

تغريغ كلينكال

المحاضر:
ال Acid-base balance
second

Rahal Zgoud

الصيدلانية:

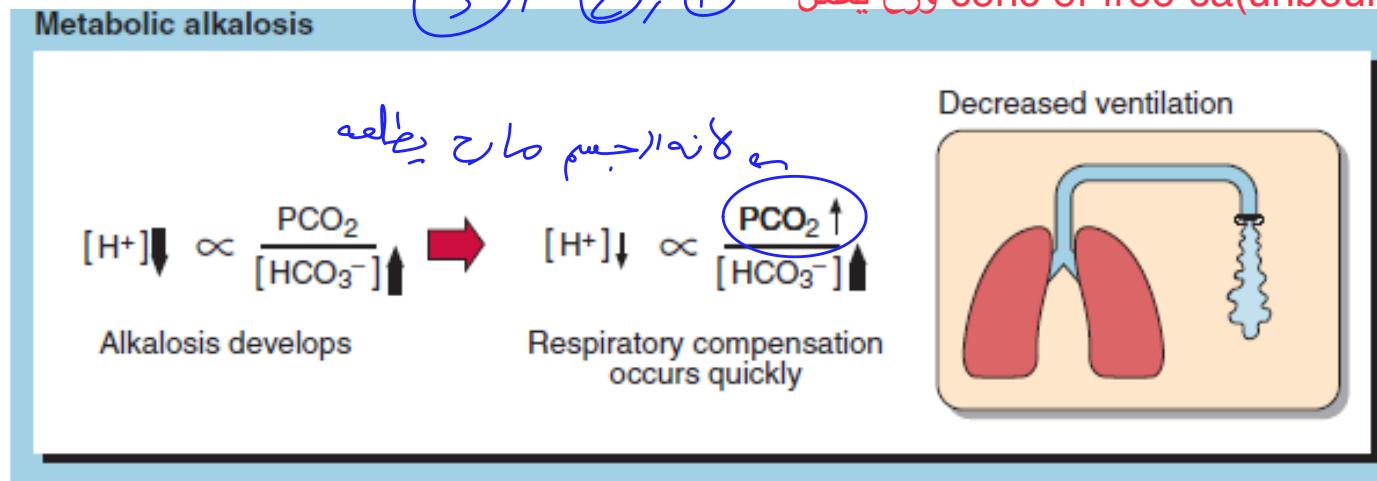
decrease H^+ / increase HCO_3^-

Metabolic alkalosis

هذا لما الواحد يستفرغ ويطلع الـ H^+ الجسم به يستجيب فالامعاء (intestine) (بتصير تطلع الـ HCO_3^- الموجودة فيها loss) وهيك تقل الـ HCO_3^- بس في حالة pyloric stenosis alkalosis مارح تقدر تطلع الـ HCO_3^- منها وهيك قلت الـ H^+ والـ HCO_3^- بتفضل محبوسة

- The causes of a metabolic alkalosis may be due to:
 - Loss of hydrogen ion in gastric fluid during **vomiting**. This especially seen when there is pyloric stenosis preventing parallel loss of bicarbonate-rich secretions from the duodenum
 - **Ingestion of absorbable alkali:** such as sodium bicarbonate. Very large doses are required to cause a metabolic alkalosis unless there is renal impairment
 - اذا الواحد عنده مشكله بال renal function واحد (absorbable) alkali (دواء لحموضه المعدة)
 - **Potassium deficiency:** in severe potassium depletion as a consequence of diuretic therapy, hydrogen ion is retained inside cells to replace the missing potassium ions. In the renal tubules more hydrogen ions rather than potassium, are exchanged for reabsorbed sodium. So despite there an alkalosis, the patient passes an acid urine.

Clinical effects of alkalosis


➤ The clinical effects of alkalosis include:

➤ Hypoventilation CO_2 ويرجع اد H^+
 عيارات بحسب الـ H^+ للغشاء الطبيعي

➤ Confusion and eventually coma

➤ Muscle cramps, tetany and paraesthesia may be a consequence of a decrease in the unbound plasma calcium concentration. which is a consequence of the alkalosis.

بسبب ارتفاع ال pH ال pH ترتبط بال protien بشكل اكبر وهيك قل
ال (3) (2), (1) ورح يعمل conc of free ca(unbouned) ال

اذا الجسم عنده potassium deficiency H^+ الموجودة بالدم للخلايا عشان يعادل الشحنة وهيك قلت H^+ بالجسم وصار alkalosis

بما انه عنده K^+ ما راح تلاقي اشي تعمله excretion فبتدور على cation قاني تطلعه بداله فمين تطلع؟ راح تطلع H^+ بالبول

ال رح يادي respiratory acidosis
لل العكس metabolic acidosis

غير صحيح

Respiratory acidosis

بكون عنده lung disease وال lung

مش قادره تطلع ال CO_2

➤ Lung disease: in which CO_2 is not effectively removed from the blood. In certain patients with chronic obstructive pulmonary disease (COPD, where CO_2 is retained in the blood, causing chronic hypercarbia (elevated pCO_2)

بكون عنده bronchopneumonia (التهاب بالقصبات الهوائية) ورح يتراكم افرازات وال WBC وال جوا
ال Co_2 وينحبس ال CO_2 داخل ال lung aleveoli وهيك رح تتصيف وهيك رح hypoventilation

➤ In bronchopneumonia: gas exchange is impaired because of the secretions. White blood cells, bacteria and fibrin in the alveoli

➤ Hypoventilation caused by drugs such barbiturates, morphine, or alcohol will increase blood pCO_2 levels

CNS-depression يعلو

Mechanical obstruction or asphyxiation (strangulation or aspiration).

