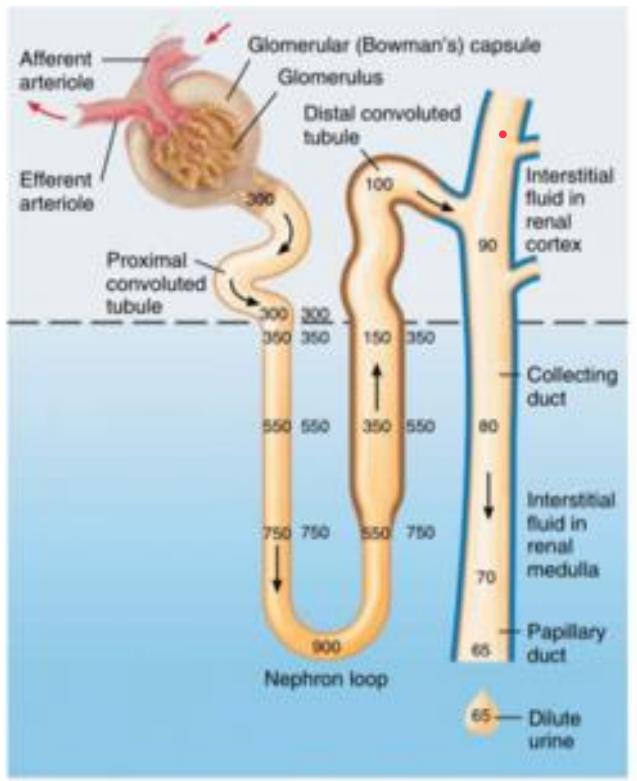

الخلايا المبطنة للطرف الصاعد السميكة للحلقة لديك ناقلات تعيد امتصاص الصوديوم بنشاط، أيونات البوتاسيوم والكلوريد من الأنابيب سائل.

3. على الرغم من إعادة امتصاص المواد المذابة في سميكية الطرف الصاعد، فإنزية الماء لهذا جزء من البُنيفرون دائمًا ما يكون منخفضًا جداً، لذلك لا يمكن أن يتبع الماء بالتناضح. كهذا - ولكن ليست جزئيات الماء - ترك الأنبوب السائل، تنخفض الأسموالية إلى حوالي 150

mOsm/liter. السائل الذي يدخل القاسق وبالتالي فإن الأنبوب الملتوي أكثر تخفيفًا بالذمة.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.


FORMATION OF DILUTE URINE

2. The ions pass from the tubular fluid into thick ascending limb cells, then into interstitial fluid, and finally some diffuse into the blood inside the vasa recta.
تمر الأيونات من السائل الأنبوبي إلى سميكية خلايا الأطراف الصاعدة، ثم إلى السائل الخلالي، وأخيراً ينتشر البعض في الدم داخل فاسا المستقيمة.
3. Although solutes are being reabsorbed in the thick ascending limb, the water permeability of this portion of the nephron is always quite low, so water cannot follow by osmosis. As solutes—but not water molecules—are leaving the tubular fluid, its osmolarity drops to about 150 mOsm/liter. The fluid entering the distal convoluted tubule is thus more dilute than plasma.

أخيرا، الخلايا الرئيسية للملتوية المتأخرة الأنابيب وقنوات التجميع غير منفذة للماء عندما يكون مستوى ADH منخفضا جدا. وبالتالي، السائل الأنبوبي يصبح أكثر تخفيفا تدريجيا أثناء تدفقه إلى الأمام. بحلول الوقت الذي يستترن في السائل الأنبوبي إلى الكلى الحوض، يمكن أن يكون تركيزه منخفضا يصل إلى mOsm/liter 70-65.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

