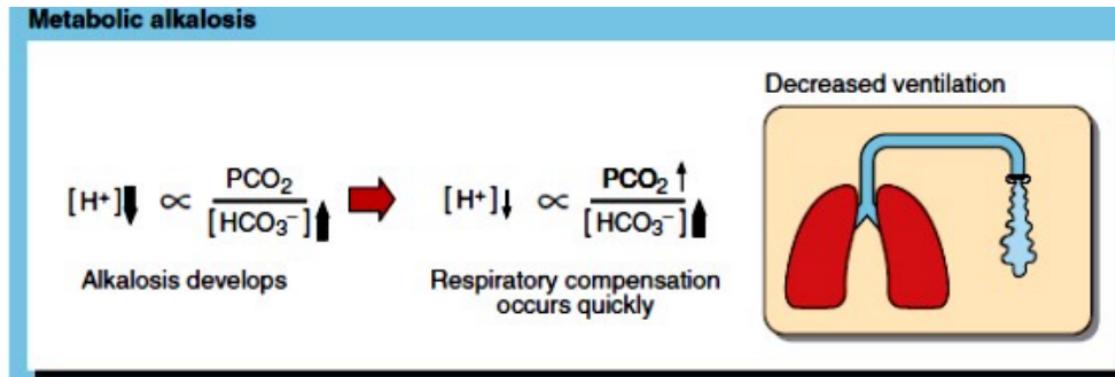


Metabolic alkalosis

- The causes of a metabolic alkalosis may be due to:
 - Loss of hydrogen ion in gastric fluid during **vomiting**. This especially seen when there is pyloric stenosis preventing parallel loss of bicarbonate-rich secretions from the duodenum
 - **Ingestion of absorbable alkali**: such as sodium bicarbonate. Very large doses are required to cause a metabolic alkalosis unless there is renal impairment
 - **Potassium deficiency**: in severe potassium depletion as a consequence of diuretic therapy, hydrogen ion is retained inside cells to replace the missing potassium ions. In the renal tubules more hydrogen ions rather than potassium, are exchanged for reabsorbed sodium. So despite there an alkalosis, the patient passes an acid urine.

الناس اللي يكون عندهم vomiting لفترة طويلة ، الـ HCl و الـ H^+ بطلع خصوصا اذا كان مراافق لـ HCl loss انه يكون في تصلب بالsphincter pyloric stenosis تبع المعدة و بهاي الحالة بصير bicir loss للalkalosis بقل و الـ H^+ بالتالي الـ bicarbonate bicarbonate loss فبصير bicir بدون ما يصير

الـ alkali ... اذا كان الواحد بيأخذ bicarbonate او antacids بكميات كبيرة- ممكن الكلى ما تلحقش عليهم يعني اذا كمية صغيرة ما رح يصير alkalosis و الكلى بشكل عام قادرة انها تخلص من اي زيادة من الـ bicarbonate اذا كانت الكمية معقولة


ف متى الكلى بتبطل قادرة تطلع الـ bicarbonate الزيادة؟ اذا كانت الكمية هائلة ، او اذا كانت الكلية مش شغالة و وقتها رح يصير metabolic alkalosis

الـ potassium deficiency .. لما يصير potassium deficiency انه البوتاسيوم diuretics بسبب الـ بطع بكميات كتير كبيرة رح يبلش البوتاسيوم ينقص بالدم فالخلايا بتصير تطلع بوتاسيوم و تدخل بداله H^+ فبصير عنده alkalosis و بصير معه acidic urine كمان

البوتاسيوم بحاول الجسم انه يرجعه من اليورين فالالدوستيرون بقل فبسترجع بوتاسيوم و بطلع بداله صوديوم يعني بده يعمل compensation للبوتاسيوم اللي قاعد بطلع فبصير hyponatremia و منرجع لنفس المشكلة فبدى احاول استرجع الصوديوم عن طريق انى اطلع بداله H^+ فالاليورين تكون acidic و الدم تكون صارله alkalosis

Clinical effects of alkalosis

- The clinical effects of alkalosis include:
 - Hypoventilation
 - Confusion and eventually coma
 - Muscle cramps, tetany and paraesthesia may be a consequence of a decrease in the unbound plasma calcium concentration. which is a consequence of the alkalosis.

+H+ ... hypoventilation - alkalosis بصير bicarbonate لما برتفع الـ
فعشان ارجع الـH+ مرة تانية لازم ارفع الـCO2

يعني لما يكون واحد منهم مرتفع لازم ارفع الثاني عشان يرجع الـ ratio للطبيعي
فمنعمل hypoventilation و بزيد الـ CO2 في الدم

اذا استمر الـ hypoventilation ممكن يأدي لـ confusion and coma

الكالسيوم اللي تكون فعال بالجسم هو الـ ionized calcium بس هو بالدم موجود على ٣ اشكال:

١- ionized calcium

٢- كالسيوم مرتبط مع albumin

٣- كالسيوم مرتبط مع phosphate bicarbonate citrate oxalate salts زي الـ salt تكون رابط بكمية قليلة ... هاد الـ salt مندوبه عن طريق انه منحط عليه acid ف اذا صار acidosis رح تبلش الـ salt تتفكك و بصير في زيادة بالـ ionized calcium ... في حالة الـ alkalosis بصير يتكون الـ salt و بتقل الـ solubility تبعته و بتقل كمية الـ ionized calcium فبعمل الاعراض المكتوبة بالسلайд