❑ Decreases cardiac output such as in CHF also will result in less blood to the lungs for gas exchange and an elevated pCO₂

لَا تَنْسُوا زَكِيرَنَا أَيُّهُمُ اللَّهُ
يَرْحَمُ مَنْ دَعَ اللَّهَ

بكون الواحد عنده decrease in oxygen ونتيجة ذلك بصير عنده
عشن يدخل الـ O₂ للجسم بس الـ CO₂ اصلا وضعاها
طبيعي فبسبب الـ hyperventilation. الي صار الـ CO₂ رح تطلع ويقل
مستواها

Respiratory alkalosis

➤ The causes include:

- انخفاض الـ O₂ بالدم
- Chemical stimulation of the respiratory center by drugs, such as salicylate
- An increase in environmental temperature, fever, hysteria (hyperventilation),
Pulmonary emboli and pulmonary fibrosis.

CNS stimulate

دورة حلم

➤ The kidney compensates by excreting HCO₃⁻ in the urine and
reclaiming H⁺ to the blood

محطط الـ HCO₃⁻ من الجسم

محطط الـ H⁺ من الكالسيوم

➤ The popular treatment for hysterical hyperventilation, breathing into
a paper bag, is self -explanatory

انما الولحو عنده respiratory alkalosis تغير التنفس

بس هنن الـ CO₂! كوطعه يروح التنفس

الخلية بدها طاقة ومين بنتج هاي الطاقة ؟

الـ mitochondria طيب كيف تنتجها ؟ عن طريق عمليات oxidation لل NADH وال FADH2 ورح ينتج من هاي العمليات pair of e طيب هذل الـ e رح يخلو زي ما هنا بالخلية ؟ اكيد لا فلازم ينحملو على الـ O₂ فهذا الدور الاساسي الـ e بدون الـ O₂ الخلايا ما رح تنتج طاقة

Oxygen and gas exchange

Oxygen and carbon dioxide

- The role of oxygen in metabolism is crucial to all life. In cell mitochondria, electron pairs from the oxidation of NADH and FADH₂, are transferred to molecular oxygen
- For adequate tissue oxygenation, the following seven conditions are necessary:

(1) available atmospheric oxygen

الشخص يكون في مكان في O₂ لازم يكون قادر انه يتفس عشان يقدر يدخل الـ O₂

(2) adequate ventilation

لazm يكون قادر انه يتفس عشان يقدر يدخل الـ O₂ للجسم

(3) gas exchange between the lung and arterial blood

لazm الـ lung تعطي الـ arterial blood يعطي الـ O₂ والـ arterial blood يعطي الـ O₂ للجسم