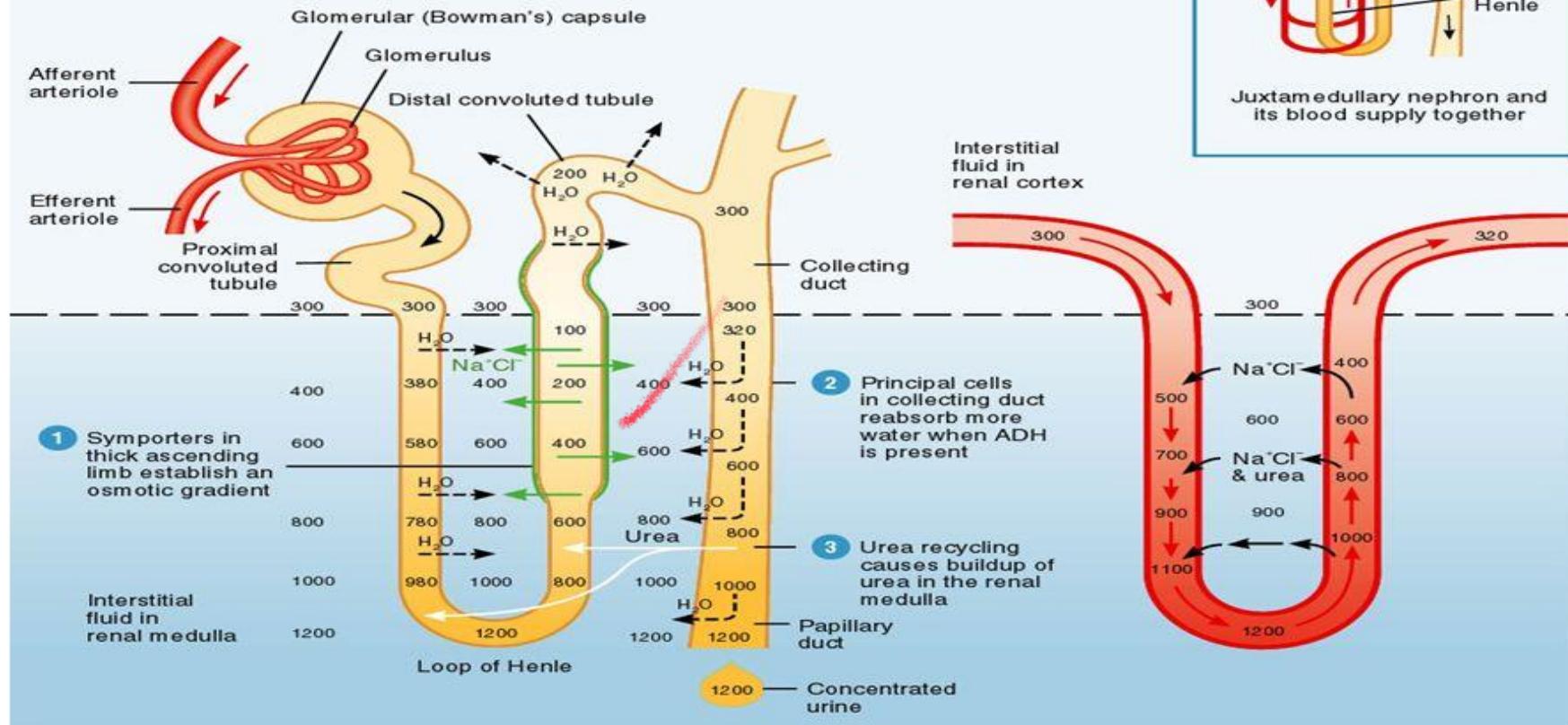
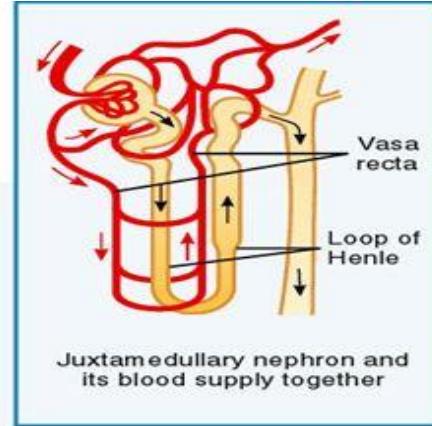
FORMATION OF DILUTE URINE

بينما يستمر السائل في التدفق على طول القاضي الأنبوبي ملتوبي، مذابات إضافية ولكن عدد قليل فقط يتم إعادة امتصاص جزيئات الماء. البعيد المبكر الخلايا الأنبوية الملتوية ليست قابلة للنفاذ جداً للماء ولا يتم تنظيمها بواسطة

4. While the fluid continues flowing along the distal convoluted tubule, additional solutes but only a few water molecules are reabsorbed. The early distal convoluted tubule cells are not very permeable to water and are not regulated by ADH.
5. Finally, the principal cells of the late distal convoluted tubules and collecting ducts are impermeable to water when the ADH level is very low. Thus, tubular fluid becomes progressively more dilute as it flows onward. By the time the tubular fluid drains into the renal pelvis, its concentration can be as low as 65–70 mOsm/liter. This is four times more dilute than blood plasma or glomerular filtrate.