Respiratory acidosis

- **Lung disease:** in which CO₂ is not effectively removed from the blood. In certain patients with chronic obstructive pulmonary disease (COPD, where CO₂ is retained in the blood, causing chronic hypercarbia (elevated pCO₂)
- In **bronchopneumonia:** gas exchange is impaired because of the secretions. White blood cells, bacteria and fibrin in the alveoli
- **Hypoventilation** caused by drugs such barbiturates, morphine, or alcohol will increase blood pCO₂ levels
- **Mechanical obstruction** or asphyxiation (strangulation or aspiration).
- **Decreases cardiac output** such as in CHF also will result in less blood to the lungs for gas exchange and an elevated pCO₂
- Kidney will compensate for acidosis but it takes time

يتكون المشكلة اصلا جاي من الرئة فال compensation رح تكون من ال kidney و اللي تعتبر بطيئة و بدها يومين ل اربع ايام

lung disease انه تكون الواحد عنده asthma COPD او emphysema هاد المرض بصير اكتر عند الناس اللي عندهم alveoli alpha 1 antitrypsin deficiency و تكون ال متضرر عندهم و كميات الاكسجين اللي بتدخل قليلة و لما بنحجز ال CO2 بتكون كمياته اللي بتطلع قليلة فصارت ال CO2 محجوزة بالدم فبتعمل acidosis و ال gas exchange كله بكونش شغال

bronchopneumonia هاي في حالة ال infection ... الجسم بعمل secretions عشان يطلعها لبرا و بتصير كميات alveoli كبيرة بال WBC عشان تخلص من البكتيريا فبصير في بكتيريا ميتنة و WBC ميتن كمان و بصير viscous و هي اللي بتخللي ال gas exchange ضعيف و ال CO2 بنحجز بالدم secretions

hypoventilation due to drugs زى phenobarbital و secobarbital و مورفين و كحول هدول ادوية عاديه بس لما الواحد ياخدهم بكميات كتير كبيرة بزيد ال hypoventilation

المورفين بعطاوه في اخر مراحل الكانسر او في بعض العمليات الجراحية ببطل ال NSAID ينزل معهم كمسكن فبعطاوه مورفين فهدول الادوية بعملوا inhibition لل respiratory center و بوقفوا التنفس

mechanical obstruction انه يعلق اشي بالحلق فهای ممكن تأدي لل acidosis بسبب انحباس ال CO2

اذا عنده مشاكل بالقلب ممكن تقل كمية الدم اللي رايحة للمنطقة اللي بتعمل فيها acidosis فبفضل ال CO2 محجوز في الدم وبالتالي بعمل acidosis

Respiratory alkalosis

- The causes include:
 - Hypoxemia
 - Chemical stimulation of the respiratory center by drugs, such as salicylate
 - An increase in environmental temperature, fever, hysteria (hyperventilation), Pulmonary emboli and pulmonary fibrosis.
- The kidney compensates by excreting HCO_3^- in the urine and reclaiming H^+ to the blood
- The popular treatment for hysterical hyperventilation, breathing into a paper bag, is self -explanatory

الحالات التي تكون التنفس فيها سريع مرتبط بالتنفس السريع او بمشاكل الـ lung alkalosis

الحالات التي تكون التنفس فيها سريع

١- **hypoxygenation** لما ينقص الأكسجين بالدم شوي بصير التنفس سريع

٢- لما يكون في حرارة او الجو حار او **fever** برضو تكون التنفس سريع

٣- لما يكون عنده **hysterical attack** او **panic attack** تكون التنفس سريع كمان

٤- اذا صار **salicylate toxicity** من خلال الـ **respiratory center stimulation** زي اللي بودد اسبرين بكميات كبيرة ممكن انه يصير عنده شغلتين: **metabolic acidosis** بسبب الـ **salicylate** و ممكن يصير **respiratory center stimulation** لانه بصير **respiratory alkalosis**

٥- مشاكل بالـ **lung** :

Pulmonary emboli, pulmonary fibrosis

بصير الـ **CO2 diffusion** اعلى من الـ **CO2 infusion** للاكسجين فكمية الأكسجين اللي بتدخل اقل من الـ **CO2** اللي بطلع فخروج الـ **CO2** فجأة بائي الى **respiratory alkalosis**

الجسم عشان يحل هاي المشكلة بده يعمل **compensation** انه يطلع الـ **bicarbonate** و يرجع الـ **H⁺** و العلاج عن طريق انه نخليه يتتنفس بـ **paper bag** لانه لما تتنفس انت بتسحب اكسجين من **21%** و لما تعمل **exhalation** بطلع بس **16%** اكسجين و الـ **CO2** بتطلع بكمية اكبر و نسبة الـ **CO2** بالجو شبه معدومة فلما ارجع اتنفسه من نفس الـ **paper bag** انا برجع الـ **CO2** للجسم و لسا في اكسجين بنسبة عالية بالـ **paper bag** يعني ما رح انخنق او يصير نقص بالأكسجين

