
Renal failure

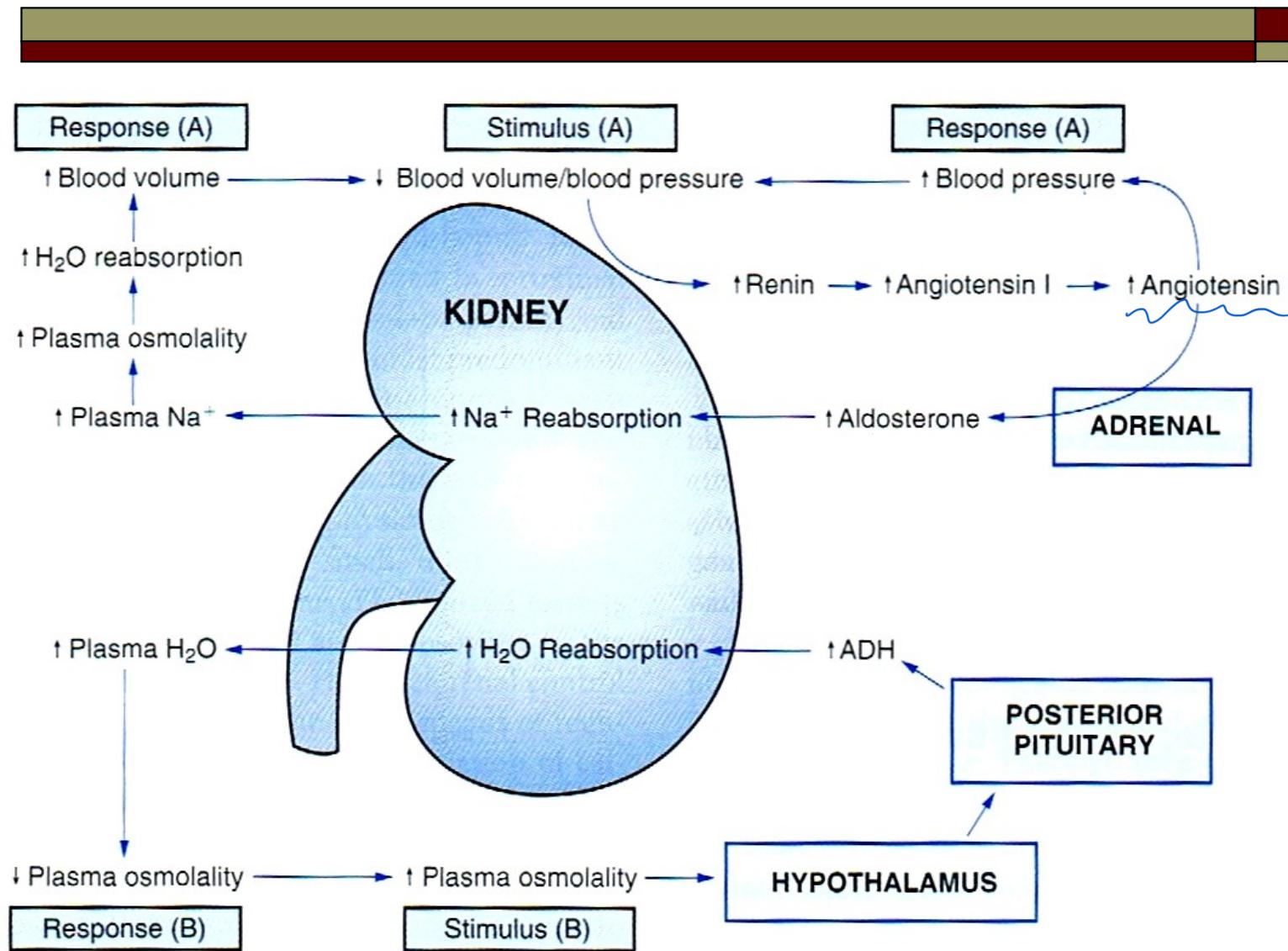
Dr. Iman Mansi

Kidney Functions

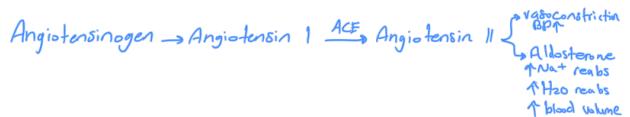
- ① Urine formation
- ② Fluid and electrolyte balance
- ③ Regulation of acid-base balance
- ④ Excretion of the waste products of protein metabolism
- ⑤ Excretion of drugs and toxins
- ⑥ Secretion of hormones:
 - Renin, Erythropoietin, 1,25-Dihydroxy vitamin D₃, Prostaglandins

الكلٰ قادرٰ إنها تُنْتَجُ **urine** لـ الواحد تكون مأكٰلٰ اثٰي فيه املاحٰ كٰثٰرٰ ولـا تكون كٰيٰنٰ المٰيٰ إلٰي سُنْرٰرٰا قليلةٰ فهـٰي كلـٰها بـٰخـٰيٰ الـٰ **Kidney**

ستُرْجِعُ كـٰثٰرٰ من الـٰ **electrolytes** وـٰ تـٰخـٰلٰ **Acids** وـٰ تـٰخـٰلٰ **urine** وـٰ تـٰخـٰلٰ **concentrated**


أي اسـٰئـٰرـٰ منـٰخـٰدـٰ زـٰيـٰدـٰ عـٰنـٰ حـٰاجـٰتـٰ عـٰلـٰ طـٰعـٰنـٰ الـٰ بـٰصـٰمـٰ بـٰجـٰاـٰلـٰ إـٰنـٰهـٰ يـٰخـٰلـٰهـٰ مـٰنـٰ زـٰيـٰدـٰ

أي خـٰيـٰ فـٰنـٰكـٰلـٰهـٰ عـٰنـٰجـٰهـٰ زـٰيـٰدـٰ صـٰهـٰ بـٰرـٰجـٰهـٰ **urine**


أي الـٰ **Urea / uric acid** زـٰيـٰدـٰ فـٰنـٰ عمـٰلـٰيـٰتـٰ الـٰ **metabolism** وـٰ سـٰبـٰرـٰلـٰ **urine** الـٰ **excretion**

إذا ما كان **polar** جـٰوـٰهـٰ الـٰ بـٰصـٰمـٰ **polar** بعد هـٰسـٰيـٰ بـٰلـٰ **Kidney**

hormones

اذا كان في قلبين نبى ال stimulus blood pressure/blood volume كثافة الدم اللى يعطل للكل بع تكون قليلة نجع تحفز افراز ال renin اللى بحوال

وهاد هو ال stimulus A في حال انخفاض ال blood volume

اذا معاً زبارة الـ osmolarity انه المهدىم ارتفع صلاد في عال طبع الاوامر بتوجع عال posterior pituitary gland ← hypothalamus

وينبى الـ plasma H_2O absorption فيدك منكع عدلنا الـ ADH الذي بعث لل kidney كان مرة بالـ collecting ducts

Kidney

Nephron, functional unit of kidney, consists of glomerulus, Bowman's capsule, proximal tubule, loop of Henle, distal tubule, collecting duct (shared by many nephron).

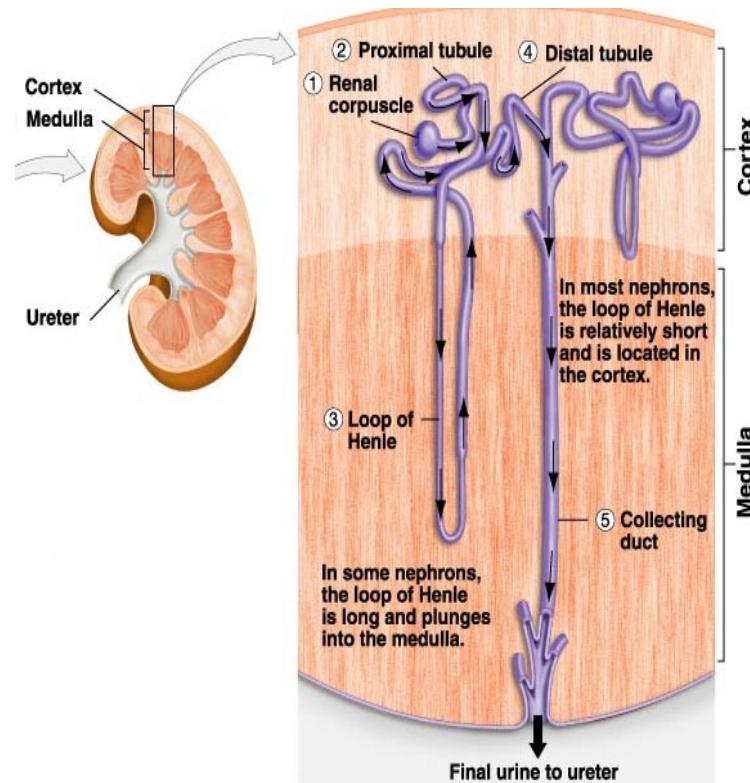
- Glomerulus: ball of fenestrated capillaries.
- Bowman's capsule: Cup/Capsule that surrounds the glomerulus.
- Proximal tubule: convoluted tubule on the side of the Bowman's capsule. It is the major site for reabsorption (nutrient, salts and water) and secretion (except for K^+ , the secretion of which is the job of distal convoluted tubule in response to aldosterone).
- Loop of Henle: U shaped loop that dips into the renal medulla. countercurrent multiplier mechanism occurs here
 - Descending limb:water reabsorption by osmosis (permeable to water, but not to solute).
 - Bottom of U: most concentrated.
 - Ascending limb: salt reabsorption (permeable to salt, but not water).

