

تغريغ كلينكال

المحاصرة: Acid-base balance

الصيدلاني لة: Alaa' Otoum

لجان الدعم

Acid-base balance

Acid-base balance

- The data are used to assess patients in life-threatening situations
· اعلى درجة انتشار هو \leftarrow brain
- Blood hydrogen ion concentration $[H^+]$ is maintained within tight limits in health. Normal levels lie between 36 and 44 nmol/L ($pH 7.35-7.45 \pm 0.05$)
- Any H^+ values outside this range will cause alteration in the rates of chemical reactions within the cell and affect many metabolic processes of the body
- Values greater than 120 nmol/L or less than 20 nmol/L are usually incompatible with life
· يعني هذا pH تذبذب بين 7.6 و 7.7 \leftarrow ينبع إلى العناية

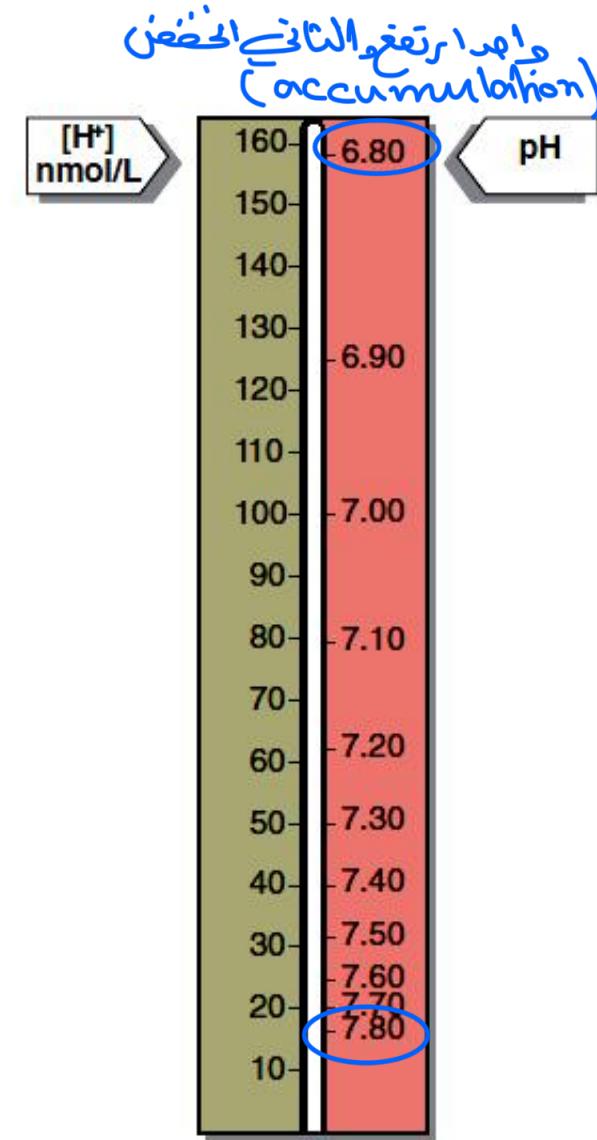


Fig 20.1 The negative logarithmic relationship between $[H^+]$ and pH.

H⁺ Production

- Hydrogen ions are produced in the body as a result of metabolism (from the oxidation of the sulphur-containing amino acids of protein ingested as food)
↳ e.g. cysteine & methionine.
- The total amount of H⁺ produced each day in this way is of the order of 60 mmol but all the H⁺ produced are efficiently excreted in urine. Everyone who eats a diet rich in animal protein passes an acidic urine
↳ Kidneys remove excess acid from the blood by excretion of H₂O₃, Hb, Albumin \rightarrow acid in urine.
- Large amounts of CO₂ are produced by cellular activity each day with the potential to upset acid-base balance
- Under normal circumstances all of this CO₂ is excreted via the lungs. Having been transported in the blood, Only when respiratory function is impaired do problems occur
↳ Kidneys remove excess CO₂ from the blood by excretion of H₂O₃.