Oxygen and gas exchange

Oxygen and carbon dioxide

- The role of oxygen in metabolism is crucial to all life. In cell mitochondria, electron pairs from the oxidation of NADH and FADH₂, are transferred to molecular oxygen
- For adequate tissue oxygenation, the following seven conditions are necessary:
 - (1) available atmospheric oxygen
 - (2) adequate ventilation
 - (3) gas exchange between the lung and arterial blood
 - (4) Loading of O₂ onto hemoglobin
 - (5) adequate hemoglobin
 - (6) adequate transport (cardiac output), and
 - (7) release of O₂ to the tissue.
- Any disturbances in these conditions can result in poor tissue oxygenation

ما هي وظيفة الأكسجين بالزبل؟

ATP $\xleftarrow{P_{O_4^-}}$ ADP \quad flow of H^+ \quad flow of electrons \quad كان يسمى oxidative phosphorylation بالذيل

- هاي العمليه كلها عيشان احول اد NADH و $FADH_2$ \leftarrow ATP

عيبه يستعمل الأكسجين اللي بتنفسه عن الـ cytochrome oxidase اللي بحول الأكسجين $\leftarrow H_2O$ و يستعمله بالحملية اللي فرق

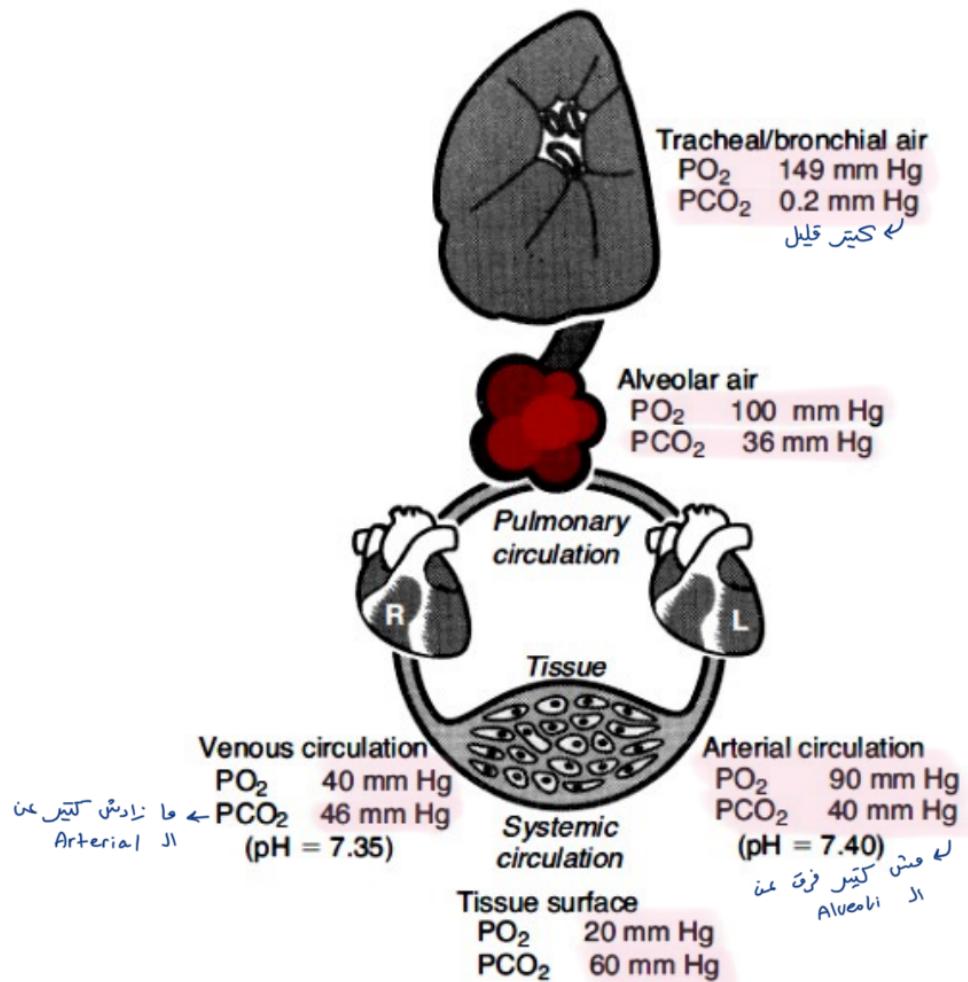
مراحل وصول الأكسجين للخلية:-

1) اذا الهواء علوت بـ اتنفس CO_2 من O_2

2) اذا مجرى القفس مسلك سواء اتف او $trachea$ \quad ما يح يكون في $Asthma - COPD$ \quad نزى حالات

3) اذا كان في سوائل او $excretions$ بسبب $infection$ نزى $pneumonia$ \quad ح تمنع الـ $gases$ للـ $exchange$

4) للدم يكون اد O_2 بتحمل على الهيموغلوبين و اذا كان الشخص عنده $Acidosis$ \quad ح تقل اد O_2 على Hb معناه ما