في كل كلى kidney function 1 million nephrons يلي ينبع من العروق الوريدية
يحيط بالKidney

يسفل عن علية Filtration أو أي اثنين حجمه أكبر من 66 kdalton/L يصل هناك وادي اثنين ينبع من هذين رج

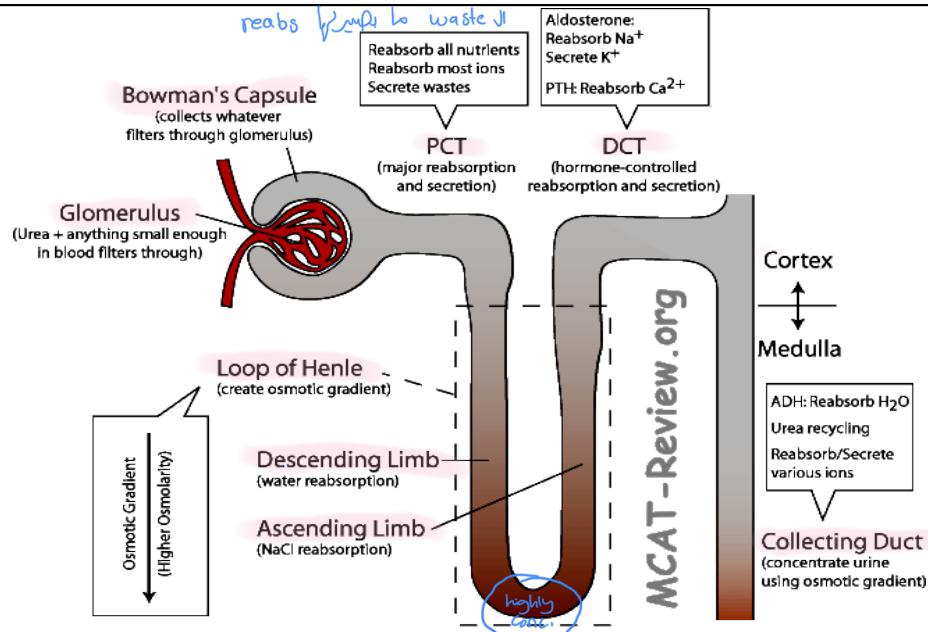
تنيلر

(ex: aa, sugar) nutrients لعظام من المولى عن امداده الامتصاص في Proximal tubule


جزء من بال cortex وجزء من medulla وهي عبارة عن 3 اجزاء :

most concentrated في bottom of loop (2) water permeability + permeability الماء فلما يدخل كل اثنين مسفلوں دا Descending -
کلما طاقت دا دا Descending

Ascending - reabs of salt بالاتی اسی طبقاً تركيزها اقل لانه في جزء من صاف الاملاح قادم بطبع خصوصاً المورثیں


Kidney

- Distal tubule: convoluted tubule on the side of the collecting duct. hormone-controlled (fine tunes the work done by the proximal tubule) reabsorption of salts and water. Aldosterone-controlled secretion of K^+
- Collecting duct: the distal tubules of many nephrons drain here. ADH-controlled reabsorption of water, hormone-controlled reabsorption/secretion of salts.

و ADH يستقل بالـ collecting ducts لـ reabsorb water في nephron.

Kidney and nephrons

Quick facts: PCT proximal convoluted tubule

DCT distal convoluted tubule

pH homeostasis tubules secrete H⁺ if blood too acidic
don't reabsorb (same effect as secrete) HCO₃⁻ if too basic

urea recycling urea diffuse out of collecting duct back into loop of Henle
help maintain osmotic gradient

Wastes secreted by PCT NH₄⁺, Creatinine, Organic Acids

Loop of Henle The longer the loop of Henle, the more concentrated the urine can be produced

Countercurrent Mechanism Powered by NaCl pumps in upper ascending limb.
Results in osmotic gradient down loop of Henle

Formation of urine

□ Glomerular filtration

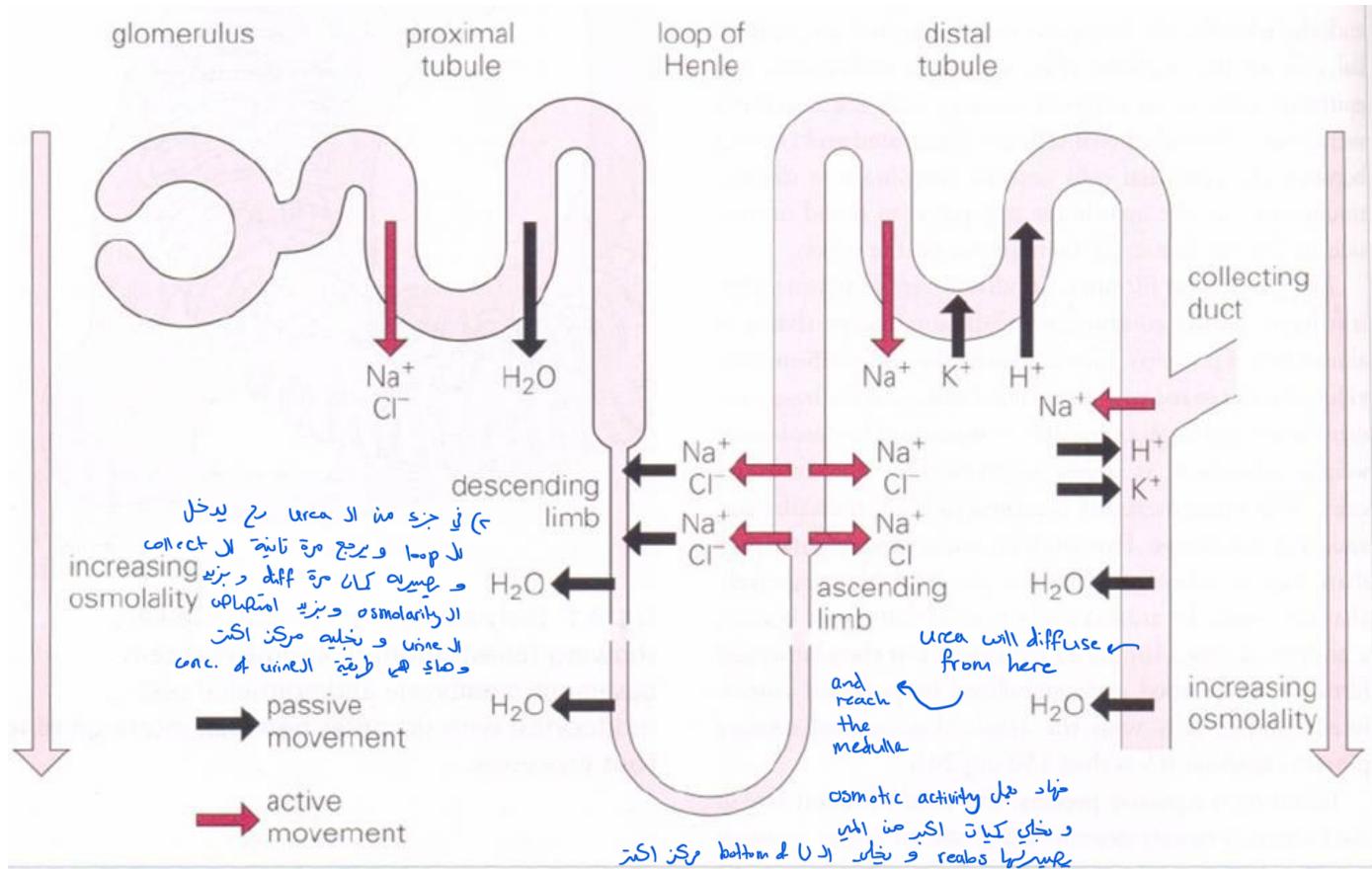
- Filtration is a passive process which is powered by hydrostatic pressure. *size↓ filtration↑*
- All substances and ions are filtered out, as long as its small enough.
- The amount of filtrate that flows out of all the renal corpuscles of both kidneys every minute is called the **glomerular filtration rate (GFR)**. In the normal adult, this rate is **about 125 ml/min**
- Proteins with molecular weights lower than that of albumin (68,000 daltons) are filterable
- Negatively charged molecules are less easily filtered than those bearing a positive charge ↗

السيب او الـ glomerular
غوصان و ستحتها مالبة
بالاتي جسيم ذو تمايز بينهم
و عملية الفلاترة تقل

Formation of urine

□ Secretion and reabsorption of solutes

- Proximal convoluted tubules reabsorb all the nutrients and most of the ions.
- Materials that are reabsorbed include water, glucose, amino acids, urea (partially), and ions such as Na^+ , K^+ , Ca^{2+} , Cl^- , HCO_3^- , and HPO_4^{2-} .
- Waste products are left in the filtrate (as urea), And also actively excreted (NH_4^+ , creatinine, organic acids).
- Glucose and amino acids are reabsorbed by an active process co-transported with (Na^+) ions.
- Loop of Henle reabsorbs water and salt using the countercurrent mechanism.
- Distal convoluted tubules selectively reabsorb or secrete substances based on hormonal control.
- Collecting duct reabsorb water to concentrate urine if ADH present. (Also can secrete and reabsorb substances based on hormonal control)
- Regulation of blood pH: secrete H^+ when blood too acidic, not to reabsorb HCO_3^- when blood too basic.


glucose , aa \rightarrow active transport
ATP بروتين پمپ میگیرد

Formation of urine

- Concentration of urine
 - The distal convoluted tubule contains dilute solution of urea. *part of it will diffuse to the interstitial fluid*
 - The collecting duct concentrates it by water reabsorption (facilitated diffusion) when ADH is present.
 - Water reabsorption in the collecting duct is possible because the loop of Henle has very high osmolarity (very concentrated) at the bottom.
- Countercurrent multiplier mechanism (basic function)
 - NaCl pump on ascending limb creates an osmotic gradient down the loop of Henle, which is used by the collecting duct to concentrate urine.
 - Descending limb: water flow out of filtrate, impermeable to salt. Ascending limb: salt flow out of filtrate, impermeable to water.
 - The gradient-producing power of each individual NaCl pump multiplies down the length of the loop of Henle. Longer the loop of Henle, greater the osmotic gradient, more concentrated urine can be produced.
 - What is urea recycling? Urea at the bottom of collecting duct leaks out into the interstitial fluid and back into the filtrate. Contributes to the high osmolarity at the bottom of the loop of Henle.

distal conv. tub. & urea

Urine formation

Endocrine function of kidney

Elimination of Nonprotein Nitrogen Compounds

- Nonprotein nitrogen compounds (NPN) are waste products formed in the body as a result of the degradative metabolism of nucleic acids, amino acids, and proteins. The three principal compounds are urea, creatinine, and uric acid.