التركيز ملح عالي FORMATION OF CONCENTRATED URINE

عندما يكون تناول المياه متحفضاً أو يكون فقدان الماء مرتفعاً (مثل أثناء التعرق الشديد)، يجب على الكلى الحفاظ على الماء أثناء الاستمرار القضاء على النفايات والأيونات الزائدة. تحت تأثير ADH، تنتج الكلى كمية صغيرة من البول شديد التركيز.



- **When water intake is low or water loss is high** (such as during heavy sweating), the kidneys must conserve water while still eliminating wastes and excess ions. Under the influence of ADH, the kidneys produce a small volume of highly concentrated urine.

يمكن أن يكون البول أكثر تركيزاً بأربع مرات (حتى 1200 mOsm/liter) من بلازما الدم أو الترشيح الكبيبي (300 mOsm/liter).

- Urine can be four times more concentrated (up to 1200 mOsm/liter) than blood plasma or glomerular filtrate (300 mOsm/liter).

محتاج ازود
reabsorption

Mechanism of urine concentration in long-loop juxtamedullary nephrons

(a) Reabsorption of Na^+ , Cl^- and water in a long-loop juxamedullary nephron

(b) Recycling of salts and urea in the recta vasorum

FORMATION OF CONCENTRATED URINE

قدرة ADH على التسبب في إفراز البول المركز يعتمد على وجود تدرج تناضحي من المواد الذائبة في السائل الخلالي للنخاع الكلوي.

- The ability of ADH to cause excretion of concentrated urine depends on the presence of an osmotic gradient of solutes in the interstitial fluid of the renal medulla.

هناك عاملان رئيسيان يساهمان في بناء هذا والحفاظ عليه التدرج التناضحي: (1) الاختلافات في نفاذية المذاب والماء وإعادة الامتصاص في أقسام مختلفة من حلقات النيفرون الطويلة وقنوات التجمييع، و(2) التدفق المعاكس للسائل من خلال هياكل على شكل أنبوب في النخاع الكلوي.
- Two main factors contribute to building and maintaining this osmotic gradient: (1) differences in solute and water permeability and reabsorption in different sections of the long nephron loops and the collecting ducts, and (2) the countercurrent flow of fluid through tube-shaped structures in the renal medulla.

FORMATION OF CONCENTRATED URINE

- **Countercurrent flow refers to the flow of fluid in opposite directions.** This occurs when fluid flowing in one tube runs counter (opposite) to fluid flowing in a nearby parallel tube. Examples of countercurrent flow include the flow of tubular fluid through the descending and ascending limbs of the nephron loop and the flow of blood through the ascending and descending parts of the vasa recta.

يشير التدفق المعاكس إلى تدفق السائل في الاتجاه المعاكس الاتجاهات. يحدث هذا عندما يتدفق السائل في أنبوب واحد مضاد (عكس) للسائل المتدفق في أنبوب مواز قريب. تتضمن أمثلة التدفق المعاكس تدفق السائل الأنبوي من خلال الأطراف الهابطة والصاعدة لحفة النبيرون وتدفق الدم من خلال الصعود والتنازلي أجزاء من الأوعية المستقيمة.

FORMATION OF CONCENTRATED URINE

- Since countercurrent flow through the descending and ascending limbs of the long nephron loop **establishes the osmotic gradient in the renal medulla**, the long nephron loop is said to function as a countercurrent multiplier. **The kidneys use this osmotic gradient to excrete concentrated urine.**

منذ التدفق المعاكس من خلال التنازلي والأطراف الصاعدة لحلقة النيافرون الطويلة تؤسس التدرج التناصحي في النخاع الكلوي، حلقة النيافرون الطويلة هي يقال إنه يعمل كمضاعف معاكس للتيار. تستخدم الكلى هذا التدرج التناصحي لإفراز البول المركز.

FORMATION OF CONCENTRATED URINE

يحدث إنتاج البول المركز عن طريق الكلى في الطريقة التالية:

- **Production of concentrated urine by the kidneys occurs in the following way:**

سيمبورترز في خلايا الأطراف الصاعدة السميكة من حلقة النيفرون يسبب تراكم Na^+ و Cl^-

1. **Symporters in thick ascending limb cells of the nephron loop cause a buildup of Na^+ and Cl^- ions in the renal medulla (water is not reabsorbed in this segment).**

تدفق التيار المعاكس من خلال الهابط والتصاعدى تتشكل أطراف حلقة النيفرون تدريجياً تناضحاً في النخاع الكلوي.