ح يتحمل من بوله

5) ما يكون عنده فقر دم و لا يكون عنده كمية Hb كافية

6) اد $cardiac output$ لازم تكون كميات منتج و اللي عندهم $Heart failure$ \quad ح يكون اد $cardiac output$ اقل

7) دازم يكون في $tissues$ اد O_2 release \quad ... في بعض انواع الـ Hb نزى $HbR - HbH - HbF$ هدول كلهم كان لهم low affinity O_2

عالية جداً تجاه الـ O_2 فهاد يوصل للـ $tissue$ و يترليش اد O_2 و ما يغلك عندها فلازم يخففها عيشان اد O_2 يمرره

هاد الالايد فيه النسب تبعث الـ O_2 و الـ CO_2

النسب عند الـ Alveoli متن كتير فرقته عن الا $Arterial$ $gas exchange$ لأنه في $Arterial$ CO_2 يوصل عثمان

احنا عاردة يا فناحد $Arterial$ blood او $venous$ blood ببلية الـ O_2 $Assessment$ of O_2 و اذا ما استخدلت $tube$ فتح و عرضه للجو مع بقى O_2 عاد $tube$ و الـ CO_2 مع بقى $tube$ under anaerobic conditions و انا بي احاود احقق $equilibrium$ ف اذا كان التركيز بلا اعاد مع بقى لجوا و اذا كان التركيز جوا اعاد رح يطلع لبرا فهو اعني النسب و الكمييات انه يرتفوا سيف تأثيرهم عالعينات

Oxygen and carbon dioxide

- Factors that can influence the amount of O₂, that moves through the alveoli into the blood and then to the tissue include:
- **Destruction of the alveoli:** the normal surface area of the alveoli is as big as tennis court. When the surface area is destroyed to a critical low value by diseases such as emphysema + deficiency of α₁ antitrypsin + COPD + Asthma (bronchopneumonia)
- **Pulmonary edema:** Gas diffuses from the alveoli to the capillary through a small space. With pulmonary edema, fluid leaks into the space, increasing the distance between the alveoli and capillary walls
- **Airway blockage.** Airways can be blocked, as in asthma and bronchitis
- **Inadequate blood supply:** As in pulmonary embolism, pulmonary hypertension or a failing heart not enough blood is being carried away to the tissue where it is needed. ← اكتر اisy جبي المخين
- **Diffusion of CO₂ and O₂.** Because O₂ diffuses 20 times slower than CO₂, it is more sensitive to problems with diffusion. This type of hypoxemia is generally treated with supplemental O₂. 60% or higher O₂ concentrations must be used with caution because it can be toxic to lungs

Oxygen transport

- Most O₂ in arterial blood is transported to the tissue by hemoglobin.
- Each adult hemoglobin (A1) molecule can combine to four molecules of O₂ reversibly with up to four molecules of O₂
- The actual amount of O₂ loaded depends on:
 - 1 ➤ The availability of O₂ - حواجز في الأوكسجين المتاحة Hb : الأوكسجين O₂ في كثافة
 - 2 ➤ The concentration and type(s) of hemoglobin present
 - 3 ➤ The presence of interfering substances, such as (CO)
 - 4 ➤ The pH
 - 5 ➤ The temperature of the blood
 - 6 ➤ The levels of PCO₂ and 2,3- DPG.

الاكسجين لازم يتحمل على الـ Hb الـ Fe^{+2} الـ 4 subunits الـ O_2 فكل وحدة تحمل O_2 و الـ iron لازم يكون عبكل

الرسبة مع الـ O_2 يكون **reversible**

العوامل اللي تتأثر حال ارتباط O_2 مع الـ Hb :-

Availability

فـ O_2 هل الشخص فيه Hb A HbF ولا \leftarrow اذا A معناه قدراته احسن من الـ Hb عنه F

فـ CO_2 الـ affinity اعلى بكثير من 220 ضعف O_2 ... السخين كمان مفرق \rightarrow اللي ساكت بمنطقة ملوثة غير عن اللي ساكت
يجو تطبيق

فـ PH اذا كان عند الـ tissue حبيت تركيز CO_2 على فال PH حبيت اقل لأن تركيز الـ H^+ على \rightarrow والـ O_2 affinity اقل يعني لما يجيء O_2 بالرئة حبيت تحمل و لما يصل الى $tissues$ به شد \rightarrow و يمسره $release$ فال PH بتكون منخفضة

لـ CO_2 المريض عند $fever$ حبيت O_2 $gases$ \rightarrow $kinetic energy$ \rightarrow CO_2 $tissues$ بفضل الـ Hb \rightarrow وبعير التنس سرير O_2 \rightarrow نافعه على

فـ CO_2 تكون على ستر عند الـ tissues \rightarrow منقل CO_2 \rightarrow $affinity$ و في $2,3$ -Diphosphoglycerate \rightarrow تكون عالمة لا زوا ناتجة من الـ metabolism في الـ $metabolizing tissue$

Oxygen transport

اذا خلقت احتمال O_2 المريض فكن يعمل 100% و خلقت احتمال O_2
ح سمعة المريض لأن زبادة الـ O_2 ح تعبي كل الـ Hb و الزبادة
ح يغير يعود في الدم وح يغير *inhibition of respiratory center*
ألا بعل بحاجة لـ O_2 فالـ CO_2 ح يلهم ينحبس و يعل *hypercarbia + Acidosis*