➤ **Urea**

Urea makes up the majority ($>75\%$) of the NPN waste. Urea synthesis occurs in the liver from ammonia

- The kidney is the only significant route of excretion for urea.

جزء منها برج \Rightarrow partially reabsorbed

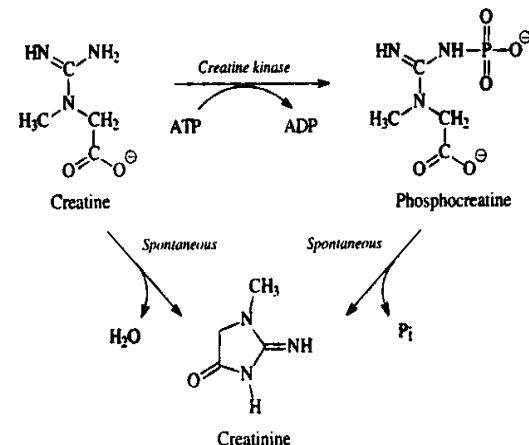
It is readily filtered by the glomerulus. In the collecting ducts, 40-60% of urea is reabsorbed. The reabsorbed urea contributes to the high osmolality in the medulla, which is one of the processes of urinary concentration *is diffusion alone*

جزء مسلم في on is diffusion loop of herle فجزء بسيط في الميرلي يزيد طبع ما هناك أكثر تركيز وآخر ينبع

for assessment of kidney function position is to kidney by $\frac{1}{2}$ the excretion of $\frac{1}{2}$ the

CO₂ + H₂O \rightarrow metabolism \rightarrow أوكسجين \rightarrow ATP

uric acid \downarrow deox \rightarrow metabolism \downarrow $\text{AMP} \rightarrow$ purine nucleotides \downarrow


عملية reabsorption لليوريا تغير عمان تشارلز هل فرج تزيد ال Kidney more conc. في urine الـ H_2O more osmality في شفالة رح تكون الـ urea retained \leftarrow kidney يقدر اعرف انه عنده مسكلة بالكلوريد كمان اذا كان فيه kidney perfusion او hypovolemia فيه عليل يعني كمية الدم الـ H_2O المتبقية فيها اليوريا قليلة محتواها اليوريا رح تغير بالدم وترتفع

يعني فيه حمل اذا الـ urea على بالدم في يقدر محتواها انه في مسكلة او kidney مسكلة H_2O hypovolemia

Elimination of Nonprotein Nitrogen Compounds

Creatinine

- Muscle contains creatine phosphate, a high-energy compound for the rapid formation of ATP catalyzed by creatine kinase (CK).
- Every day up to 20% of total muscle creatine (and its phosphate) spontaneously dehydrates and cycles to form the waste product creatinine.
- Creatinine is readily filtered by the glomerulus but not reabsorbed by the tubules.

Uric acid

- uric acid is the primary waste product of purine metabolism (adenine and guanine)
- like creatinine, uric acid is readily filtered by the glomerulus, but undergoes a complex cycle of reabsorption and secretion as it crosses through the nephron

الخلايا عملية تجددها كثيرة تتكون من كثيرة ملكت اذا بلطف يرتفع نسبياً واحداً مثلاً بياكل لحوم كثيرة كلها يتربع على uric acid فترتفع على kidney و في كل ترتيب بال joints

بالنسبة لل uric acid excretion حجمه علش كثير كبير فكله بتفلىش و لكن زي ال urea علش عمليه creatinine عن ال reabsorption and excretion غا يقدر استخديمه علشان اعيت عن ال GFR بس اذا كان مرتفع و ال creatinine مرتفع و ال urea مرتفع معناتها في مشكلة بالكل

Renal assessment

- Renal function tests focus largely on glomerular clearances, as assessed by creatinine and urea measurements
- Tubular functions are assessed by protein measurements (eg, urine electrophoresis)
- The analysis of urine for analytes, such as pH, glucose, ketones, and bilirubin, continue to be important screening tests for many non- renal diseases, such as diabetes mellitus, ketoacidosis, hemolysis, and liver disease

Conj bilirubin \downarrow ملارى

Urine بار

Spleen بار \rightarrow ملارى

albumin \downarrow bone marrow بعدين يتحمل على

وهدار يغير conj فبروح الى liver

يحل عليه conj بعدين بروح الى bile

عثاثان يرسله exc ف اذا في مصلحة بار

bile بروح عالم وبروح بالكلن \downarrow polar

بروجيشن دريل لاي liver disease

لوعه امراض عامة

creatinine + urea زى لا Glomerular clearance of waste products اكتر اشي من ال evaluation بعملها renal function ال
الهول ال 2 مكن نقيسهم ونحسبهم مع بعضه

ممكن المشكلة تكون بده بالـ tubules فعن ال nephron كلها بالتالي الاستثناء بتقليله بين ما يترجع
عن الـ urine electrophoresis reabsorption يعني كلهم بالـ urine ف اذا عملنا
البروتينات الـ حجمهم اصغر من 68K dalton بالـ اغضون الطبيعي بصيرها reabsorption للـ tubules و هناك
داخل الـ tubular cells يعني تكسير فالـ urine electrophoresis ممكن تعلم فكرة اذا
عنبر البروتينات بالـ urine عدناها الـ tubules بيـ موجود

الـ stiffness الـ blisters عنهم مشكلة الـ renal failure بصيرها stiffness يعني بتقليله
توسيع الفتحات بتغييرها و تتمزج و بتقليل البروتينات تدخل في هاي الفتحات فنلاقي الـ albumin
الـ protein موجود بالـ urine

ممكن تستعمل الـ urine عصان نمل لـ assessment لـ الأشياء تانية غير الـ kidney زى الـ UTI بـ bacteria اذا
عملت زراعة و بـ bacteria Turbidity ، RBCs - WBCs و هاي كلها فلما شد دخل بالـ الكل و مش مؤذنة علىـها
وزى الـ diabetes - سمان ممكن الاخـر بـ glucose و الـ ketone bodies

في اكتر من سفلة هي

Renal assessment

➤ Measurement of GFR

- Clearance tests
- Plasma creatinine *creatinine clearance*
- Urea, uric acid and $\beta 2$ -microglobulin

➤ Renal tubular function tests

- Osmolality measurements

نسبة الماء في البول

Glycouria

Aminoaciduria

هاد من البروتينات اللى بتختلس
reabs catabolism

نسبة الماء في البول
و بتترجم سكون
ال osmolality

Urinalysis

- Appearance
- Specific gravity and osmolality
- pH *if alkaline*
نسبة الماء في البول
يتنفس فضلاً عن
ال CO2 و الأمونيا
- Glucose
- Protein
- Urinary sediments

Analytic procedures

- To assess the various aspects of nephron function, including glomerular filtration and proximal and distal tubular secretion and reabsorption, many tests are performed

Clearance Measurements

- All laboratory methods rely on the measurement of waste products in blood, usually urea and creatinine, which accumulate when the kidneys begin to fail
- Renal failure must be advanced, with only about 20-30% of the nephrons still functioning, before the concentration of either substance begins to increase in the blood. The rate at which creatinine and urea are removed or cleared from the blood into the urine is termed clearance
- Clearance is defined as that volume of plasma from which a measured amount of substance can be completely eliminated into the urine per unit of time expressed in ml/minute
- Measurement of clearance is used to estimate the rate of glomerular filtration

بح نقيس ال Creatinine و ال Urea و اذا كانت وتفين معناها ال Kidney بالات قاررة ازها تخل waste products سبكل حبي لل

قد يه لازم تتعجب ال عصان بين ارتفاع ال creatinine and urea kidney function ال ؟ لازم تكون ضباب سب 20-30% من ال kidney function و احنا عنا كلتيه معناها اذا ضل سب نه كلية سغالة بح تكون تركيزهم نورمال يعني عصان بين انهم بلطفا يرتفعوا لازم يكون اقل من 20% من ال kidney سغالة

ال creatinine clearance معناها قد يش خدل فتره من الزمن يقدر انخف الم من ال creatinine clearance و هو تقريراً
 $GFR = \frac{\text{creatinine clearance}}{\text{creatinine concentration}} \times \text{volume}$ و عالي حساباً قلنا ال 125 ml/min

Creatinine

- Creatinine is a nearly ideal substance for the measurement of clearance

وأمثلة على الأسلوب المترافق

tox **u/s** It is an endogenous metabolic product synthesized at a constant rate for a given individual and cleared essentially only by glomerular filtration (it is not reabsorbed and is only slightly secreted by the proximal tubule).