(4) Loading of O₂ onto hemoglobin

لazm الـ hemoglobin يكون قادر على تحمل الـ O₂ وعنه عدد كافي من الـ hemoglobin

(5) adequate hemoglobin

الـ O₂ وعنه عدد كافي من الـ hemoglobin يوصل الجسم

(6) adequate transport (cardiac output), and

الـ O₂ تقدر تاخذه من الـ blood اذا الخلية احتاجت الـ O₂

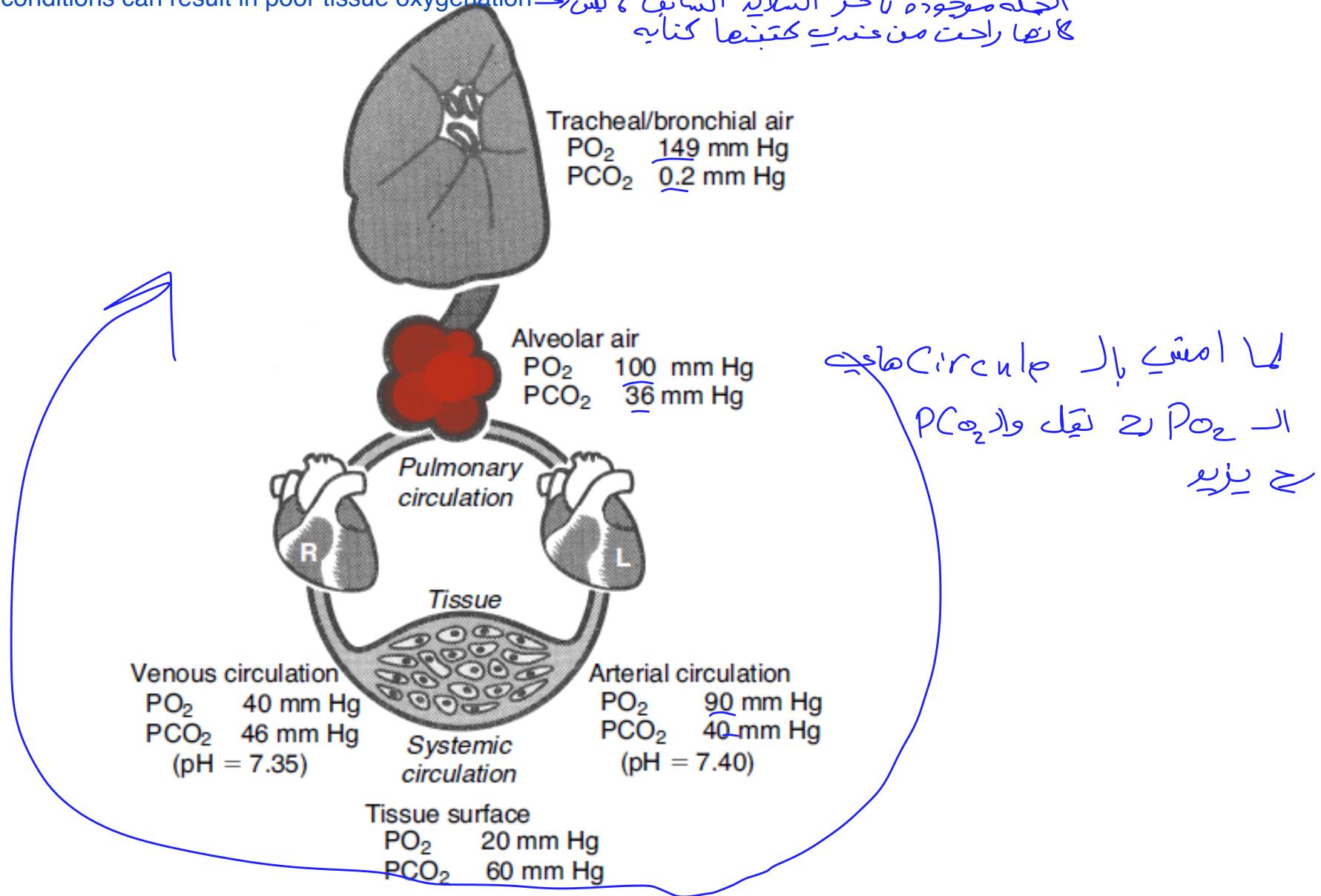
مشو السرطان ليه كازم تكون

موجود في عدات ملحوظات تكون

فيـ oxygenation كافي بـ

صنـ 1 لـ 7

الـ arterial blood يعطي الـ O₂ والـ arterial blood يعطي الـ O₂ للـ lung


الـ arterial blood يعطي الـ O₂ والـ arterial blood يعطي الـ O₂ للـ lung

الـ heart يضخ الدم بكميه كافية عشان الـ O₂

المحمل على الـ hemoglobin يوصل الجسم

اذا الخلية احتاجت الـ O₂ تقدر تاخذه من الـ blood

Any disturbance in these conditions can result in poor tissue oxygenation
 الجلة موجودة باخر السلاير السابق ، ليس \rightarrow
 كلها راحت من عندي كتبناها كناته

Oxygen and carbon dioxide

شو المشاكل الي رح تخلبي الـ O يقل

- Factors that can influence the amount of O₂, that moves through the alveoli into the blood and then to the tissue include:
 - Destruction of the alveoli:** the normal surface area of the alveoli is as big as **tennis court**. When the surface area is destroyed to a critical low value by diseases such as **emphysema**
 - اذا صارت مشكلة بالalveoli ادت الى انه **surface area** لها **decrease** يقل هذا رح يأدي الى **emphysema** ومثال على هاي المشاكل **gase exchange**
 - Pulmonary edema:** Gas diffuses from the alveoli to the capillary through a small space. With pulmonary edema, fluid leaks into the space, increasing the distance between the alveoli and capillary walls
 - ما يمون في سوائل بالlung رح تزيد المسافة الي رح يقطعها ال O بين ال capillary وهاي المسافة الي زادت رح تعيق عملية **gas exchange**
 - Airway blockage.** Airways can be blocked, as in asthma and bronchitis
 - اذا الواحد انخنق لاي سبب ممكنا يتشردق بالاكل او غيره وممكن يكون عنده امراض زي **asthma** وال **bronchitis** الي رح يصير فيها افرازات بالرئة
 - Inadequate blood supply:** As in pulmonary embolism, pulmonary hypertension or a failing heart not enough blood is being carried away to the tissue where it is needed.
 - اذا الواحد عنده اي مشكله او مرض يؤدي الي انه **blood** ما بيوصل للرئة بشكل كافي وهيك في مشكله بال **gas exchange** وال **cells** رح تحتاج الO وهو مش قادر تاخذه
 - Diffusion of CO₂ and O₂.** Because O₂ diffuses 20 times slower than CO₂, it is more sensitive to problems with diffusion. This type of hypoxemia is generally treated with supplemental O₂. 60% or higher O₂ concentrations must be used with caution because it can be toxic to lungs

الـ CO_2 على بعشرين مره من الـ O_2 والـ O_2 كثير حساس اي اشي ممكن يأثر عليه لانه اصلا بطيء فاذا في مشكله بالـ O_2 بعطيه O_2 (mask of O_2) والـ CO_2 يكون 60% او اكثر بس لازم انتبه عشان ما يكون في toxicity

Oxygen transport

- Most O_2 in arterial blood is transported to the tissue by **hemoglobin**.
- Each adult hemoglobin (**A1**) molecule can combine to four molecules of O_2 reversibly with up to four molecules of O_2
- The actual amount of O_2 loaded depends on:
 - The availability of O_2 → يكفي كمية O_2 كافية عشان hemoglobin يحملها
 - The concentration and type(s) of hemoglobin present [النوع A1 A2 A3 A4 HbF HbA2c]
 - The presence of interfering substances, such as **(CO)**
 - The pH CO_2 كل ما زادت الـ pH نادت الـ affinity للـ O_2 كل ما زادت الـ CO_2 درجة affinity تأثير الـ CO_2
 - The temperature of the blood
 - The levels of **PCO₂** and **2,3- DPG**.