- With adequate atmospheric and alveolar O_2 available and with normal diffusion of O_2 to the arterial blood, more than 95% of the “functional” hemoglobin will bind O_2 .
↳ *Loading of O_2*
- Increasing the availability of O_2 to the blood further saturates the hemoglobin. However, once the hemoglobin is 100% saturated, an increase in O_2 to the alveoli serves only to increase the concentration of dissolved O_2 (dO_2) in the arterial blood. This offers minimal increase in oxygen delivery.
- Prolonged administration of high concentration of O_2 may cause oxygen toxicity and in some cases, decreased ventilation that leads to hypercarbia

Oxygen transport

- Normally blood hemoglobin exists in one of four conditions:
 - Oxyhemoglobin (O₂Hb), which is O₂ reversibly bound to hemoglobin.
 - deoxyhemoglobin (HHb; reduced hemoglobin), which is hemoglobin not bound to O₂ but capable of forming a bond when O₂ is available
 - Carboxyhemoglobin (COHb), Which is hemoglobin bound to CO. Binding of CO to Hb is reversible but is greater than 200 times as strong as that of O₂
 - Methemoglobin (MetHb), which is hemoglobin unable to bind O₂, because iron (Fe) is in an oxidized rather than reduced state. The Fe +3 can be reduced by the enzyme methemoglobin reductase, which is found in RBC's
- Co-oximeter are used to determine the relative concentrations (relative to the total hemoglobin) of each of these species of hemoglobin.
 - $\xrightarrow{\text{oxyhemoglobin} + \text{deoxyhemoglobin}}$

الوهج العادي في 4 افراع من ال Hb

95% oxyhemoglobin [1]

deoxy hemoglobin [2]

$\text{Hb} + \text{CO} \rightarrow$ carboxyhemoglobin [3]

methemoglobin reductase $\text{Fe}^{+2} \rightarrow \text{Fe}^{+3}$ في اثنين Hb ماد في ناس يكون عندهم نفه فيه لآن اذا اخذنا اي oxidizing agent حوال

ح يرجعه Fe^{+2} و برجع لونه brown بس اذا كان oxidizing agent كتير كتير او cyanide او anesthetics كان ضعيف ح تحول كتير اكتر من Hb $\text{Fe}^{+2} \rightarrow \text{Fe}^{+3}$ وهذا انتي ح يغير لون الدم $\text{brown} \rightarrow \text{chocolate brown}$ قادر على حل O_2 يعني ح ينخنق المريض

عثان اقيس هنول - في الاوكسيمتر oxyhb deoxyhb حسب فيه ال ratio Total hb حسب الجهات

Assessing a patient oxygen status

- Four parameters used to assess a patient's oxygen status are:
 - Oxygen saturation (SO₂)
 - Measured fractional (percent) oxyhemoglobin (FO₂Hb);
 - Transcutaneous pulse oximetry (SpO₂) assessments and
 - The amount of O₂ dissolved in plasma (PO₂)
- Oxygen saturation (SO₂) represents the ratio of O₂ that is bound to the hemoglobin compared with the total amount of hemoglobin capable of binding O₂

$$SO_2 = \frac{cO_2Hb}{(cO_2Hb + cHHb)} \times 100$$

↳ oxyhemoglobin
↳ Total hemoglobin

Oxygen saturation (SO₂)

- Software included with the blood gas instruments can calculate SO₂ from pO₂, pH and temperature of the sample.
- These calculated results can differ from those determined by direct measurement due to the assumption that only adult hemoglobin is present and the oxyhemoglobin dissociation curve has a specific shape and location
- These algorithms for the calculation do not account for the other hemoglobin species, such as COHb and MetHb
- So calculated SO₂ should not be used to assess oxygenation status

هاد الفحص يعبر سهل و-تكلفته قليلة من نزی ال *fractional*

* ما بقىه بجهات يعني هو بيأخذ ال O_2 partial pressure of O_2 و ال PH للعينة و ال Temperature للعينة و بحسبها على

إذا كان المركب مختلفاً وجائياً من براً ما يزور شو عينيه بحالة SO_2 يعني حالة الاحتكاك ما زائر SO_2

Fractional oxyhemoglobin

- Fractional (or percent) oxyhemoglobin (FO₂Hb) is the ratio of the conc. of oxyhemoglobin to the conc. of total hemoglobin (ctHb)

$$FO_2Hb = \frac{cO_2Hb}{ctHb} = \frac{\overset{\sim}{cO_2Hb}}{cO_2Hb + cHHb + \text{dysHb}} \rightarrow \text{methemo + carboxy}$$

- Where the dysHb represents hemoglobin derivatives, such as COHb, that can't reversibly bind with O₂ but are still part of the “total” hemoglobin measurement.
- These two terms SO₂ and FO₂Hb, can be confused because as the numeric values for SO₂ are close to those of FO₂Hb (differ in smokers and if dyshemoglobins are present)

Partial pressure of oxygen dissolved in plasma

➤ Partial pressure of oxygen dissolved in plasma (pO₂) accounts for little of the body's O₂ stores.