Cancer میں کسے اولیے فوار سے یا یا radioactive substances پہلے لے کر ملے۔

- Analysis of creatinine is simple and inexpensive using colorimetric assays.

ما بحتاج اجزءه ملقة و فحصها
كثير سهل لكن اي فحص يحمل

Creatinine Clearance and GFR

- Calculation of creatinine clearance has become the standard laboratory method to determine glomerular filtration Rate (GFR).
- This value is derived by mathematically relating the serum creatinine concentration to the urine creatinine concentration excreted during a period of time, usually 24 hours
- Specimen collection must include both a 24-hour urine specimen and a serum creatinine value, ideally collected at the midpoint of the 24-hour urine collection.
- The urine container (clean, dry and free of contaminants or preservatives) must be kept refrigerated throughout the duration of both the collection procedure and the subsequent storage period until laboratory analysis can be performed
- The concentration of creatinine in both serum and urine is measured by the applicable methods + volume of urine is measured

عملية حساب الـ Creatinine يعملاطاً بالـ lab

exact GFR or creatinine clearance estimation هي التي تقييم kidney function II assessment

لمراد الشخص

الى نعمله انه احنا نأخذ urine sample خلال hrs 24 يعني بدل اجمع الـ Urine و بعطيه كمية كبيرة لـ urine ثلاثة و اي كمية بدل بعضاً بعدها bottles و يحفظهم لمدة hrs 24 و اكتر من hrs 6 اليورين كلام يكون بالثلاجة مثل عال room temp

خلال نهار هاي المدة يعني بعد ٢٤ ساعة من عملية الجمع باخذ عينة دم من هاد الشخص للـ Creatinine

Creatinine Clearance and GFR

- The total volume of urine is carefully measured, and the creatinine clearance is calculated using the following formula (Cockcroft-Gault formula)

$$C_{Cr} (\text{mL/minute}) = \frac{U_{Cr} (\text{mg/dL}) \times V_{Ur} (\text{mL/24 hours})}{P_{Cr} (\text{mg/dL}) \times 1440 \text{ minutes/24 hours}} \times \frac{1.73}{A}$$

↑ amount of Cr in urine
↑ time bc ml/min

where Cr_{Cl} = creatinine clearance

حول ٢٤ ساعه لـ
٦٠ بـ ٢٤
٢٤ × ٦٠ = ١٤٤٠ min

U_{Cr} = urine creatinine concentration

V_{Cr} = urine volume excreted in 24 hours

P_{Cr} = serum creatinine concentration
or plasma conc.

- 1.73/A normalization factor for body surface area

Ex:-

urine volume = 1.95 L
Cr in urine = 36 mg/dL
Cr in serum = 0.7 mg/dL
A = 1.65

T = 20 hr = 1200 min
Answer: 87.6 mL/min

وحي الـ GFR measured
لأن كل المطبات جب من الماء
وذلك بمقدار
بالنسبة لـ ranges الـ GFR حسب الماء
Stage 2 → Stage 3

الـ Cr يعتمد على قدسيه في الماء
وإذا الشخص طعام من مناسب مع وزنه
فذلك أحسن أو ST ... في الواقع غالباً يتطلب
الوزن والطعام تتطلب ST

Reference ranges for creatinine clearance

- Male: 97- 137 mL/minute per 1.73 m^2
- Female: 88-128 mL/minute per 1.73 m^2
- Creatinine clearance normally decreases with age, with a decrease of about 6.5 ml/minute per 1.73m^2 for each decade of life

٦.٥ - ١٣٧ GFR JI العَنْدَ ٥٠ سِنًّا كُلَّ سِنٍّ

Stage of RF	GFR
1	>90
2	60-90
3	30-60
4	15-30
5	<15 dialysis

Estimated Glomerular Filtration Rate

- The estimated GFR (eGFR) is calculated each time a serum creatinine is reported.
- The equation is used to predict GFR and is based on serum creatinine, age, body size, gender, and race, without the need of a urine creatinine
- Because the calculation does not require a timed urine collection, it should be used more often than the traditional creatinine clearance and result in earlier detection of chronic kidney disease

$$\text{GFR (mL/minute)} = \frac{(140 - \text{Age}) \times \text{Weight (kg)}}{72 \times S_{Cr} (\text{mg/dL})} \times (0.85 \text{ if female})^*$$

if in $\mu\text{mol/L}$
0.85 female
nothing if male
male 1.23
female 1.04

(Eq. 24-6)

- If serum creatinine is measured in mg/dl, serum creatinine is multiplied by factor 72
- If serum creatinine is measured in $\mu\text{mol/L}$, the constant is 1.23 for men and 1.04 for women

الـ measured GFR مكت نفحة مرة او مرتين في الحياة لحدا صرف سكر او صرفه فنحة د الـ داينـا
الـ estimated GFR يعني كل سنه مره او مرتين ملـيـنـيـ سـكـلـيـ او صـرفـه فـنـحـةـ هوـ الـ

الـ race , body age , body size , gender: Serum Cr هوـ بيـاـخـ ماـ بيـاـخـ وـ بـعـذـ بـعـينـ اـلـ عـتـابـ estimated GFR الـ وـ عـتـابـ ماـ بـسـتـخـمـ عـرـيـنـ فـهـوـ estimated urine

لـ فـرـضـ انهـ مـرـيـهـهـ عـرـهـاـ 80ـ سـنـ وـ وـزـنـهـاـ 75ـ kgـ Serum Cr = 0.9 mg/dLـ الـ جـوـابـ يـلـمـ

فـيـ كـيـرـ فـسـتـشـفـيـاتـ زـيـ مـسـتـشـفـيـاتـ الـ مـلـلـيـ عـبـدـالـهـ بـحـسـبـواـ الـ Crـ 60ـ Lـ /~minـ فـاـلـعـارـةـ بـهـسـرـ عـلـيـهـ تـعـدـيـاتـ بـيـلـةـ

لـ فـرـضـ انهـ فـقـسـ الـ مـرـيـهـهـ كانـ الـ Crـ 115~Mmol/Lـ ← serum Cr 40.69~ml/minـ فـهـيـ stage 3

Urea

- Urea clearance was one of the first clearance tests performed.
- Urea is freely filtered at the glomerulus and approximately 40% reabsorbed by the tubules. For this reason, it does not provide a full clearance assessment and is no longer widely used
- Older clearance tests used administration of inulin, sodium [^{125}I] iothalamate, or p-aminohippurate to assess glomerular filtration or tubular secretion
- These tests are time-consuming, expensive, and difficult to administer and, for the most part, have been discontinued.

عملية الـ excretion الـ معقدة و بالأول كانوا يستخدمونها بـ احياناً مـنـكـ الـ واحد يكون dehydrated و الـ volume الـ kidney الى بـرـوج الـ excretion assessment قـلـيل بالـتـالي عملية الـ excretion الـ urea سـعـ نـكـهـ كـمـانـ قـلـيلـ وـ يـعـكـ تـرـفـعـ بالـدمـ سـبـ ماـ عـنـهـ مـسـاـلـ بالـكـلـ فالـ مـنـكـ تـكـنـهـ مـنـ مـحـيـةـ 100%

بالـأـلـ older tests مـوـادـ radio active زـيـ الـ iothalamate هـاـيـ تـبـهـرـ عـالـفـةـ الـدرـقـيةـ

هـاـيـ الـ فـحـصـاتـ كـانـتـ تـاخـدـ وـقـتـ كـيـتـرـ لـفـوـيلـ يـقـيـنـ بـدـكـ تـعلـيـهـ 17 بـعـدـينـ سـيـرـلـهـ excretion كـلـهـ وـ تـرـوـجـ تـقـيـسـ الـurineـ وـ الـ volumeـ وـ الـ concـ

Urine Electrophoresis

- Owing to the efficiency of renal glomerular filtration and tubular reabsorption, normal urinary protein excretion is only about 50-150 mg/24 hours
- Proteinuria may develop when there are defects in renal reabsorption or glomerular capillary permeability or when there is a significant increase in serum immunoglobulins.
- As a result, urine electrophoresis is used primarily to distinguish between acute glomerular nephropathy and tubular proteinuria
- It is also used to screen for abnormal monoclonal or polyclonal globulins.
- Positive identification and subtyping of the urinary paraproteins can be performed by immunofixation electrophoresis

يمكن استخدام البروتينات اللي بالـ urine حتى نعمل assessment لل kidney function و نقدر نقدر
بالنسبة لـ urine المسكلة و يكون ال diagnosis صحيح 100%

حسب البروتينات اللي بالـ urine بقدر اعرف اذا المسكلة بالـ Glomerular filtration او بالـ tubular reabsorption او ولا وحدة فنون

الـ electrophoresis بالعاشرة مستخدم حسب size تبعهم و بالبداية مستخدم
الـ polyacrylamide gel و يفصل البروتينات حسب marker يكون الـ molecular weights
مرويـن و بعدـن منـظم عـيـنة urine و الاصل انه ما يكون في بـروـتـيـنات بالـ urine
دـ تـركـيـنـهـ المـفـرـوفـهـ 50-150 mg/day يـعنـيـ الـ اللـترـيـنـ الـ urine الـ الـ بـلـغـوـنـ المـفـرـوفـهـ يـكونـ دـيـنـمـ بـسـ 50-150 mg و بالـ دـيـنـمـ فيـ 1L
يـعنـيـ 1L/7d مـعـنـاهـ تـركـيـنـ الـ بـروـتـيـنـ كـتـيـرـ عـلـيـ بالـ دـيـنـمـ سـيـنـاـ بالـ urine لاـ يـذـكـرـ عـتـانـ دـيـنـكـ الـ sensitivity وـهـمـ جـبـاـ