الـ O_2 يرتبط بـ hemoglobin **A1**

كل ما زادت الـ pH نادت الـ affinity للـ O_2 كل ما زادت الـ CO_2 درجة affinity تأثير الـ CO_2

فاما يرتبط CO_2 بـ hemoglobin فبحسب CO_2 الذي يدخل

ما تروح للخلايا (خ) دوافع affinity عالية

يتم افرازه لان CO_2 قلل من affinity hemoglobin حاليا عشان تقليل affinity O_2 يقدر سرعة اخراج CO_2 للخلايا

كل ما زاد قلل من O_2 affinity hemoglobin الـ CO_2 يقدر سرعة اخراج CO_2 للخلايا

كل ما زادت الحرارة زادت الطاقة الحرارية فتح يصر تحررت O_2 فتح يقدر سرعة اخراج CO_2 للخلايا
بسعرة O_2 يقدر سرعة اخراج CO_2 للخلايا
ما زاد قدر سرعة اخراج CO_2 للخلايا
الـ CO_2 يقدر سرعة اخراج CO_2 للخلايا

Oxygen transport

بالوضع الطبيعي يكون 95% من الـ functional hemoglobin مرتبط مع الـ O2

- With adequate atmospheric and alveolar O₂ available and with normal diffusion of O₂ to the arterial blood, more than 95% of the “functional” hemoglobin will bind O₂.

لما بدی ازید کمیه کمیه ال O₂ بالجسم (لما اعطي O₂) رح توصل نسبة ال hemoglobin المرتبط بال O₂ لـ 100% واي زیادة بال O₂ بهد هیک رح يتحول O₂ (dissolve) (اکسجين ذائب بالدم)

- Increasing the availability of O₂ to the blood further saturates the hemoglobin. However, once the hemoglobin is 100% saturated, an increase in O₂ to the alveoli serves only to increase the concentration of dissolved O₂ (dO₂) in the arterial blood. This offers minimal increase in oxygen delivery.

اذا الواحد اهذ conc عالي او ما التزم بالرقت الي لازم ياخذ الO فيه(ياخذ زيادة وقت) ممكن يصبر عنده toxicity

➤ Prolonged administration of high concentration of O₂ may cause ~~toxicity and in some cases, decreased ventilation that leads to hypercarbia~~ [REDACTED]

Oxygen transport

➤ Normally blood hemoglobin exists in one of four conditions:

الحاجة لـ *Hemoglobin* \rightarrow ادخاره *Hemoglobin* \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb*

➤ *deoxygenated hemoglobin* (HHb; reduced hemoglobin), which is hemoglobin not bound to O₂ but capable of forming a bond when O₂ is available \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb*

الحاجة لـ *Hemoglobin* \rightarrow ادخاره *Hemoglobin* \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb*

➤ *Carboxyhemoglobin* (COHb), Which is hemoglobin bound to CO. Binding of CO to Hb is reversible but is greater than 200 times as strong as that of O₂ \rightarrow دعوه *O₂Hb* اقوى بـ 200 مرة من دعوه *COHb* [مع ادخاره *Hemoglobin* دعوه *O₂Hb* دعوه *COHb*]

الحاجة لـ *Hemoglobin* \rightarrow ادخاره *Hemoglobin* \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb* \rightarrow دعوه *O₂Hb*

عن طريق *Methemoglobin reductase* \rightarrow دعوه *O₂Hb* \leftarrow دعوه *MethHb* \leftarrow دعوه *Fe³⁺* \leftarrow دعوه *Fe²⁺*

Reduced form of Fe \rightarrow دعوه *hemeoglobin* \rightarrow دعوه *Oxidized form of Fe* \leftarrow دعوه *MethHb*

البَقِيسِ كَمَهْ
الْهَمَوْجِلَبِرْ
الْعَلَوْلِ الْمَرْجُوِيِّ الْعَلَلْ
تَوْعَ →

- Co-oximeter are used to determine the relative concentrations (relative to the total hemoglobin) of each of these species of hemoglobin.

ر ء احمرار hemoglobin HB

Assessing a patient oxygen status

➤ Four parameters used to assess a patient's oxygen status are:

نسبة (HB) المرتبط عليه O من كمية (HB) القاردة هي اخواتها ملحوظة باردة (O2) بحسب $\frac{O_2HB}{O_2HB + HHB}$ **Oxygen saturation (SO2)** \rightarrow على بروتين الهاemoglobin

➤ Measured fractional (percent) oxyhemoglobin (FO2Hb);

~~Initial patient~~ Transcutaneous pulse oximetry (SpO2) assessments and Saturated HB

- The amount of O₂ dissolved in plasma (PO₂) \rightarrow يُفْسِدُ كَمِيَّةً أَكْثَرَ فِي الْبَلْدَمِ

➤ Oxygen saturation (SO₂) represents the ratio of O₂ that is bound to the hemoglobin compared with the total amount of hemoglobin capable of binding O₂

$$SO_2 = \frac{cO_2Hb}{(cO_2Hb + cHHb)} \times 100$$

Oxygen saturation (SO₂)

في **software** بساعدك تطلع ال SO₂ ، حيث بعطيه ال po₂ وال pH وال temperture وهو بطلعك

➤ Software included with the blood gas instruments can calculate SO₂ from pO₂, pH and temperature of the sample.

[O₂, HB, HHb]

➤ These calculated results can differ from those determined by direct measurement due to the assumption that only **adult hemoglobin** is present and the oxyhemoglobin dissociation curve has a specific shape and location

القانون الي رح نحسب منه ال SO₂ غير دقيق لاته في انواع ثانية من ال HB
وما رح يبين اذا فيها مشكله

ابي نوع HB اخر ولا
dye HB

➤ These algorithms for the calculation do not account for the other hemoglobin species, such as COHb and MetHb

➤ So calculated SO₂ should not be used to assess oxygenation status

اکسی ہیموجلوبین کا فرکشن (Fractional oxyhemoglobin) → HB کا اندازہ

➤ Fractional (or percent) oxyhemoglobin (FO₂Hb) is the ratio of the conc. of oxyhemoglobin to the conc. of total hemoglobin (ctHb)

$$\text{FO}_2\text{HB} \approx \text{SO}_2$$

لما کوئی لسخن نہیں
بے مخفی نہیں

$$\text{FO}_2\text{Hb} = \frac{c\text{O}_2\text{Hb}}{ct\text{Hb}} = \frac{c\text{O}_2\text{Hb}}{c\text{O}_2\text{Hb} + c\text{HHb} + \text{dysHb}}$$

MetHb
 COHb

➤ Where the dysHb represents hemoglobin derivatives, such as COHb, that can't reversibly bind with O₂ but are still part of the “total” hemoglobin measurement.