Same wavelength the Absorbance varies ↘

➤ Noninvasive measurement are attained with pulse oximetry (SpO₂). These devices pass light of two or more wavelength through the tissues of the toe, finger or ear.

➤ The pulse oximeter differentiate between the absorption of light as a result of O₂Hb and dysHb in the capillary bed and calculates O₂Hb saturation. Because SpO₂ does not measure COHb or any other dysHb, it overestimates oxygenation when one or more are present.

Limitations:-

➤ The accuracy of pulse oximetry can be compromised by many factors, including diminished pulse as a result of poor perfusion and severe anemia.

↑ توصيل الـ O₂ ↓

↓ سمية Hb

↑ ضعف ضربات القلب

- The maximum amount of O₂ that can be carried by hemoglobin in a given quantity of blood is the hemoglobin oxygen (binding) capacity. The molecular weight of tetramer hemoglobin is 64,458 g/mol.
- One mole of a perfect gas occupies 22,414 mL. Therefore, each gram of hemoglobin carries 1.39 mL of O₂

1 g hb → 1.39 mL O₂

15 g hb → ??

$$\frac{22,414 \text{ mL/mol}}{64,458 \text{ g/mol}} = 1.39 \text{ mL/g}$$

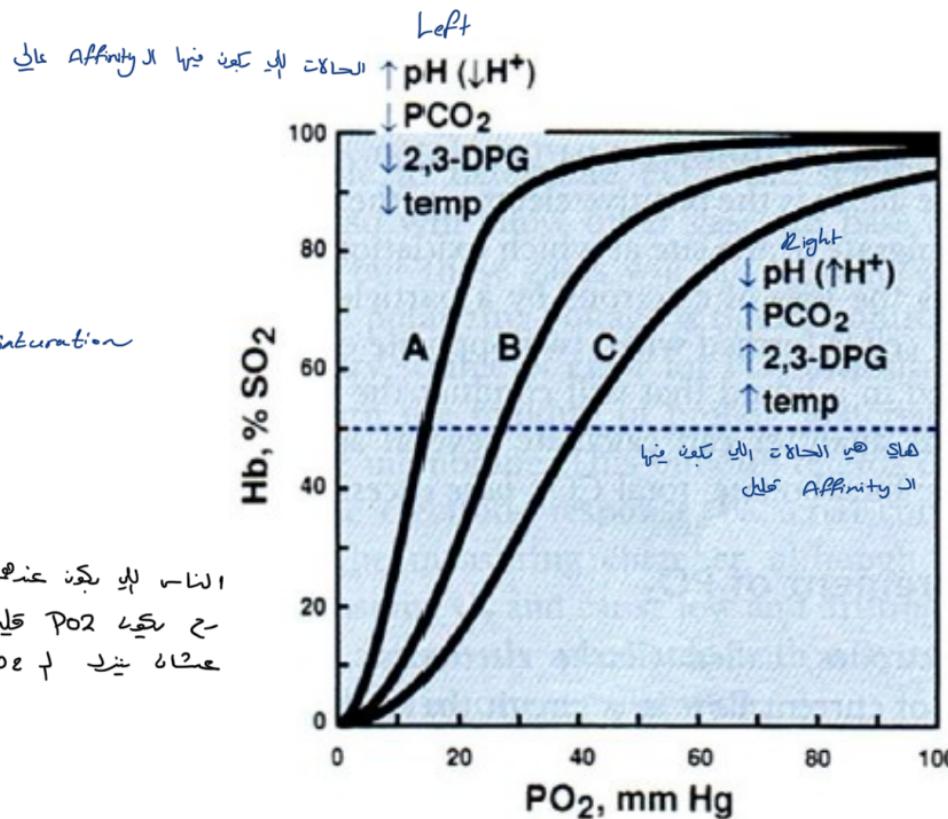
↗ 15% hb

- When the total hemoglobin (tHb) is 15 g/dL and the hemoglobin is 100% saturated with O₂, the O₂ capacity is:

$$\begin{aligned} 15 \text{ g/100 mL} \times 1.39 \text{ mL/g} \\ = 20.8 \text{ mL O}_2/100 \text{ mL of blood} \end{aligned}$$

Oxygen content

- Oxygen content is the total O₂ in blood and is the sum of the O₂ bound to hemoglobin (O₂Hb) and the amount dissolved in the plasma (pO₂)
- Because pO₂ and pCO₂ are only indices of gas-exchange efficiency in the lungs, they do not reveal the content of either gas in the blood.
- If the pO₂ is 100 mmHg, 0.3 ml of O₂ will be dissolved in every 100 ml of blood plasma.
- The amount of dissolved O₂ is usually not clinically significant. However, with low tHb or at hyperbaric conditions, it may become a significant source of O₂ to the tissue. Normally 98-99% of the available hemoglobin is saturated with O₂.
احنا عا ها ٤٦ اقل من ١٥٥% ففه
فاحصلنا ٣٧
- Assuming a tHb of 1¹ $0.3 \text{ mL} + (20.8 \text{ mL} \times 0.97) = 20.5 \text{ mL O}_2$ it becomes:

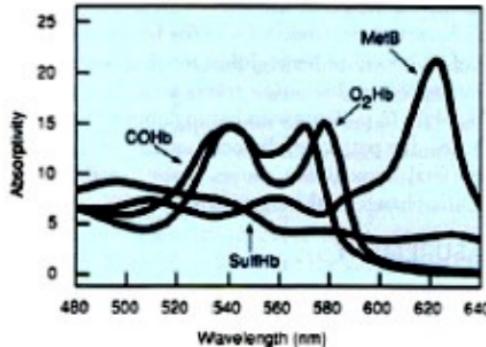

Hemoglobin-oxygen dissociation

➤ 2,3-DPG levels increase in patients with extremely low hemoglobin values and as an adaptation to high altitude.