اـذاـ كانـ الـ بـروـتـيـنـ الليـ قـاعـدـ يـطـلـعـ albumin معـنـاهـ عـنـهـ فـسـاـكـلـ بالـ glomerulusـ لـأـنـ المـفـرـوفـهـ ماـ يـمـرـهـ اـسـيـرـ
حجمـ 68 kdalton

اـذاـ كـانـ الـ بـروـتـيـنـ الليـ يـطـلـعـ صـغـيرـهـ معـنـاهـ المسـكـلةـ بالـ tubularـ يـتـكـوـنـ مـسـكـلةـ ماـ يـصـرـحـ reabs

الناس اللي بقى عندهم immunoglobulin very severe viral or bacterial inf و بتكون يك نلاقي

بلشت ترتفع كتير بالدم زي حادث ال hepatitis ال immunoglobulins بتترنن ال lymphocytes و سرطان ال immune system بال kidney بال urine فخورن ما بتكون المستكدة بال

عستان ضد نوع ال immunoglobulin antigen-antibody rxn (IgG, IgM, ...) ال مرتفع

immuno assay ٩

Urine Electrophoresis

- Newer protein assays, such as urine microalbumin, serum β 2-M, cystatin C, and serum and urine myoglobin, can provide important prognostic information useful for patient management.
- ① **Microalbuminuria** is useful for early detection of **diabetic nephropathy**
مُفْعَلٌ مُعْلَمٌ
يُعَيَّنُ مَا يَمْتَنَعُ مِنْ مُتَبَلِّمٍ إِلَيْهِ وَإِسْتِيَادٌ مُكْثُرٌ مُرْتَجِعٌ
يُعَيَّنُ مَا يَمْتَنَعُ مِنْ مُتَبَلِّمٍ إِلَيْهِ وَإِسْتِيَادٌ مُكْثُرٌ مُرْتَجِعٌ
- ② **β 2-M** is useful for **early renal transplant rejection**
- ③ **Myoglobin** clearance rates are helpful in predicting **rhabdomyolysis induced acute renal failure**.
- ④ **Cystatin C** is used in detecting **early changes in kidney function**
لَهُ اِنَّ اِرْتَجَعَ بِالْمَدْمُونِيَّاتِ
الْكَلِيَّةِ مُلْكَتْ سَلْفَتْ وَمَدْعَهُ
اِدْهُ وَ اِسْرَعَ مِنَ الْC
فَنُّ اِلْأَرْتَجَعُ وَ اِغْدَ سَهَانٌ

Antigen - Antibody rxn ٢٨

في كمان نوعيات من البروتينات يمكن تحديدها assay

الـ albumin ما يجعله immuno assay لأنـ test تأثر بـ كـون عـبـارة عـن dye يـمـكـن يـمـكـن
ترـكـيـزـهـ عـالـيـ ، اذا كان تـرـكـيـزـهـ قـلـيلـ يعنيـ mـiـc~al~bu~m~i~nـ مـعـ يـمـكـن عـالـ test يـمـكـن فـيـرـجـعـ لـ a~nti~b~o~d~yـ

الـ β_2 microglobulin الناس الـ يـمـكـن يـمـكـن اـنـ يـمـكـن اـنـ يـمـكـن immuno suppressants
كـافـيـ مـعـ كـافـيـ مـعـ rejection وـ يـمـكـن kidney فـيـنـانـ عـاـنـ assessment اـعـلـيـ اـعـلـيـ
immuno suppressant stable وـ تـحـمـيـلـ كـوـمـيـهـ الـ β_2 microglobulin كـافـيـةـ وـ اـلـادـوـيـةـ
الـ يـمـكـنـ بـيـاـخـهـ تـحـوـلـ كـافـيـةـ اوـ تـعـنـيـ الـ kidney الـ rejection

myoglobin اذا تـرـضـيـنـ الـ tra~u~m~aـ وـ بـلـشـ الـ myoglobinـ وـ بـلـشـ الـ damageـ musclesـ
الـ جـوـاهـهـ يـمـكـنـ زـيـ حـاـلـهـ الـ rhabdomyolysisـ وـ الـ acute renal failureـ وـ الـ myoglobinـ موجودـ بالـ
heartـ وـ skeletal musclesـ وـ كـيـفـيـتـهـ انهـ يـمـكـنـ الاـكـسـجـيـنـ الـ حـضـلـاتـ

Microalbumin

- Urine microalbumin measurement is important in the management of patients with diabetes mellitus, who are at serious risk of developing nephropathy over their lifetimes
- Type 1 has a 30-45% risk, and Type 2 has a 30% risk
- In the early stages of nephropathy there is renal hypertrophy hyperfunction, and increased thickness of the glomerular and tubular basement membranes *جذب الماء إلى الأوردة*

الـ pores تتجدد بتبلاش توسع
سود غبليش يرق البردين
سبكيات سبيطة
يعني microalbumin
ما ينزل الـ size له مثل كمة

اذا بلبسه هاد البروتين يرتفع معناه بش الشفط nephropathy عند هاد المرضى

Type 1 مرضية انه ينبع عنهم اعماق اذنه هاد nephropathy والفترة اللي تكون فيها diabetes control هاد nephropathy لانه مرض سكري Type 2 ينبع عنه بعد 40 او 50 سنة بينما هاد يكون في المرضى diabetic ينبع الطول بكثير لانه مرض سكري اعماق nephropathy تكون اعماق اطفال فرضية انه ينبع عنهم سكري

الـ detection of the protein in the urine antigen-antibody kit من العادلة اذنا تقييم هاد urine sensitive لانه الكمية كثيرة قليلة

β2-Microglobulin ص بروتين عادي glycoprotein و ماء يحيى

- β2-Microglobulin (β2-M) is a small, nonglycosylated peptide (MW, 11.8 KDa) found on the surface of most nucleated cells
- The plasma membrane sheds β2-M as a relatively intact molecule into the surrounding extracellular fluid so stable levels in normal patients
- can be elevated in other conditions such as:-
Its serum elevated levels indicate increased cellular turnover as seen in myeloproliferative and lymphoproliferative disorders, inflammation, and renal failure
- β2-M is easily filtered by the glomerulus. About 99.9% is then reabsorbed by the proximal tubules and catabolized
- Measurement of serum β2-M is used clinically to assess **renal tubular function in renal transplant patients** (high when organ rejection)
- β2-M is more efficient marker of renal transplant rejection than serum creatinine values (independent on lean muscle mass)

هاد البروتين بالنسبة لل kidney حجمه صغير لآن اكبر من kidney 68 kiloton عنصر

بعض الـ nucleated cells و ما الـ دخل بالـ muscle mass يعني الـ kidney يحيى بـ constant rate و بـ shedding بـ metabolism بـ rate ناتب و نوع هيك بروح الـ kidney و تفلت و برجع مرة ثانية بـ proximal tubules فـ reabsorption always بعدين بـ rate يحيى بـ تتبع بـ metabolism و تكتسونه فـ اذا بلن يرتفع بالـ serum و الـ kidney كلها خربة و اذا بلن يرتفع بالـ urine معناها المشكلة الـ tubular reabsorption فـ منقى نقيس فيه الـ serum و الـ urine كلـاـن مثل assessment

هاد البروتين مستخدم في حالات الـ rejection للـ kidney transfer و اذا مثل سبـ 20% في الـ Cr the nephrons

Myoglobin

- Myoglobin is associated with **acute skeletal and cardiac muscle injury** ↑myoglobin
- In rhabdomyolysis, myoglobin release from skeletal muscle is sufficient to overload the proximal tubules and cause acute renal failure
- Early diagnosis and aggressive treatment of elevated myoglobin may prevent or lessen the severity of renal failure. Recently, myoglobin clearance has been proposed as an effective early indicator of myoglobin-induced acute renal failure. A high clearance or a low clearance and low serum concentration indicates low risk and a low clearance and high serum concentration indicates high risk.
- Serum and urine myoglobin can be measured easily and rapidly by **immunoassays**. Urine myoglobin can also be measured by dipstick methods after removing hemoglobin, but this method has a lack of sensitivity and specificity.