کوئی مخفی نہیں
 $\text{FO}_2\text{HB} < \text{SO}_2$

➤ These two terms SO₂ and FO₂Hb, can be confused because as the numeric values for SO₂ are close to those of FO₂Hb (differ in smokers and if dyshemoglobins are present)

Partial pressure of oxygen dissolved in plasma

- Partial pressure of oxygen dissolved in plasma (pO₂) accounts for little of the body's O₂ stores. الـO₂ free هو الأقل الغير مرتبط باشي (dissolved in plasma) وبساهم بشكل بسيط بمخازن O₂ بالجسم
- Noninvasive measurement are attained with pulse oximetry (SpO₂). These devices pass light of two or more wavelength through the tissues of the toe, finger or ear. يطلق الـ wavelength للـ O₂Hb والـ HHb على الاصبع فبتتحقق capillary وتقيس نسبتهم في وممكن استخدام الاذن كمان
- The pulse oximeter ~~differentiate~~ between the absorption of light as a result of O₂Hb and ~~dys~~Hb in the capillary bed and calculates O₂Hb saturation. Because SpO₂ does not measure COHb or any other dysHb, it overestimates oxygenation when one or more are present. مشكله هذا الجهاز انه بقياس الـ SpO₂ واحنا حكينا شو مشكلته فوق

؟ The accuracy of pulse oximetry can be compromised by many factors, including diminished pulse as a result of poor perfusion and severe anemia.

الدّم الممّدود يحمل أقصى كمّيّة O₂ ممّا يحمل Hb

- The maximum amount of O₂ that can be carried by hemoglobin in a given quantity of blood is the **hemoglobin oxygen (binding) capacity**. The molecular weight of tetramer hemoglobin is 64,458 g/mol.
- One mole of a perfect gas occupies 22,414 mL. Therefore, each gram of hemoglobin carries 1.39 mL of O₂

$$\frac{22,414 \text{ mL/mol}}{64,458 \text{ g/mol}} = 1.39 \text{ mL/g}$$

1g of HB \rightarrow 1.39 mL/g O₂ capacity

- When the total hemoglobin (tHb) is 15 g/dL and the hemoglobin is 100% saturated with O₂, the O₂ capacity is:

$$\begin{aligned} 15 \text{ g/100 mL} \times 1.39 \text{ mL/g} \\ = 20.8 \text{ mL O}_2/100 \text{ mL of blood} \end{aligned}$$

$$\begin{aligned} 1.39 \text{ mL/g} \times 15 \text{ g/dL} \times 100\% \text{ Saturation} \\ \times 20.8 \text{ mL O}_2/100 \text{ mL} = 20.8 \text{ mL O}_2/100 \text{ mL blood} \end{aligned}$$

total $O_2 \rightarrow O_2$ dissolved in plasma + O_2 bound to hemoglobin

Oxygen content

- Oxygen content is the total O_2 in blood and is the sum of the O_2 bound to hemoglobin (O_2Hb) and the amount dissolved in the plasma (pO_2)

مما ينبع عن الكمية المنشورة في دماغنا
مما ينبع عن الكمية المنشورة في دماغنا

هي وظيفة pCO_2, pO_2

- Because pO_2 and pCO_2 are only indices of gas-exchange efficiency in the lungs, they do not reveal the content of either gas in the blood.

- If the pO_2 is 100 mmHg, 0.3 ml of O_2 will be dissolved in every 100 ml of blood plasma.

كل 100 ml من الدم يحوي 0.3 ml

- The amount of $0.3 \text{ mL} + (20.8 \text{ mL} \times 0.97) = 20.5 \text{ mL}$ is significant.

The amount of dissolved O₂ is usually not clinically significant. However, with low tHb or at hyperbolic conditions, it may become a significant source of O₂ to the tissue. Normally 98-99% of the available hemoglobin is saturated with O₂. Assuming a tHb of 15 g/dL, the O₂ content for every 100 mL of blood plasma becomes

$$\text{dissolved} \quad \text{bound to Hb} = \text{total O}_2$$
$$0.3 \text{ mL} + (20.8 \text{ mL} \times 0.97) = 20.5 \text{ mL}$$

➤ The amount of dissolved O₂ is not clinically significant.

Saturated O₂ is not clinically significant.