Right : Affinity ↓ need higher P_{O_2} to achieve saturation

Left : Affinity ↑

حالات التي تسبب في ارتفاع الـ Hb affinity
metabolizing tissue (ie 2,3-DPG)
قليل ضغط P_{O_2} يعني P_{O_2} تزيد
Tissue P_{O_2} تزيد \downarrow يوصل إلى \uparrow P_{O_2}


عالي نسبة هيدروجين في الدم λ_{max} في 620 nm \leftarrow oximeter يقرأ O_2 في 620 nm أعلى λ_{max} في methemoglobin يعني كلورون تقصى في λ_{max} \leftarrow Methemoglobin

Measurement

Spectrophotometric (Co-oximeter) Determination of oxygen saturation

عندما ينقيس ال Methemoglobin اذا كانت ال λ_{max} في 590 \leftarrow oxyhemoglobin

- The actual determination of oxyhemoglobin (O_2Hb) can be determined spectrophotometrically using co-oximeter designed to directly measure the various hemoglobin species.
- The number of hemoglobin species measured will depend on the number and specific wavelength incorporated into the instrumentation. For example, two wavelength instrument systems can measure only two hemoglobin species (O_2Hb and HHb), which are expressed as a fraction or percentage of the total hemoglobin.

الـ f_{O_2} فندر فيها co-oximeter تغيير من الـ measurements

الـ co-oximeter مختلف من واحد للتأي

مكـ يـقـيـسـ 2ـ نـ اـلـ hemoglobin speciesـ وـ مـكـ يـقـيـسـ اـكـرـ فـيـعـ عـلـىـ فـيـعـ اـلـ oximeterـ الـ يـتـحـدـمـ

الـ λ_{max} مختلف لـ كلـ نوعـ منـ الـ Hbـ فـ اـحـناـ مـسـتـخـذـمـ هـاـيـ اـلـ 2ـ عـسـتـانـ يـقـيـسـ قـدـارـ هـادـ النـوـعـ مـنـ الـ Hbـ يـقـيـسـ SO_2 ـ اوـ

Spectrophotometric (Co-oximeters) Determination of oxygen saturation

- As with any spectrophotometric measurement, potential sources of errors exist, including:
 - 1 ➤ Faulty calibration of the instrument
 - 2 ➤ Spectral-interfering substances
- 3 ➤ The patient's ventilation status should be stabilized before blood sample collection
- An appropriate waiting period before the sample is redrawn should follow changes in supplemental O₂ or mechanical ventilation
- All blood samples should be collected under anaerobic conditions and mixed immediately with heparin or other appropriate anticoagulant.
- If the blood gas analysis is not being done on the same sample, EDTA can be used as an anticoagulant
- All samples should be analyzed promptly to avoid changes in saturation resulting from the use of oxygen by metabolizing cells'

٢. ا. spectrophotometric فنا مهار للخطأ

calibration of the instrument [1]

٤) اذا في اسني بدل عك ابزانت اورستيميشن مع ابزانت انترفييرنس

و بعد ما ينجز stabilization مرّة تانية باخر عينة دم وبعد فترة وجدت انه

blood gases او اقیاء دم

عاليٌ على طول O_2 التي بالجروح يدويّة العينة وبحسب **overestimation** القراءة يعني بحسب أكثر القراءة المصححة العينة لا ينجب O_2 العالية العينة اذا العينة كانت مفتوحة

anticoagulant 5 heparin or EDTA *pieni* is

لأنه أنا عندي O_2 وفي عندي بنفس الوقت WBC موجودة بالدم و هادي الحالياً يستهلك O_2 نتيجة - All samples should be analyzed immediately -

عمليات metabolism في بح تخلله ال O₂ الموجوبين بالعينة اذا بستن على العينة فتره طفيلة

Blood gas analyzers (pH, pCO₂ and pO₂)

- Blood gas analyzers (macroelectrochemical or microelectrochemical sensors) as sensing devices
- The pO₂ measurement is amperometric (current flow) related to the amount of O₂ being reduced at the cathode
- The PCO₂ and pH measurement are potentiometric (change in voltage)
- The blood gas analyzer can calculate several additional parameters, bicarbonate, total CO₂, base excess and SO₂.