Buffering and buffers

HCO_3^- main Buffer system
+ phosphate, ammonia ← بحاجة
ذات

- **Buffer** is a solution of the salt of a weak acid that is able to bind H^+ .
Buffering does not remove H^+ from the body but mop up any excess H^+ produced (as a sponge)
- **Buffering** is only a short term solution to the problem of excess H^+ .
Ultimately, body must get rid of H^+ by renal excretion
- The body contains a number of buffers to correct sudden changes in H^+ production
- **Proteins** can act as buffers and the haemoglobin in the erythrocytes has a high capacity to bind H^+

Buffers

- In the ECF, **bicarbonate buffer** is the most important. In this buffer system, bicarbonate (HCO_3^-) combines with H^+ to form carbonic acid (H_2CO_3)
- The association of H with bicarbonate occurs rapidly, but the breakdown of carbonic acid to CO_2 and water happens relatively slowly.
- The reaction is accelerated by an enzyme, carbonic anhydrase, which is present particularly in the erythrocytes and in the kidneys.
extra $\text{H}^+\text{CO}_3^- \rightleftharpoons \text{H}_2\text{CO}_3$
- Only when all the bicarbonate is used up does the system have no further buffering capacity
- The acid base status of patients is assessed by consideration of the bicarbonate system in plasma

Buffers

- The **bicarbonate buffer** system is unique in that:
 - The (H_2CO_3) can dissociate to water and CO_2 allowing CO_2 to be eliminated by lung
 - Changes in CO_2 modify the ventilation rate $\uparrow \text{H}^+$ Hyperventilation $\downarrow \text{H}^+$ Hypoventilation
 - HCO_3^- concentration can be altered by the kidney $\uparrow \text{HCO}_3^-$ without urinary tract $\downarrow \text{HCO}_3^-$ عنادل أمجز CO_2
- Phosphate buffer system (HPO_4^{2-} - H_2PO_4^-) plays a role in plasma and RBC's and is involved in the exchange of Na/H^+ ion in the urine filtrate
 - عنادل ماريموند معنده حامض جالناتيك H^+ ما يطلع فان لآن يطلع مع ammonium phosphate buffer
- Plasma proteins, especially the imidazole groups of histidine, forms important buffer system in plasma. Most circulating proteins has net negative charge capable of H^+ binding

Regulation of the acid-base balance

- In plasms at 37°C, the value for the combination of the solubility constant for PCO₂ and the factor to convert mm Hg to mmol/L is 0.0307 mmol L⁻¹ mm Hg⁻¹

$$\text{pH} = \text{pK}' + \log \frac{c\text{HCO}_3^-}{0.031 \times \text{PCO}_2}$$

Base
acid.