abnormality is the dissolved O₂ is not clinically significant

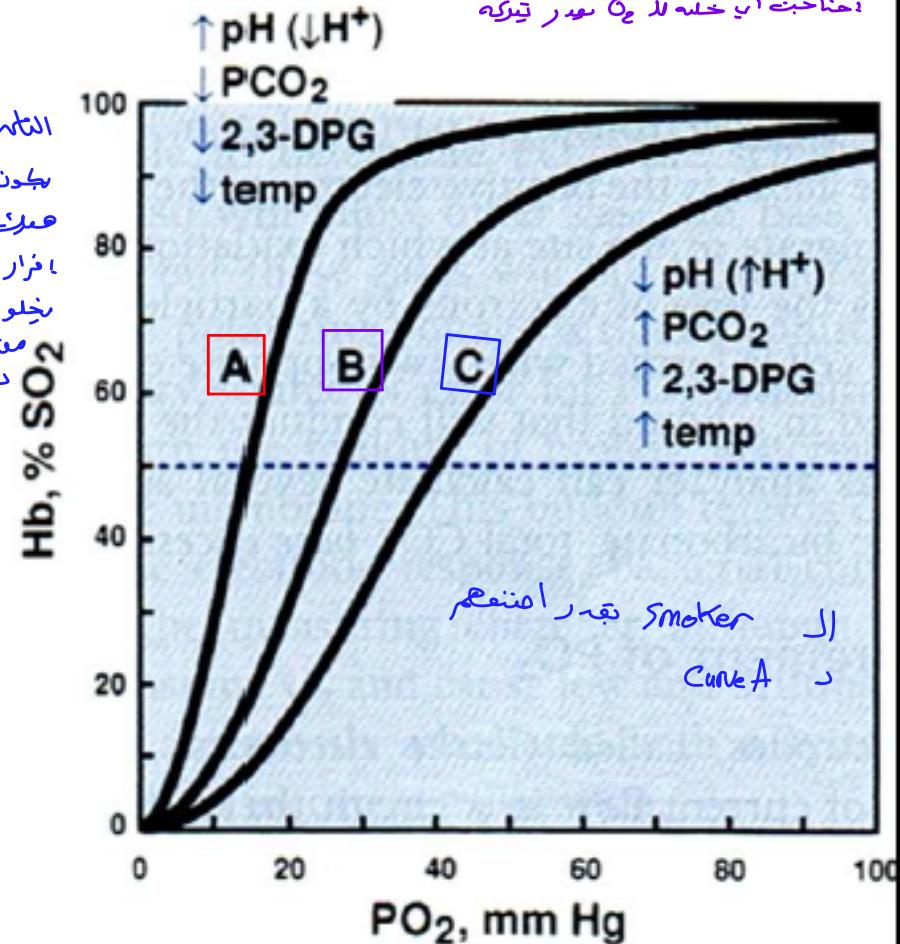
Hemoglobin-oxygen dissociation

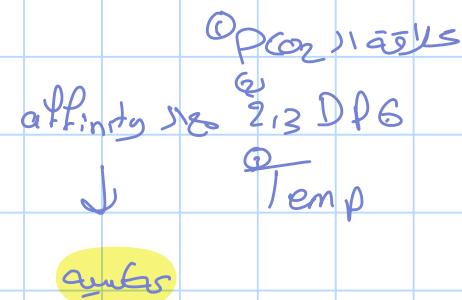
➤ 2,3-DPG levels increase in patients with extremely low hemoglobin values and as an adaptation to high altitude.

النها إلى بتحقيق بالمرتفعات
بجذونا زاد قليل اهلاً ، عنان
على احتمالهم تتحقق مل
اخذار 2,3DPG فيكون عنان
نخلوا الـ O_2 affinity affinity الـ O_2 ديسقدي
عنان O_2 دخل الجسم بدلاً ما
دتكل مرتبة بالـ Hb

ما زاد الـ O_2 زاد SO_2 يعني كل ما زاد الـ O_2 الـ Hb
يذلل O_2 عنان تقدر مرتبة جداً

➤ مل الزعم من انه زاد PO_2 تقليل الـ Hb في O_2 saturation [د] و O_2 affinity saturation [د]


➤ كل الرغم من انه زاد PO_2 على الـ O_2 saturation [د] و Hb [د]


➤ O_2 دخل PO_2 على جـ [د]

➤ الـ O_2 affinity [د] Hb [د]

ما زاد O_2 تعمد كافية عنان ينفعه الـ Hb ، و كافية عنان [د]

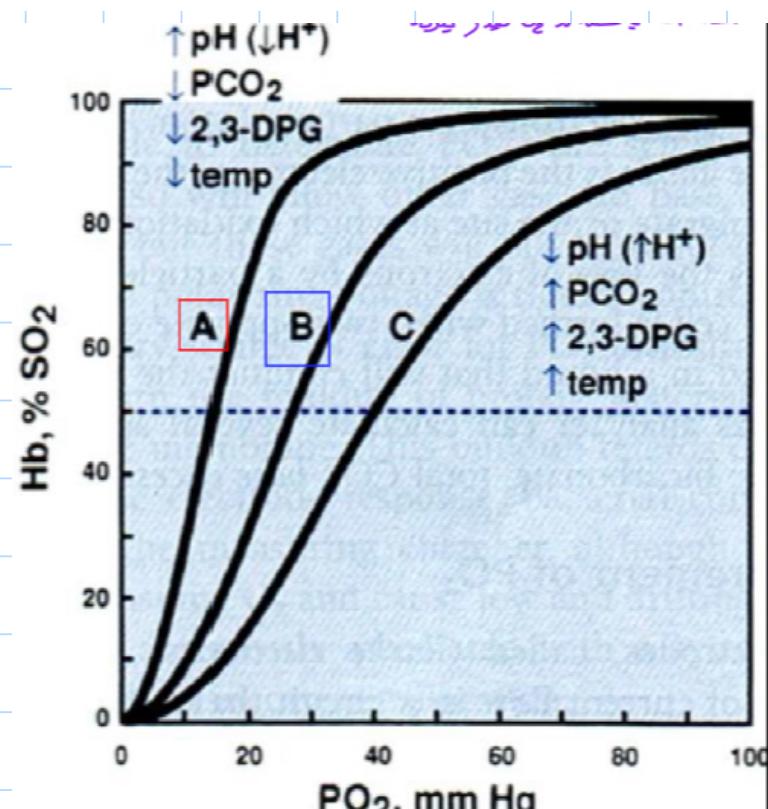
دـ [د] حـ [د] مـ [د] دـ [د]

كل ما كان \downarrow O_2PCO_2 \downarrow Temp \uparrow affinity

أو H^+ موجود بالدم رح يزيد \uparrow affinity

أو Hb وهذا يعني لما احثى بيضة الدم
حذفه يعني انه لا H^+ نافس O_2 وقد ملأ
hemoglobin