2. **Countercurrent flow through the descending and ascending limbs of the nephron loop establishes an osmotic gradient in the renal medulla.**

FORMATION OF CONCENTRATED URINE

التدفق المعاكس: بما أن السائل الأنبوبي يتحرك باستمرار من الطرف الهابط إلى الطرف الصاعد السميكة للنيفرون حلقة، الطرف الصاعد السميكة يعيد امتصاص Na باستمرار وأيونات كلريل. نتيجة لذلك، تصبح أيونات Na وCl المعاد امتصاصها يتركز بشكل متزايد في السائل الخلالي للنخاع، مما يؤدي إلى تكوين التدرج

الناتج من التدفق المعاكس هو تدرج التوسيع والانكماش، حيث ينبع السائل الخلالي من الأنسجة المحيطة بالنيفرونات في المراكز، مما يؤدي إلى تكوين التدرج.

2. **Countercurrent flow:** Since tubular fluid constantly moves from the descending limb to the thick ascending limb of the nephron loop, the thick ascending limb is constantly reabsorbing Na and Cl ions. Consequently, the reabsorbed Na and Cl ions become increasingly concentrated in the interstitial fluid of the medulla, which results in the formation of an osmotic gradient.

FORMATION OF CONCENTRATED URINE

❖ الطرف الهابط لحلقة النيفرون قابل للنفاذ جداً الماء ولكنه غير منيع للمذابات باستثناء اليوريا

- ❖ The descending limb of the nephron loop is very permeable to water but impermeable to solutes except urea.
- ❖ Because the osmolarity of the interstitial fluid outside the descending limb is higher than the tubular fluid within it, water moves out of the descending limb via osmosis.

❖ لأن الأسمولية للسائل الخلالي خارج الطرف الهابط أعلى من السائل الأنبوبي بداخله، الماء يخرج من الطرف الهابط عن طريق التناضح.

FORMATION OF CONCENTRATED URINE

- ❖ الطرف الصاعد للحلقة غير منفذ للماء، ولكن يعيّد السيمبورتر امتصاص أيونات الصوديوم Na^+ و Cl^- من السائل الأنبوي إلى السائل الخلالي للنخاع الكلوي، وبالتالي فإن الأسمولية ينخفض السائل الأنبوي تدريجياً أثناء تدفقه عبر الطرف الصاعد. بشكل عام، يصبح السائل الأنبوي تدريجياً أكثر تركيزاً أثناء تدفقه على طول الطرف الهاابط وأكثر تخفيفاً تدريجياً أثناء تحركه على طول الطرف الصاعد.
- ❖ The ascending limb of the loop is impermeable to water, but its symporters reabsorb Na and Cl ions from the tubular fluid into the interstitial fluid of the renal medulla, so the osmolarity of the tubular fluid progressively decreases as it flows through the ascending limb. Overall, tubular fluid becomes progressively more concentrated as it flows along the descending limb and progressively more dilute as it moves along the ascending limb.

FORMATION OF CONCENTRATED URINE

3. Cells in the collecting ducts reabsorb more water and urea.

When ADH increases the water permeability of the principal cells, water quickly moves via osmosis out of the collecting duct tubular fluid, into the interstitial fluid of the inner medulla, and then into the vasa recta.

تعيد الخلايا الموجودة في قنوات التجميع امتصاص المزيد من الماء والبيوريا. عندما يزيد ADH من نفاذية الماء للخلايا الرئيسية، يتحرك الماء بسرعة عن طريق التناضح خارج قناة التجميع السائل الأنبوبي، في السائل الخلالي للنخاع الداخلي، وثم إلى الأوعية المستقيمة.

كلما زاد ADH زاد امتصاص الماء

FORMATION OF CONCENTRATED URINE

تؤدي إعادة تدوير اليوريا إلى تراكم اليوريا في النخاع الكلوي.

4. Urea recycling causes a buildup of urea in the renal medulla.

عندما تراكم اليوريا في السائل الخلالي، ينتشر بعضها في السائل الأنبوبي في الأطراف الصاعدة الهاابطة والرقيقة الطويلة حلقات التيفرون، والتي هي أيضاً قابلة للنفاذ إلى اليوريا.