(Hypoventilation) ↑CO₂ → ↑HCO₃ → ↑ratio

↓CO₂ → ↓HCO₃ → ↓ratio

H⁺ excretion in the kidney

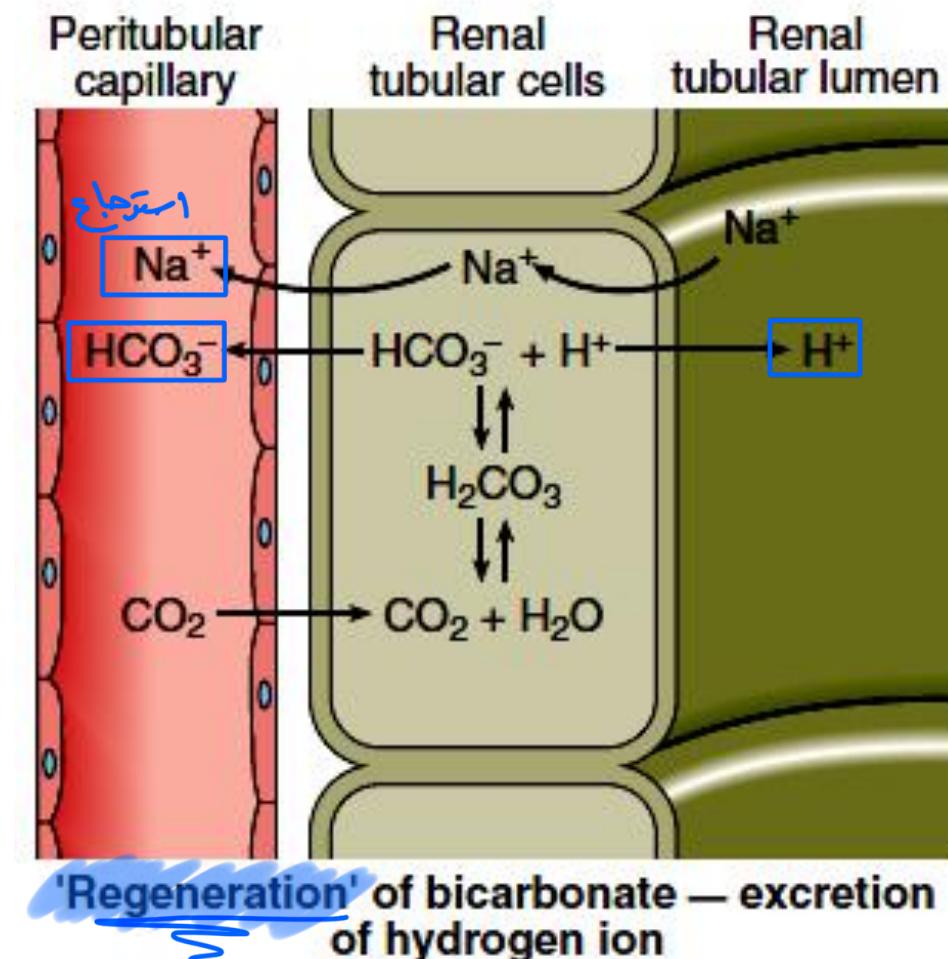
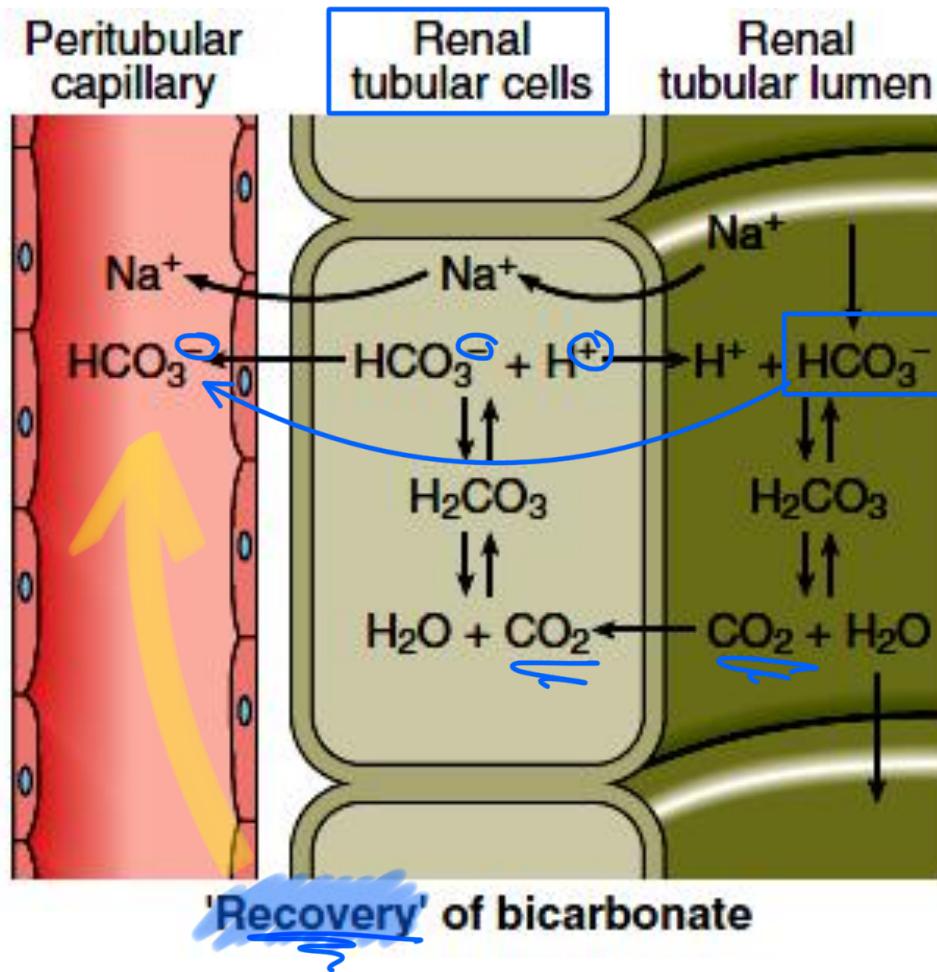
acid-base balance يكون الـ H⁺ Recovery HCO₃⁻