بما لوحظت أنها غالباً يعنى انه لا Hb
رح يرتبط فقط بالـ Hb high affinity


\downarrow affinity \uparrow O_2PCO_2 \downarrow 2,3 DPG \downarrow Temp

أو Hb \downarrow أو Hb \uparrow O_2 رح يحد O_2 ببس

واد O_2 صرح تقر تنافسه

يعنى لا O_2 PCO_2 غالباً، او O_2 رح
تنافس او Hb او Hb وصين تبع

affinity

و O_2 PCO_2 \downarrow 2,3 DPG \downarrow affinity

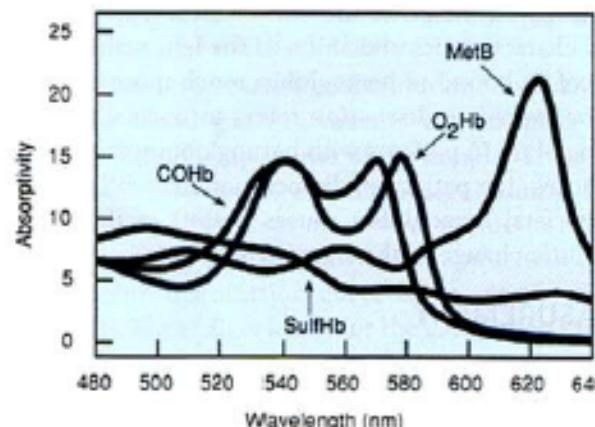
الجسم رح يستجيب ويفرز ال 2,3 DPG عنان

و Hb \downarrow المروط \uparrow Hb نفث داخنة الجسم

ل يستفده O_2 رح يتعادل \uparrow affinity

أول جمله بالسلاليد الجاهز
بس داخله يعنى عصان حمض
حطيعاً مامد

؟ The actual determination of oxyhemoglobin (O_2HB) can be determined spectrophotometrically using co-oximeter designed to directly measure the various hemoglobin species.


Measurement

Spectrophotometric (Co-oximeter)

Determination of oxygen saturation

The actual determination of oxyhemoglobin (O_2Hb) can be determined spectrophotometrically using co-oximeter designed to directly measure the various hemoglobin species.

- The number of hemoglobin species measured will depend on the number and specific wavelength incorporated into the instrumentation. For example, two wavelength instrument systems can measure only two hemoglobin species (O_2Hb and HHb), which are expressed as a fraction or percentage of the total hemoglobin.

إنه أكثر من نوع حسب
 λ_{max} في كل منها

لهم λ_{max} لـ O_2Hb والـ HHb بالـ
ويقيس معاً معاً λ_{max} واحد واحد معاً حسب الـ
وكل ما كان له λ_{max} معاً λ_{max} معاً (one) معاً

Spectrophotometric (Co-oximeters) Determination of oxygen saturation

- As with any spectrophotometric measurement, potential sources of errors exist, including:
مخطئ بعثه error بسبب
 - ① Faulty calibration of the instrument \rightarrow ما عرضت اسقى الجهاز واستخدمت اداه ذاته
 - ② Spectral-interfering substances \rightarrow !ستخدمت بعثه لها λ_{max} اقرب λ_{max} اوي بعيده λ_{max} بعضها
- The patient's ventilation status should be stabilized before blood sample collection \rightarrow اذاً كد انه المريض بتنفس عادي، يعني صننا كان يرافق واقعيملاه معاشرة او مركب بسطوانه O_2 \rightarrow اذاً كد ما كي لا سثار تؤثر على القراءة
- An appropriate waiting period before the sample is redrawn should follow changes in supplemental O₂ or mechanical ventilation
ابداً ما نستخدم اسقى لتحسين التنفس زعي ② ① فزم استثنى شويي بعد ما افكتها عيارات اعده، اقيس لا ABG
- All blood samples should be collected under anaerobic conditions and

and mixed immediately with heparin
or other appropriate anticoagulant.

١٠١. لأن CO_2 الجو اقل من العينة
مروح ينفعه للعينه و CO_2 العينة اقل من مروح يطلع
من العينة [كاناروباتي CO_2 تكون]

- >If the blood gas analysis is not being done on the same sample, EDTA can be used as an anticoagulant

ادا يبي احلاز اكتر من سنته العينة فيفضل تاخذ او EDTA $\text{anticoagulate} \leftarrow \text{EDTA}$

- All samples should be analyzed promptly to avoid changes in saturation resulting from the use of oxygen by metabolizing cells

كارزم احلاز العينة سباستور ٨٢ مللى الخلايا
بالعينه تستهلك O_2 الموجود فروح ينبع
تحليل

Blood gas analyzers (pH, pCO2 and pO2)

- Blood gas analyzers (macroelectrochemical or microelectrochemical sensors) as sensing devices

➤ The **pO₂** measurement is amperometric (current flow) related to the amount of O₂ being reduced at the cathode - **من طریق تفاعلات تاکسیداکسیذال**

➤ The **PCO₂** and **pH** measurement are potentiometric (change in voltage)

- The blood gas analyzer can calculate several additional parameters, **bicarbonate**, total CO₂, base excess and SO₂.

Measurement of pO₂

الحيط في لها لغير بسكروت membrane

أني حول الأداة ملحوظة O₂ مارح يقدر يدخل electrode

- The primary source of error for pO₂ measurement is associated with the buildup of protein material on the surface of the membrane (retards diffusion of O₂)

إذا الحسدة على سطحها بكتيريا ملحوظة O₂

- Bacterial contamination within the measuring chamber, although uncommon, will consume O₂ and cause low and drifting values

- It is important not to expose the sample to the room air when collecting, transporting and making O₂ measurement.