- As urea accumulates in the interstitial fluid, some of it diffuses into the tubular fluid in the **descending and thin ascending limbs of the long nephron loops**, which also are **permeable to urea**.

ومع ذلك، بينما يتدفق السائل عبر الطرف الصاعد السميكي، بعيد الأنبوب الملتوي، والجزء القشرى من قناة التجميع، تبقى اليوريا في قناة التجميع لأن الخلادى في هذه الأجزاء غير منفذة لها.

- However, while the fluid flows through the **thick ascending limb, distal convoluted tubule, and cortical portion of the collecting duct**, urea remains **in the lumen because cells in these segments are impermeable to it**.

يتدفق السائل على طول قنوات التجميع، ويستمر إعادة امتصاص الماء عبر التناضح لأن **ADH** موجود.

- As fluid flows along the collecting ducts, water reabsorption continues via osmosis because **ADH** is present.

Figure 26.20 Summary of filtration, reabsorption, and secretion in the nephron and collecting duct.

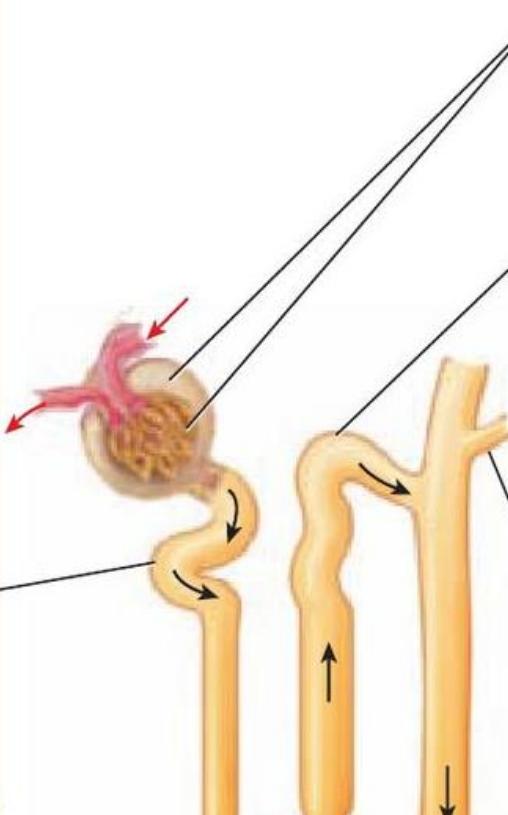
Filtration occurs in the renal corpuscle; reabsorption occurs all along the renal tubule and collecting ducts.

PROXIMAL CONVOLUTED TUBULE

Reabsorption (into blood) of filtered:

Water	65% (osmosis)
Na^+	65% (sodium-potassium pumps, symporters, antiporters)
K^+	65% (diffusion)
Glucose	100% (symporters and facilitated diffusion)
Amino acids	100% (symporters and facilitated diffusion)
Cl^-	50% (diffusion)
HCO_3^-	80–90% (facilitated diffusion)
Urea	50% (diffusion)
Ca^{2+} , Mg^{2+}	variable (diffusion)

Secretion (into urine) of:


H^+	variable (antiporters)
NH_4^+	variable, increases in acidosis (antiporters)
Urea	variable (diffusion)
Creatinine	small amount

At end of PCT, tubular fluid is still isotonic to blood (300 mOsm/liter).

RENAL CORPUSCLE

Glomerular filtration rate: 105–125 mL/min of fluid that is isotonic to blood

Filtered substances: water and all solutes present in blood (except proteins) including ions, glucose, amino acids, creatinine, uric acid

EARLY DISTAL CONVOLUTED TUBULE

Reabsorption (into blood) of:

Water	10–15% (osmosis)
Na^+	5% (symporters)
Cl^-	5% (symporters)
Ca^{2+}	variable (stimulated by parathyroid hormone)