كيف يمكن تقييد الـ O_2 ؟ من خلال الـ oxidation-reduction rxns و فعالية الـ electron flow و نقيس current amperometric

كيف يمكن تقييد الـ O_2 و الـ H^+ ؟ من خلال التغير في voltage

مقدار المهم electrodes يغير عليهم chemical rxns بحيث أنه التغير الذي نلاحظه نتيجة وجود الـ O_2 - H^+ يدل على quantity of analyte

Measurement of pO₂

- The primary source of error for pO₂ measurement is associated with the buildup of protein material on the surface of the membrane (retards diffusion of O₂)
- Bacterial contamination within the measuring chamber, although uncommon, will consume O₂ and cause low and drifting values
- It is important not to expose the sample to the room air when collecting, transporting and making O₂ measurement.
- Contamination of the sample with room air (pO₂, 150 mmHg) can result in significant error
هاد آفیل اوہ برفعل اکسجين الی بالعینة سچل کیتے گی
- Even after the sample is drawn, sample should be analyzed immediately as leukocytes continue to metabolize O₂ leading to low PO₂ values

arterial blood collection الـ

اذا السخن عاليٌ تكون results hyperproteinemia و عن ال O_2 بالاتي كثافة الـ O_2 الـ O_2 عنقها تكون اقل من الحقيقة و عن ال O_2 بالاتي كثافة الـ O_2 الـ O_2 عنقها تكون اقل من الحقيقة

اذا صار في bacterial contamination ح تكثف كثافة الـ O_2 اقل من الحقيقة كان لـ O_2 المكثف ح تبلع مستهلك الـ O_2

عنصرها من المروية خارج اي مرحلة من مراحل العامل مع العينة

الـ RBC ما ح تأثر عالـ O_2 لأنـ O_2 تجعل $anaerobic glycolysis$ بدمـ ما تستخدم الـ O_2 يعني هي بـ $lactate$ سبـ ما بـ CO_2

جفن في محضر منحنه بالنكحة عثان ال O_2 طبع ويخل بال electrode و ينقار و عملية التسخين صاف حتى تحرق الحبل

مرات

Measurement of pO_2

invasive

- Cutaneous measurement for pO_2 also are possible using transcutaneous (TC) electrodes placed directly on the skin.
- Measurement depends on oxygen diffusing from the capillary bed through the tissue to the electrode. Although most commonly used with neonates and infants
- Skin thickness and tissue perfusion with arterial blood can significantly affect the results.
- Heating the electrode placed on the skin can enhance diffusion of the O_2 to the electrode, however, burns can result unless the electrodes are moved regularly.

Measurement of pH and pCO₂

- Two electrodes (the measuring electrode responsive to the ion of interest and the reference electrode) are needed and voltmeter, which measures the potential difference between the two electrodes.
- The potential difference is related to the concentration of the ion of interest.
- To measure pH, a glass membrane sensitive to H⁺ is placed around an internal Ag-AgCl electrode to form a measuring electrode
- The potential that develops at the glass membrane as a result of H⁺ from the unknown solution diffusing into the membrane's surface is proportional to the difference in [H⁺] between the unknown sample and the buffer solution inside the electrode

pCO₂

- An outer semipermeable membrane that allows CO₂ to diffuse into a layer of electrolyte, usually bicarbonate buffer, covers the glass pH electrode. The CO₂ that diffuses across the membrane reacts with the buffer, forming carbonic acid, which then dissociates into bicarbonate plus H⁺
- The change in the activity of the H⁺ is measured by the pH electrode and related to pCO₂
- As with the other electrodes, the buildup of protein material on the membrane will affect diffusion and cause errors, pCO₂ electrodes are the slowest to respond because of the chemical reaction that must be completed. Other error sources include erroneous calibration caused by incorrect or contaminated calibration materials

Specimen

الدقة بتحتف و القراءان بتحتف سب ال arterial blood او blood II او capillary blood

- Arterial blood specimen is an excellent reference
- Peripheral venous samples can be used if pulmonary function or O₂ transport is not being assessed (the source of the specimen must be clearly identified)
- Depending on the patient, capillary blood may need to be used to measure pH and pCO₂
- Although the correlation with arterial blood is good for pH and pCO₂, capillary pO₂ values even with warming of the skin before drawing the sample, do not correlate well with the arterial pO₂ values as result of sample exposure to room air
- Sources of error in the collection and handling of blood gas specimens include the collection device, form and concentration of heparin, speed of syringe filling, maintenance of the anaerobic environment, mixing of the sample to ensure dissolution and distribution of the heparin anticoagulant, and transport and storage time before analysis

Interpretation of results

- Laboratory professionals need certain knowledge, attitude and skills for obtaining and analyzing specimens for pH and blood gases.
- Simple evaluation of the data may reveal an instrument problem (possible bubble in the sample chamber or fibrin plug)
- A possible sample handling problem (PO₂ out of line with previous results and current inspired FiO₂ levels)
- The application of knowledge saves time. The ability to correlate data quickly reduces turnaround time and prevents mistakes.

اذا ستن lab professional كلّم يبيه عنده معلومات و نقاقة معينة عشان غيره ما تستوفى الفرادة تعرف انه اذا في خطأ او لا

اذا تستوفى الـ oxygenation كتير قليل و السخنه عادي طبّي عنة انه الـ instrument نفسها فيها مشكلة يعني تكون العينة صها- لها CO_2 و سكرت الـ instrument نفسن ح تعطي قراءة صحيحة