↳ myoglobin can be mixed up with hemoglobin
عندما يتم الخلط بين الميوجلوبين والهيموجلوبين

Myoglobin

(Antigen-antibody reaction)
يمكن الخلط بين الميوجلوبين والهيموجلوبين
cannot be detected
cannot be differentiated from Hb

عکیل و ال conc بالدم عالی و عکی مترسپب ناتج عن ال myoglobin انه بحالة اعماق risk ال kidney clearance ال من ال acute renal failure بکن ال

اذا كان تركيزه بالدم قليل و ال clearance عالي او قليل يعني ان risk فال rhabdomyolysis يعني بمعنى يكن سببا

و لكن اذا طولنا عليه الريح تتحول لـ acute renal failure او الـ acute renal failure كان الـ intervention اسرع و الـ diagnosis اسرع ح تمكن قدرتك على انتقاد الكلية احسن

بالنسبة لـ dipstick strip تكون في عليها مربعات وكل واحد منها فحص معين يعني في البروتينات وللـ PH و لـ osmolality ولـ glucose و nitrites و لـ myoglobin فنستخدم هاد النمط مثلاً استوف اذا في اول الـ urine لا يزال

Cystatin C

- Cystatin C is a low-molecular-weight protein produced by nucleated cells. It is freely filtered by the glomerulus and reabsorbed and catabolized by the proximal tubule
- Produced at a constant rate, levels remain stable if kidney function is normal
- Measurement of cystatin C to be at least as useful as serum creatinine and creatinine clearance in detecting early changes in kidney function.
Cystatin C can be measured by immunoassay methods

Urinalysis

Physical Characteristics

عينان تكون العينة طفلاً تكفي طفلاً الليل بالليل
وتحتوى على حموضة
أولاً تختزن لفترة
طويلة

Initial morning specimens are preferred, particularly for protein analyses, because they are more concentrated from overnight retention in the bladder

- The urine should be freshly collected into a clean, dry container with a tight-fitting cover

للتلوث بالبكتيريا من الماء
انه هاد الساعه عيوبه
contaminated container
مخلياً الـ
عن الماء
- It must be analyzed within 1 hour if held at room temperature or else refrigerated at 2°-8°C for not more than 8 hours before analysis

اذا طبقت عالجنة خاله ٨ ساعه
نرجع بالبلاجة و اذا ساعه
room temp
- Bacterial multiplication will cause false-positive nitrite tests, and urease-producing organisms will degrade urea to NH₃ and alkalinize pH
- Loss of CO₂ by diffusion into the air adds to this pH elevation, which causes cast degeneration and red-cell lysis
- The urine container must be sterile if the urine is to be cultured

احنا جتنى ناخذ عينة من الـ urine حتى نفحمنى البروتينات الـ protein و كتير منها بتخمنى kidney function و فحوصات تانية

بتخمنى امراض تانية

كيف بعرف ادا في bacterial inf ؟ في بعض اجزاء البكتيريا بتتطبع nitrile (او nitrite صن متأكدة) فلما تدل dipstick في من

دهن الفحوصات الـ alk على nitrile positive بس هو صن سترط يكون فعلاً عكش يكن يعنى عكش يكن

contaminated container و في بعض اجزاء البكتيريا بتتطبع urease فبتكسر الـ urea و بتتطبع افرونيا و Col و الاعوينيا هي الـ

الريحية السنية للـ urine وهي تغير الـ pH تبعت الـ urine و عكش تبلش ترسب عوارد فيه فتطبع عند السخنه ترسيبات في حال كان

inf

لازم يكون فحصه سبكل حيد و السبب انه الغشاء بينن الـ CO_2 من ايه يطلع من العينة ف ادا فلح الـ CO_2 مع تغير الـ pH تبعت

الـ urine و عكش انه تغير بالترسبات الموجبة و عبیر alkaline

Urinalysis

Physical Characteristics

- **Visual Appearance.** Color intensity of urine correlates with concentration: the darker the color, the more concentrated the specimen
 - Yellow and amber are generally due to urochromes (derivatives of urobilin), whereas a yellowish-brown to green color is a result of bile pigment oxidation.
البروبيورين
البروبيورين
البروبيورين
 - Red and brown after standing are due to porphyrins, whereas reddish-brown in fresh specimens comes from hemoglobin or red cells.
without standing (fresh)
 - Brownish- black after standing is seen in alkapttonuria (a result of excreted homogentisic acid) and in malignant melanoma (in which the precursor melanogen oxidizes in the air to melanin). Drugs and some foods, such as beets, also may alter urine color.
بعد الانتظار
بعد الانتظار
- **Odor:** The characteristic pungent odor of fresh urine is due to volatile aromatic acids
 - Urinary tract infections impart a noxious, fecal smell to urine, whereas the urine of diabetics often smells fruity as a result of ketones.

كانت العينة fresh بورن ما استثنى عليها وصغار لوزرا \leftarrow reddish brown \leftarrow RBCs or Hb و اذا اخذت عينة و كان لوزرا طبيعي بعدين استثنى عليها ساعة او يوم ساعة وتغير لوزرا \leftarrow porphyrin \leftarrow reddish brown و اذا

إذا ما كان brownish black بعد ما استنت عليه فهذا عبارة عن حرف وتأتي حتى يكون اللون الأسود brownish black بعد ما استنت عليه فهذا يكون Alkaptonuria وهذا عبارة عن حرف وتأتي حتى يهيب الواحد في عملية metabolism لل Tyrosine و يعوق هذه ال homogentisic acid فبلاش تراكم ويرجع بال urine فهو الذي يغير لون urine و يمكن عيشه عن الناس اللي عذهم Malignant melanoma وهذا انه ال melanogen ينفرز بال urine و يتأكد من تحول اللون لل melanin الأفامت فبنجع brownish black اللون

غير ادوية يك تغير لون الـ Urine زي الـ Nitrofurantoin سجلي لونه احمر فلامن انته المرفين واحكيمه انه harmless علشان ما يخاف

برحة في urine اذا كان هناك فيه aromatic acid فالبرحة تتغير وهي الالي تكون طالعة بسبب اذا كان العاكس عنده
برحة يحيط في برحة سيدة حبها للـ urine و الناس الالي تكون عندهم ketone bodies او diabetes تتغير برحة الـ urine نزى الروائح العطرة
او الـ Acetone ف اخنا يمكن تغير الحالة المرضية من الـ urine

Urinalysis

Physical Characteristics

- **Turbidity** The cloudiness of a urine specimen depends on pH and dissolved solids composition.
 - Thread-like cloudiness is observed when the specimen is full of mucus. In alkaline urine, suspended precipitates of amorphous phosphates and carbonates may be responsible for turbidity whereas in acidic urine, amorphous urates may be the cause
- **Volume.** The volume of urine excreted indicates the balance between fluid ingestion and water lost from the lungs, sweat, and intestine.
 - Polyuria is observed in diabetes mellitus and insipidus (in insipidus, as a result of lack of ADH), as well as in chronic renal disease, acromegaly (overproduction of the growth hormone)

الـ PH Urine بالبعض الطبيعي المفروض يكون clear خلما تكون turbid بكون المواد اللي دائمة فيه في استرو منهم تبريس او انه الـ

إذا ارتفع الـ pH في البول بسبب فسخ CO_3^{2-} في البول، فإن المركبين

الذى يسبب الحموضة \leftarrow aciduria \leftarrow ارتفاع الـ pH و HCO_3^- \leftarrow Na^+ \leftarrow NaHCO_3

diabetes mellitus □

(ADH deficiency) diabetes insipidus

growth hormone || يرتفع لـ Acromegaly [3]

الحالات التي تؤدي إلى oliguria or Anuria هي endstage renal failure (نهاية المرض) أو هي Chronic renal failure [4]

hypercalcemia [5]

Renal diseases

Etiology

أسباب الـ ARF

1) Prerenal Causes

يعني اسباب ما دخل بالـ kidney لـ الـ ARF

- Patients who are dependent on prostaglandin-mediated vasodilation to maintain renal perfusion can develop RF simply from ingestion of NSAIDs.
- Patients with renal hypoperfusion (e.g., from renal artery stenosis, congestive heart failure, or intrarenal small vessel disease) who are dependent on angiotensin II-mediated vasoconstriction of efferent renal arterioles to maintain renal perfusion pressure may develop ARF on ingesting ACE inhibitors.

المريض اللي بيكون رئيسي علـ PGs علـ NSAID علـ مرض المريء و ادا تاخـد PGs علـ NSAID
و لـخـرـقـ المـريـءـ منـجـسـرـ عـنـهـ Acute RF

الناس اللي بـ تكون عـنـدـهـ hypovolemia بـ بسببـ مـسـاحـةـ خـلـقـةـ اوـ مـسـاحـةـ بالـ قـلـبـ قـلـلـةـ جـمـيـعـ المـمـ المـلـيـ لـحـقـةـ لـ الـكـلـيـةـ نـاطـقـةـ اـنـجـتـونـ ACE inh عـنـدـهـ سـرـعـةـ اـنـجـتـونـ renin inh عـنـدـهـ اـنـجـتـونـ acute renal failure

Etiology

Intrarenal Causes

- can be divided into
 - specific **inflammatory diseases** (e.g., vasculitis, glomerulonephritis, drug-induced injury)
 - **acute tubular necrosis** resulting from many causes (including ischemia, poisons, & hemolysis). *Monitoring albumin ↓↓↓ nephrotoxicity ↓↓*
- **Tubular damage can commonly be due to aminoglycoside antibiotics & rhabdomyolysis**, in which myoglobin, released into bloodstream after crush injury to muscle, precipitates in renal tubules.
- **Sepsis** is one of the most common causes of acute renal failure - combination of pre-renal & intrarenal factors.

Postrenal Causes

Kidney + all abd + obstruction في سبب post renal

- result in **urinary tract obstruction**, such as renal stones.

↑ معدن رجع كل مخلفات دالت مياه و تغذية ماء ماء
Kidney + all abd + obstruction في سبب post renal

Pathogenesis

الـ nephrons بتبلاش تتلف و بتبلش تخرّب الخلايا

- All forms of ARF, if untreated, result in **acute tubular necrosis (ATN)**, with sloughing of cells that make up renal tubule.