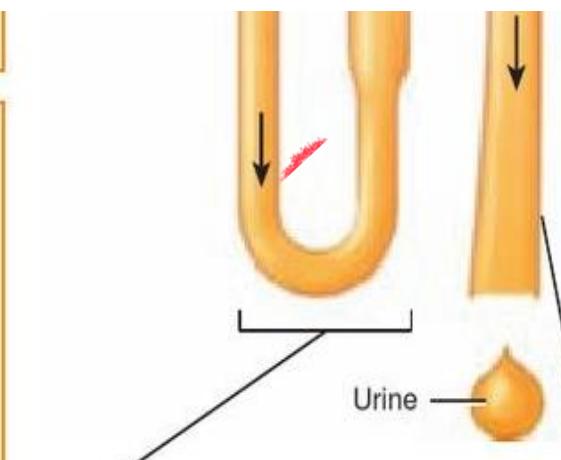
LATE DISTAL CONVOLUTED TUBULE AND COLLECTING DUCT

Reabsorption (into blood) of:

Water	5–9% (insertion of water channels stimulated by ADH)
Na^+	1–4% (sodium-potassium

isotonic to blood (300 mOsm/liter).

LOOP OF HENLE


Reabsorption (into blood) of:

Water	15% (osmosis in descending limb)
Na^+	20–30% (symporters in ascending limb)
K^+	20–30% (symporters in ascending limb)
Cl^-	35% (symporters in ascending limb)
HCO_3^-	10–20% (facilitated diffusion)
$\text{Ca}^{2+}, \text{Mg}^{2+}$	variable (diffusion)

Secretion (into urine) of:

Urea	variable (recycling from collecting duct)
------	---

At end of loop of Henle, tubular fluid is hypotonic (100–150 mOsm/liter).

ADH)

Na^+ 1–4% (sodium–potassium pumps and sodium channels stimulated by aldosterone)

HCO_3^- variable amount, depends on H^+ secretion (antiporters)

Urea variable (recycling to loop of Henle)

Secretion (into urine) of:

K^+ variable amount to adjust for dietary intake (leakage channels)

H^+ variable amounts to maintain acid–base homeostasis (H^+ pumps)

Tubular fluid leaving the collecting duct is dilute when ADH level is low and concentrated when ADH level is high.

فحص صحة الكلية

تقييم من الكلى الوظيفية:

EVALUATION OF KIDNEY FUNCTION:

تحليل البول

I- URINALYSIS

البول يلي عندهم سكري يكون
fruti

TABLE 26.5

Characteristics of Normal Urine

CHARACTERISTIC	DESCRIPTION
Volume	One to two liters in 24 hours; varies considerably.
Color	Yellow or amber; varies with urine concentration and diet. Color due to urochrome (pigment produced from breakdown of bile) and urobilin (from breakdown of hemoglobin). Concentrated urine is darker in color. Color affected by diet (reddish from beets), medications, and certain diseases. Kidney stones may produce blood in urine.
Turbidity	تعكر Transparent when freshly voided; becomes turbid (cloudy) on standing.
Odor	Mildly aromatic; becomes ammonia-like on standing. Some people inherit ability to form methylmercaptan from digested asparagus, which gives characteristic odor. Urine of diabetics has fruity odor due to presence of ketone bodies.
pH	Ranges between 4.6 and 8.0; average 6.0; varies considerably with diet. High-protein diets increase acidity; vegetarian diets increase alkalinity.
Specific gravity (density)	Specific gravity (density) is ratio of weight of volume of substance to weight of equal volume of distilled water. In urine, 1.001–1.035. The higher the concentration of solutes, the higher the specific gravity.

لازم يكون شفاف

بس اعرف الاسماء

TABLE 26.6

Summary of Abnormal Constituents in Urine

ABNORMAL CONSTITUENT	COMMENTS
Albumin	Normal constituent of plasma; usually appears in only very small amounts in urine because it is too large to pass through capillary fenestrations. Presence of excessive albumin in urine— albuminuria (al'-bū-mi-NOO-rē-a)—indicates increase in permeability of filtration membranes due to injury or disease, increased blood pressure, or irritation of kidney cells by substances such as bacterial toxins, ether, or heavy metals.
Glucose	Presence of glucose in urine— glucosuria (gloo-kō-SOO-rē-a)—usually indicates diabetes mellitus. Occasionally caused by stress, which can cause excessive epinephrine secretion. Epinephrine stimulates breakdown of glycogen and liberation of glucose from liver.
Red blood cells (erythrocytes)	Presence of red blood cells in urine— hematuria (hēm-a-TOO-rē-a)—generally indicates pathological condition. One cause is acute inflammation of urinary organs due to disease or irritation from kidney stones. Other causes: tumors, trauma, kidney disease, contamination of sample by menstrual blood.
Ketone bodies	High levels of ketone bodies in urine— ketonuria (kē-tō-NOO-rē-a)—may indicate diabetes mellitus, anorexia, starvation, or too little carbohydrate in diet.