أني ملحوظة الماء

result in significant error

- Contamination of the sample with room air (pO₂, 150 mmHg) can

Even after the sample is drawn, sample should be analyzed immediately as leukocytes continue to metabolize O₂ leading to low PO₂ value

١١) تراكم الخبيث وقت
١٢) WBC / لسلسلات
الخبيث

Measurement of pO₂

- Cutaneous measurement for pO₂ also are possible using transcutaneous (TC) electrodes placed directly on the skin.

رجون (Rajan) \rightarrow Rb_2O لاصح سلكه لاصح بخطه على الجلة و يعيش في

- Measurement depends on oxygen diffusing from the capillary bed through the tissue to the electrode. Although most commonly used with neonates and infants

- Skin thickness and tissue perfusion with arterial blood can significantly affect the results.

الكتل الكثيرة \rightarrow تضيق الشريان \rightarrow تعيق الدورة الدموية

➤ Heating the electrode placed on the skin can enhance diffusion of the

في بعض الحالات يمكن نسخة electrode
moved regularly

حيث نقص O_2 أو اتساع مساحة

الـ electrode يمكن تحرير

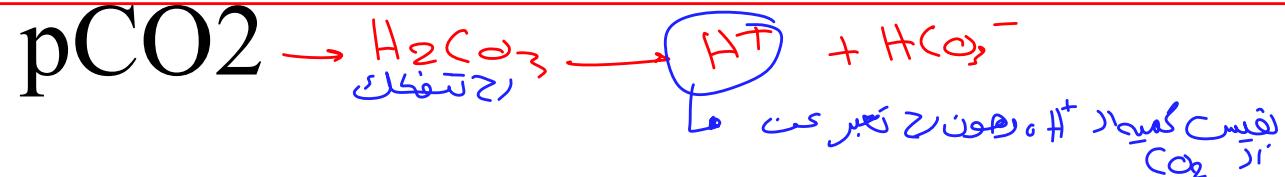
Measurement of pH and pCO₂

➤ Two electrodes (the measuring electrode responsive to the ion of interest and the reference electrode) are needed and voltmeter, which measures the potential difference between the two electrodes.

الـ electrode فرق الجهد بينهما
الـ electrode من المهم أن يكون فرق الجهد بينهما
الـ electrode من المهم أن يكون فرق الجهد بينهما

➤ The potential difference is related to the concentration of the ion of interest.

باستخدام لغز H^+ أو OH^- من $Ag-AgCl$ electrode


فـ pH ما زال H^+ انتقال H^+ زاد فرق الجهد وبعد ما يعرف pH ما زال

➤ To measure pH, a glass membrane sensitive to H^+ is placed around an internal $Ag-AgCl$ electrode to form a measuring electrode

➤ The potential that develops at the glass membrane as a result of H^+ from

the unknown solution diffusing into the membrane's surface is proportional to the difference in $[H^+]$ between the unknown sample and the buffer solution inside the electrode

- An outer semipermeable membrane that allows CO_2 to diffuse into a layer of electrolyte, usually bicarbonate buffer, **covers the glass pH electrode**. The CO_2 that diffuses across the membrane reacts with the buffer, forming carbonic acid, which then dissociates into bicarbonate plus H^+
- The change in the activity of the H^+ is measured by the pH electrode and related to pCO_2
 H^+ (يحيط بـ H^+) \downarrow CO_2 (يحيط بـ CO_2)
- As with the other electrodes, the buildup of protein material on the membrane will affect diffusion and cause errors, pCO_2 electrodes are

slowest to respond because of the chemical reaction that must be completed. Other error sources include erroneous calibration caused by incorrect or contaminated calibration materials

های الطریقہ بظیہنہ لانہ یہی استفے کل ال (O_2) تھوڑا دیہی H_2CO_3 و بھی تھوڑا H^+ تھوڑا دیہی HCO_3^- تھوڑا دیہی

Specimen

- Arterial blood specimen is an excellent reference
O₂ transport \rightarrow Pulmonary function \rightarrow ما يحيى أقيس \rightarrow Peripheral venous \rightarrow اسخنن لاس
- Peripheral venous samples can be used if pulmonary function or O₂ transport is not being assessed (the source of the specimen must be clearly identified)
كـ زـمـ اـحـكـبـ مـنـ وـيـنـ اـخـنـتـ الـحـيـنـةـ
- Depending on the patient, capillary blood may need to be used to measure pH and pCO₂
- Although the correlation with arterial blood is good for pH and pCO₂, capillary pO₂ values even with warming of the skin before

- ❑ Although the correlation with arterial blood is good for pH and pCO₂, capillary pO₂ values even with warming of the skin before drawing the sample, do not correlate well with the arterial pO₂ values as result of sample exposure to room air
- ❑ Sources of error in the collection and handling of blood gas specimens include the collection device, form and concentration of heparin, speed of syringe filling, maintenance of the anaerobic environment, mixing of the sample to ensure dissolution and distribution of the heparin anticoagulant, and transport and storage time before analys

تابعوا التلخيص في تهدیل

Interpretation of results

- Laboratory professionals need certain knowledge, attitude and skills for obtaining and analyzing specimens for pH and blood gases.
[*anayzing* « تحلیل نتایج برای مکرر]
- Simple evaluation of the data may reveal an instrument problem (possible bubble in the sample chamber or fibrin plug)
[*و ممکن است نتایج قابل تفسیر باشند*]
- A possible sample handling problem (PO2 out of line with previous results and current inspired FiO2 levels)
- The application of knowledge saves time. The ability to correlate data quickly reduces turnaround time and prevents mistakes.