دالعشن reversibile ماتمرين الـ و بعدين
Dialysis ➤

- ARF **may be reversible** depending on timing of intervention between onset of initial injury & eventual ATN

اذا تأخّرنا بالعلاج تتلفـ الـ ATN و تتحـرـ الـ اـعـدـ اـسـوـ

Clinical Manifestations

∴ اکٹھے یک کسی نی اکٹھے

بسبی حراک اول دا ټامن چو چې

- Initial symptoms: fatigue & malaise, probably early consequences of loss of ability to excrete water, salt, & wastes via kidneys.
- Later, more profound S&S of loss of renal water & salt excretory capacity: dyspnea, orthopnea, rales, prominent S3, & peripheral edema.
- Altered mental status reflects toxic effect of uremia on brain, with ↑ blood levels of nitrogenous wastes & fixed acids.
- Clinical manifestations depend on cause & stage of disease at which patient comes to medical attention.
 - Patients with renal hypoperfusion first develop prerenal azotemia (↑BUN without tubular necrosis), a direct physiologic consequence of ↓ GFR.
↳ normal Cr or slightly high
 - Without treatment, ischemia → necrosis prerenal azotemia may progress to ATN - often requiring supportive dialysis before adequate renal function is regained.
↳ mannitol د ټانه چو چې

پیلشن یعنی سوالات بالرئۃ

و *orthopnea* مثلاً كل ملتحق بـ *orthopnea* انه اذا تتمدد تنفس

mannitol مانitol الماء ٦ طه طه

Clinical Manifestations

- The earliest manifestation of prerenal azotemia is ↑ ratio of BUN to SrCr. Normally 10–15:1, this ratio may ↑ to 20–30:1 in prerenal azotemia, with a normal or near-normal serum creatinine.
- Urinalysis:
hypovolemia ↓
retention ↑
↓
Urine is maximally concentrated (up to 1500 mOsm/L) in prerenal azotemia.
- However, with progression to acute tubular necrosis, the ability to generate a concentrated urine is largely lost (< than 350 mOsm/L)
- granular casts, tubular epithelial cells, & epithelial cell casts are found in ATN.
Shedding of cells
urine ↓ right side ↴

Chronic Renal Failure (CRF)

Clinical Presentation

- in addition to those observed in ARF:
- Osteodystrophy, صيانتة عظام لأنه يدخل في vit D
يدخل في العظام كثيير منه يدخل
وإذ ↑ PTH ↑ Ca²⁺ و↓ PO₄
Kidney is the main source of PTH
Activation of vit D
- Neuropathy, ↑ PTH
Kidney is the main source of PTH
Activation of vit D
- Bilateral small kidneys by abdominal x-ray film or ultrasonography,
- Anemia
Because of Erythropoietin will be normal size
ولك العد التكاثلي دفعه دم أكثر من المعدل

كل الأسباب التي تؤدي إلى حكمها ملخص
ينطبقوا على المرض وجزء منه :-

Etiology

- The most common cause of CRF is diabetes mellitus, followed closely by hypertension & glomerulonephritis.

- Polycystic kidney disease, obstruction, & infection are among the less common causes

Acute or chronic renal failure

النحوين الحادتين يختلفان التي ينبعانها منهما

نحو :-

النحوين الحادتين يختلفان التي ينبعانها منهما

Pathogenesis

Development of Chronic Renal Failure

- Irreversible loss of nephrons → > functional burden is borne by fewer nephrons
→ ↑ glomerular filtration pressure & hyperfiltration ("hypertension" at level of nephron) → fibrosis & scarring (glomerular sclerosis) → the rate of nephron destruction & loss ↑ → **uremia**
- In CRF there is combination of toxic effects of:
 - (1) retained products normally excreted by kidneys (e.g., nitrogen-containing products of protein metabolism)
 - (2) normal products such as hormones now present in ↑ amounts
 - (3) loss of normal products of kidney (e.g., erythropoietin)
- Excretory failure results also in fluid shifts, with ↑ intracellular Na⁺ & water & ↓ intracellular K⁺.

➤ Effects on metabolism:

- (1) ↓ in basal body temperature (perhaps because of ↓ Na⁺-K⁺ ATPase activity)
- (2) ↓ lipoprotein lipase activity with accelerated atherosclerosis.

متلازمة راتباً بـ

↳ يسبب تراكم الـ Triglycerides فقرحة أنه ليس بهذه طبيات نهر أكير

وقد يكون الاستخراج عادةً ما يمتنع من المريض بسببه من RF تقدروا بـ dialysis

لما يكون تركيز الجلوكوز فرماً يدخل سمية معقلة للـ Urine

١٧ تكون الترکيز كبير عالي و ال conc. gradient كبير بع يدخل سمية هائلة من الجلوکون لجوا الخلايا

جوا الخلايا بغيرها عملية processing لما بعملها phosphorylation اد بحولها sorbitol ... لما تعاملها ما مع يكون في carrier يملئها ولا اتسريات ملحقة تحولها لي بده لانه اتسريات تجسس اهلها معناها مع تراكم يعني مع انه معناته مع يبلش يحب الماء د السوائل لجوا الخلية لحد ما تتفجر مسد ال nephrons من كلها مع ينفجروا مرة واحدة يعني في خلايا ما مع تحصل دفع تتفجر وتخرب غبلش تجسس loss of nephrons يعني عدم تقل نتاجة انه دايما السكر عالي يعني احنا ما فتحكين عن حدا عينه diabetes control ونتاجة ال loss nephron دفع جيسه كتفة اكتر حال nephrons اللي هنلها فتجسس ال deterioration اسرع

بال glomerular filtration فرق بالمنفحة و هار المنفحة في يهس أكبر في حالة loss less nefron معين ما في عندهم hypertension و هار الاكتئي بسبب loss less أكبر و أكبر و يمكن تبلغها لدرجة انه ما يتحمل غير 20-30% و اذا نفحة عن هار النسبة معانا مع بيلش ↑ urea + Cr

الهرمونات استي منوم بلع و استي منوم سبخفن

في بعده الـ 25- OH دايريلوكس بروتين (25-OH D₃ - DBP) ينفع في انتشار الفيروسات وكمان الـ 1,25(OH)₂ دايريلوكس (1,25(OH)₂ D₃) ينفع في انتشار الفيروسات.

Clinical Manifestations

Na⁺ Balance & Volume Status

- Some degree of Na⁺ & water excess, reflecting loss of renal route of salt & water excretion.
- Continued excessive Na⁺ ingestion contributes to CHF, HTN, ascites, peripheral edema, & weight gain.
وَلَهُ سُبُّر سَوَالِنَ كَثِيرٌ فَمَكَنْ قَلَّ تَكِبِرُهَا
- Excessive water ingestion contributes to hyponatremia.

ال kidney من ح سُبُّر الْهَا القدرة اُنْهَا تَقْلِيلْ الْهَوْدِيْمْ فَالْهَوْدِيْمْ نَجْبِسْ جَوَّا الْجَسْمِ

اذا الواحد بيأخذ صوديوم زيادة المفروض زيـد المـهـدـيـمـ مـبـسـ اـنـتـ فـعـلـيـاـ لـاـ تـاخـدـ مـلـعـ مـقـشـرـ دـرـاهـ مـيـ فـعـنـاـصـاـ السـوـالـلـ كـمـانـ
حيـ تنـيهـ سـبـهـ بـرـهـنـ حـاـنـيـ عـدـمـ لـلـسـوـالـلـ الزـيـادـهـ حـتـىـ اـنـهـ تـقـلـ مـسـاـكـلـ عـنـ الـواـحـدـ

Clinical Manifestations

K⁺ Balance

- Hyperkalemia is a serious problem especially when GFR ↓ below 5 mL/min → aldosterone-mediated K⁺ transport in distal tubule ↑ in compensatory fashion.
 - Treatment with K⁺-sparing diuretics, ACE inhibitors, or β -blockers—drugs that may impair aldosterone-mediated K⁺ transport—can, therefore, precipitate dangerous **hyperkalemia** in a patient with CRF.
- CRF patients are at > risk of hyperkalemia in the face of sudden loads of K⁺ from either endogenous sources (e.g., hemolysis, infection, trauma) or exogenous sources (e.g., stored blood, K⁺-rich foods, or K⁺-containing medications).

Metabolic Acidosis

- ↓ capacity to excrete acid & generate buffers
- Can usually be corrected with 20–30 mmol (2–3 g) of sodium bicarbonate by mouth daily.

لما يقل الـ GFR في الاـ 5 بيـشـ الاـدوـسـتـيـرونـ يـحاـولـ انهـ يـقـلـ Compensatory mechanismـ حتـ يـخـفـ الـبـوتـاسـيـمـ

لقرض واحد بده ياخه مسكنه وفعه RF ما بعطيه لا RF ما بعطيه بالاستعمال

عدم قدرة الكلى ازها تقلل ح ح تقلل acidosis ح ح acid all exc hyperkalemia

مهم اراده من بن ما تسبب زيادة في الوعايم سمات ذات ما يقع فيها بتوسيع اهلا

Clinical Manifestations

Mineral & Bone

- Several disorders of phosphate, Ca^{2+} , & bone metabolism
- Key factors:
 - (1) ↓ absorption of Ca^{2+} from gut,
 - (2) overproduction of PTH,
 - (3) disordered vitamin D metabolism,
 - (4) chronic metabolic acidosis → **enhanced bone resorption.**
- Hyperphosphatemia contributes to development of hypocalcemia → serves as additional trigger for secondary hyperparathyroidism →↑ blood PTH levels.
- →further depletion of bone Ca^{2+} → **osteomalacia & osteoporosis** of CRF

PTH JI un

المريض عند تحمل العظم وتدعوه فنزير من الـ chronic metabolic acidosis acid والذى لا bone resorption

الكالسيوم موجود بـ ۳ أشكال : واحد على شكل ionized وواحد مرتبط مع Albumin وواحد على شكل salt مع الـ anions في
القصفات مزدوج مع تكون عند hyperphosphatemia فالفرسقان الـ ارتفع ثم تربم كمان مع الكالسيوم وقليله بزيادة ويحفز PTH
osteomalacia consequences HPO_4^{2-} Ca^{2+} secondary hyperparathyroidism Ca^{2+} HPO_4^{2-} osteoporosis او