اذا كان توتر عالي لشخص ممكن يطلع
Glucose في البول

TABLE 26.6**Summary of Abnormal Constituents in Urine**

ABNORMAL CONSTITUENT	COMMENTS
Bilirubin	When red blood cells are destroyed by macrophages, the globin portion of hemoglobin is split off and heme is converted to biliverdin. Most biliverdin is converted to bilirubin, which gives bile its major pigmentation. Above-normal level of bilirubin in urine is called bilirubinuria (bil'-ë-roo-bi-NOO-rë-a).
Urobilinogen <i>التهاب المسالك البولية</i>	Presence of urobilinogen (breakdown product of hemoglobin) in urine is called urobilinogenuria (ü'-roo-bi-lin'-ë-je-NOO-rë-a). Trace amounts are normal, but elevated urobilinogen may be due to hemolytic or pernicious anemia, infectious hepatitis, biliary obstruction, jaundice, cirrhosis, congestive heart failure, or infectious mononucleosis.
Casts	Casts are tiny masses of material that have hardened and assumed shape of lumen of tubule in which they formed, from which they are flushed when filtrate builds up behind them. Casts are named after cells or substances that compose them or based on appearance (for example, white blood cell casts, red blood cell casts, and epithelial cell casts that contain cells from walls of tubules).
Microbes	Number and type of bacteria vary with specific urinary tract infections. One of the most common is <i>E. coli</i> . Most common fungus is yeast <i>Candida albicans</i> , cause of vaginitis. Most frequent protozoan is <i>Trichomonas vaginalis</i> , cause of vaginitis in females and urethritis in males.

تقييم وظائف الكلى:

2- اختبارات الدم

EVALUATION OF KIDNEY FUNCTION: 2- BLOOD TESTS

❖ يمكن أن يوفر اختباران لفحص الدم معلومات حول وظيفة الكلى:-

❖ Two blood-screening tests can provide information about kidney function:-

1. Blood urea nitrogen (BUN) test.

اختبار نيتروجين اليوريا في الدم (BUN).

2. Plasma creatinine. رکز عليه.

2. الكرياتينين في البلازما.

BLOOD UREA NITROGEN (BUN) TEST

❖ يقيس نيتروجين الدم الذي يعد جزءاً من اليوريا الناتجة من تقويض وإزالة الأحماض الأمينية.

❖ It measures **the blood nitrogen that is part of the urea** resulting from catabolism and deamination of amino acids.

علاقة طردية

❖ When glomerular filtration rate decreases severely, as may occur with renal disease or obstruction of the urinary tract, BUN rises steeply.

❖ تتمثل إحدى الاستراتيجيات في علاج هؤلاء المرضى في تقليل تناول البروتين، وبالتالي تقليل معدل إنتاج اليوريا.

❖ One strategy in treating such patients is to minimize their protein intake, thereby reducing the rate of urea production.

PLASMA CREATININE

❖ ينبع عن تقويض فوسفات الكرياتين في الهيكل العظمي عضلة.

- ❖ It results from catabolism of creatine phosphate in skeletal muscle.

كلما كان قليل كلما كان الإفراز قليل

❖ عادة، يظل مستوى الكرياتينين في الدم ثابتا لأن معدل إفراز الكرياتينين في البول يساوي إفرازه من عضلة.

- ❖ Normally, the blood creatinine level remains steady because the rate of creatinine excretion in the urine equals its discharge from muscle.

مستوى الكرياتينين فوق 1.5 ملغم / ديسيلتر (135 مليمول / لتر) عادة ما يكون مؤشر على ضعف وظائف الكلى.

- ❖ A creatinine level above 1.5 mg/dL (135 mmol/liter) usually is an indication of poor renal function.

RENAL PLASMA CLEARANCE

❖ إزالة البلازمـا الكلـوية هي حـجم الدـم الـذـي يـتم "تنـظـيفـه" أو تـطـهـيرـها من مـادـة لـكـل وـحدـة زـمـنـية، وـعـادـة ما يـتم التـعـبـيرـعـنـها في وـحدـات المـلـيلـتر في الدـقـيقـة.