PTH لأنّه مثل من الفدة نفسها زيارة الـ Ca^{2+} HPO_4^{2-} secondary hyperparathyroidism

Clinical Manifestations

Cardiovascular & Pulmonary Abnormalities

- CHF & pulmonary edema are most commonly due to volume & salt overload.
- HTN is a common finding, usually on the basis of fluid & Na^+ overload.
 - Hyperreninemia (\downarrow renal perfusion triggers failing kidney to overproduce renin \rightarrow \uparrow elevate systemic BP.)
- \uparrow cardiovascular risk remains the leading cause of mortality in this population (MI, stroke, & peripheral vascular disease).
- Cardiovascular risk factors: HTN, hyperlipidemia, glucose intolerance, chronic \uparrow cardiac output, & valvular & myocardial calcification due to \uparrow $\text{Ca}^{2+} \times \text{PO}_4^{3-}$ product
 - ↳ may also cause pruritis

Clinical Manifestations

Hematologic Abnormalities

- Normochromic, normocytic anemia, with hematocrits typically in the range of 20–25%, is a consistent feature.
 - Lack of production of erythropoietin (mainly)
 - Bone marrow suppressive effects of uremic poisons
 - Bone marrow fibrosis due to ↑ blood PTH
- Abnormal hemostasis (↑ bruising, ↑ blood loss at surgery, ↑ incidence of spontaneous GI & cerebrovascular hemorrhage.)
- ↓ WBC = ↑ susceptibility to infections, due to leukocyte suppression by uremic toxins.
- Acidosis, hyperglycemia, malnutrition, & hyperosmolality also contribute to immunosuppression.
- Invasiveness of dialysis & use of immunosuppressive drugs in renal transplant patients also contribute.

له كل مرة يدخله ابرة معروفة هي اني ادخلت
معه بكتيريا وذئب المفدي بالذاتي معروضين لستكتة
او inf كمام او اذا بودروا ادوية في يدخلونا معروضين اكتر بران

نسبة RBC في مجرى الدم 30% و اذا منقصت الى 20-25% \leftarrow RF الـ Hb \leftarrow 8.5%

Clinical Manifestations

Endocrine and Metabolic Abnormalities

- ❑ Women have low estrogen levels → amenorrhea & inability to carry pregnancy to term.
- ❑ Low testosterone levels, impotence, oligospermia are common findings in men
- ❑ ↑ half-life of insulin → stabilizing effect on diabetic patients whose blood glucose was previously difficult to control.

Dermatologic Abnormalities

- ❑ Pallor because of anemia,
- ❑ Hematomas as a result of clotting abnormalities,
- ❑ Pruritus & excoriations as a result of Ca^{2+} deposits from secondary hyperparathyroidism.

مرهف ال RF سواء ذكر او انثى ما يح ميكنوا قادرین علی الانجاب

عند المتر - سعى ينخفضه منها الاستروجين و ينزل منها يعني ال period تبرعه و كما ان حمله ما يتحقق تكمل الحمل

صهوة ال نسولين تبرعه يعني قد حجبه بغير kidney 6kdalton فكان تغليس و يمسره kidney life $\frac{1}{2}$ catabolism سبب ذلك
عن سعى ح يمسره kidney لأن ال kidney كلها خربت فال life $\frac{1}{2}$ ال نسولين يمسره اهمل عندها ال control عالمسكرى

مار احسن

Treatment of chronic renal failure

- In situations of chronic renal failure, aggressive therapeutic approaches based on **dialysis** and **transplantation** have enabled prolonged survival of what was once a terminal condition
- Variations in dialysis techniques have made this process more available and convenient and, with the implementation of powerful immunosuppressive drugs, widespread renal transplantation is now limited only by the availability of appropriate donor organs.

الذى يمتد من المراحل المبكرة الى المراحل المتأخرة من المرض

لذا يعتمد العلاج على نوع المراحل المتأخرة الممكنة في المراحل المبكرة

CASE STUDY 24-1

A 52-year-old man with a history of AIDS, hypertension, diabetes mellitus, and alcohol abuse was found unconscious in his home by his roommate. In the emergency department, he was hypotensive (103/60), febrile ($T = 101^\circ$), and unresponsive. CT scan of the abdomen showed cholecystitis and gallstones. Laboratory data is listed below. (Case developed by Cynthia Batangan Santos, MD, Pathology Resident, Hartford Hospital Department of Pathology and Laboratory Medicine, Hartford, CT. Modified and printed with permission.)

The patient was diagnosed with acute renal failure. He was given IV fluids; BUN fell to 68 mg/dL and creatinine to 2.2 mg/dL. The patient's blood culture report was positive for *E. coli*. He was treated with tobramycin and cefepime. The patient contin-

ued to deteriorate and died 5 days after admission. Cause of death was multiorgan failure secondary to AIDS, sepsis, and alcoholic cirrhosis.

Questions

1. What is the significance of the patient's elevated CK? Explain why the doctor ordered a CKMB and troponin level. What can you conclude about the patient's cardiac status?
2. What is the cause of his acute renal failure?
3. What is the significance of the patient's large urine hemoglobin?
4. How would you interpret this patient's liver function tests considering his clinical history?

Drugs of Abuse: Serum	Negative: 84 mg/dL	Urinalysis:	Large:
Ethanol		Hemoglobin	4 hpf (0-4)
CK	3308 U/L (24-204)	WBC	2 hpf (0-4)
CKMB	15 ng/mL (0-7.5)	RBC	
CKMB rel. index	0.5 (0-4)	BUN	71 mg/dL (8-21)
Troponin T	<0.01 ng/mL (0-0.4)	Creatinine	4.1 mg/dL (0.9-1.5)
pH	7.50	ALP	443 U/L (45-122)
PCO ₂	27 mm Hg	AST	305 U/L (9-45)
Total CO ₂	15 mmol/L	ALT	78 U/L (8-63)
		GGT	724 U/L (11-50)
		Total bilirubin	2.7 mg/dL (0.2-1.0)
		Direct bilirubin	2.4 mg/dL (0-0.2)

CASE STUDY 24-2

A 45-year-old man presented to the hospital with alcohol withdrawal. After drinking a pint of brandy daily for the past 5–6 years, he decided to stop drinking 4 days ago. He experienced tremors and then visual and auditory hallucinations. On arrival at the hospital, he was diaphoretic and tachycardic, with a pulse rate of 102. His chemistry results are shown below.

Na ⁺	130 mmol/L	Total protein	7.1 g/dL
K ⁺	3.7 mmol/L	Albumin	3.7 g/dL
Cl ⁻	90 mmol/L	ALP	63 U/L
CO ₂	20 mmol/L	AST	42 U/L
BUN	81 mg/dL	ALT	16 U/L
Creatinine	4.0 mg/dL	GGT	131 U/L
Magnesium	1.4 mg/dL	CK	591 U/L
Alcohol	Negative	Total bilirubin	0.5 mg/dL

Medical history included arthritis, hypertension, depression, and alcoholism. He had been taking an anti-inflammatory medication for arthritis and an antidepressant. Overnight, he became agitated and re-

quired increasing doses of a benzodiazepine, together with physical restraints for behavior control. The next morning, he was transferred to the ICU where he was evaluated for acute renal failure. The patient was rehydrated and his arthritis and antidepressant medications were withheld. Lab test results are listed below:

Na ⁺	139 mmol/L	Creatinine	1.4 mg/dL
K ⁺	3.5 mmol/L	CK	1626 U/L
Cl ⁻	107 mmol/L	CKMB	3.4 ng/mL
CO ₂	23 mmol/L	Relative index	0.2
BUN	16 mg/dL		

Questions

1. Is the patient still in acute renal failure?
2. What was the cause of his acute renal failure?
3. Why has the patient's electrolyte status improved?
4. Why is his CK highly elevated?

CASE STUDY 24-3

A 78-year-old woman with a history of hypertension, aortic thoracic graft, and esophageal reflux disease complained of fever (100°) and weakness. She had been treated 3 weeks before at the hospital for a urinary tract infection. She was admitted to the hospital for a diagnostic workup and transfusion. Her laboratory results are listed below:

Na ⁺	129 mmol/L	Hct	25.6%
K ⁺	3.7 mmol/L	Hgb	8.5 g/dL
Cl ⁻	97 mmol/L	WBC	9,700
CO ₂	19 mmol/L		
BUN	52 mg/dL		
Creatinine	3.2 mg/dL		

Urine culture was positive for *Citrobacter*. Urinalysis results are listed below:

Color	Hazy/yellow
Specific gravity	1.015
pH	5
Blood	Large
Protein	2+
Glucose	Negative

Ketones	Negative
Nitrates	Negative
RBC	>25
WBC	1-4
Casts	Granular, 1-4

The patient's renal function continued to decline, and she was put on hemodialysis. A renal biopsy was performed that showed end-stage crescent glomerulonephritis. Two days later, the patient suffered a perforated duodenal ulcer that required surgery and blood transfusion. Subsequently, she developed coagulopathy and liver failure. Her condition continued to deteriorate in the next few days, and she died following removal of life support.

Questions

1. Looking at the urinalysis, what is the significance of the 2+ protein and >25 RBCs?
2. What is the most likely cause of glomerulonephritis?
3. Why was the patient put on hemodialysis?

Case History 10

A male aged 35 presenting with loin pain has a serum creatinine of 150 $\mu\text{mol/l}$. A 24-hour urine of 2160 ml is collected and found to have a creatinine concentration of 7.5 mmol/l.

- Calculate the creatinine clearance and comment on the results.

An error in the timed collection was subsequently reported by the nursing staff, and the collection time was reported to be 17 hours.

- How does this affect the result and its interpretation?