مـعـدـل خـرـوج أو تـخلـص الـجـسـم مـن دـوـاء مـعـيـن

❖ **Renal plasma clearance** is the volume of blood that is "cleaned" or cleared of a substance per unit of time, usually expressed in units of milliliters per minute.

❖ يـشير الإـزـالـة المـنـخـفـضـة إـلـى إـفـرـاز غـير فـعـال. عـلـى سـبـيل المـثال، إـلـإـزـالـة الـجـلـوكـوز عـادـة ما تـكـون صـفـرا لأنـها تـمـامـا يـعاد اـمـتـصـاصـه؛ لـذـلـك، لا يـفـرـز الـجـلـوكـوز عـلـى الإـطـلاق.

❖ **Low clearance** indicates **inefficient excretion**. For example, the clearance of glucose normally is zero because it is completely reabsorbed; therefore, glucose is not excreted at all.

RENAL PLASMA CLEARANCE

❖ معرفة تصريح الدواء أمر ضروري لتحديد الجرعة الصحيحة. إذا كان الخلوص مرتفعاً (أحد الأمثلة على ذلك هو البنسلين)، ثم يجب أن تكون الجرعة عالية أيضاً، ويجب إعطاء الدواء عدة مرات في اليوم للحفاظ على مستوى علاجي كافٍ في الدم.

❖ Knowing a drug's clearance is essential for determining the correct dosage. If clearance is high (one example is penicillin), then the dosage must also be high, and the drug must be given several times a day to maintain an adequate therapeutic level in the blood.

The following equation is used to calculate clearance:

قانون مطلوب

$$\text{Renal plasma clearance of substance S} = \frac{(U \times V)}{P}$$

تركيز الدواء في
urine

V: urine output كم كمية

where U and P are the concentrations of the substance in urine and plasma, respectively (both expressed in the same units, such as mg/mL), and V is the urine flow rate in mL/min.

تركيز الدواء في بلازما

RENAL PLASMA CLEARANCE

❖ The clearance of a solute depends on the three basic processes of a nephron:

1. Glomerular filtration.
2. Tubular reabsorption.
3. Tubular secretion.

❖ تعتمد إزالة المذاب على العمليات الأساسية الثلاث لنيفرون:

1. الترشيح الكبيبي.
2. إعادة الامتصاص الأنبوبي.
3. إفراز أنبوبي.

TABLE 26.7

Summary of Urinary System Organs

STRUCTURE	LOCATION	DESCRIPTION	FUNCTION
Kidneys	Posterior abdomen between last thoracic and third lumbar vertebrae posterior to peritoneum (retroperitoneal). Lie against ribs 11 and 12.	Solid, reddish, bean-shaped organs. Internal structure: three tubular systems (arteries, veins, urinary tubes).	Regulate blood volume and composition, help regulate blood pressure, synthesize glucose, release erythropoietin, participate in vitamin D synthesis, excrete wastes in urine.
Ureters	Posterior to peritoneum (retroperitoneal); descend from kidney to urinary bladder along anterior surface of psoas major muscle and cross back of pelvis to reach inferoposterior surface of urinary bladder anterior to sacrum.	Thick, muscular walled tubes with three structural layers: mucosa of transitional epithelium, muscularis with circular and longitudinal layers of smooth muscle, adventitia of areolar connective tissue.	Transport tubes that move urine from kidneys to urinary bladder.
Urinary bladder	In pelvic cavity anterior to sacrum and rectum in males and sacrum, rectum, and vagina in females and posterior to pubis in both sexes. In males, superior surface covered with parietal peritoneum; in females, uterus covers superior aspect.	Hollow, distensible, muscular organ with variable shape depending on how much urine it contains. Three basic layers: inner mucosa of transitional epithelium, middle smooth muscle coat (detrusor muscle), outer adventitia or serosa over superior aspect in males.	Storage organ that temporarily stores urine until convenient to discharge from body.
Urethra	Exits urinary bladder in both sexes. In females, runs through perineal floor of pelvis to exit between labia minora. In males, passes through prostate, then perineal floor of pelvis, and then penis to exit at its tip.	Thin-walled tubes with three structural layers: inner mucosa that consists of transitional, stratified columnar, and stratified squamous epithelium; thin middle layer of circular smooth muscle; thin connective tissue exterior.	Drainage tube that transports stored urine from body.

THANK YOU

AMJADZ@HU.EDU.JO