(respiration) ➤ All the H⁺ that is buffered must eventually be excreted from the body via the kidneys, regenerating the bicarbonate used up in the buffering process and maintaining the plasma bicarbonate concentration within normal limits.

acidity فنيه كافيه لـ H⁺ من ناتجه من احتفاظه

base excretion H⁺ بستريح بـ HCO₃⁻ يحيى تامة بـ H⁺

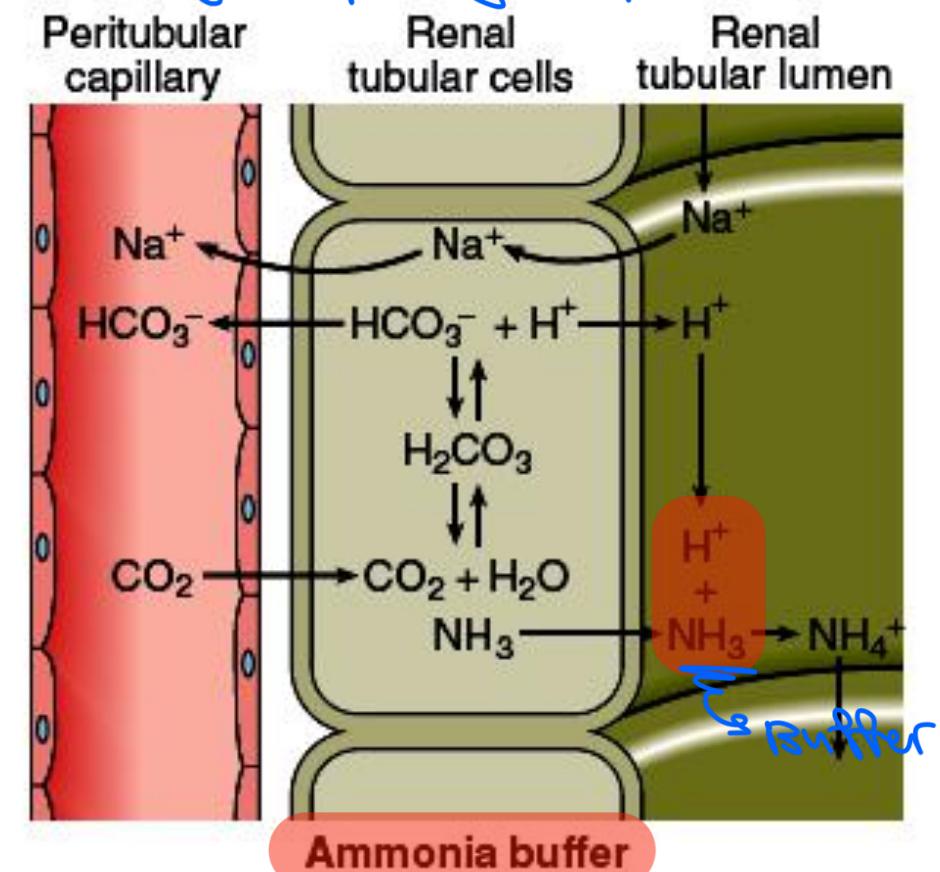
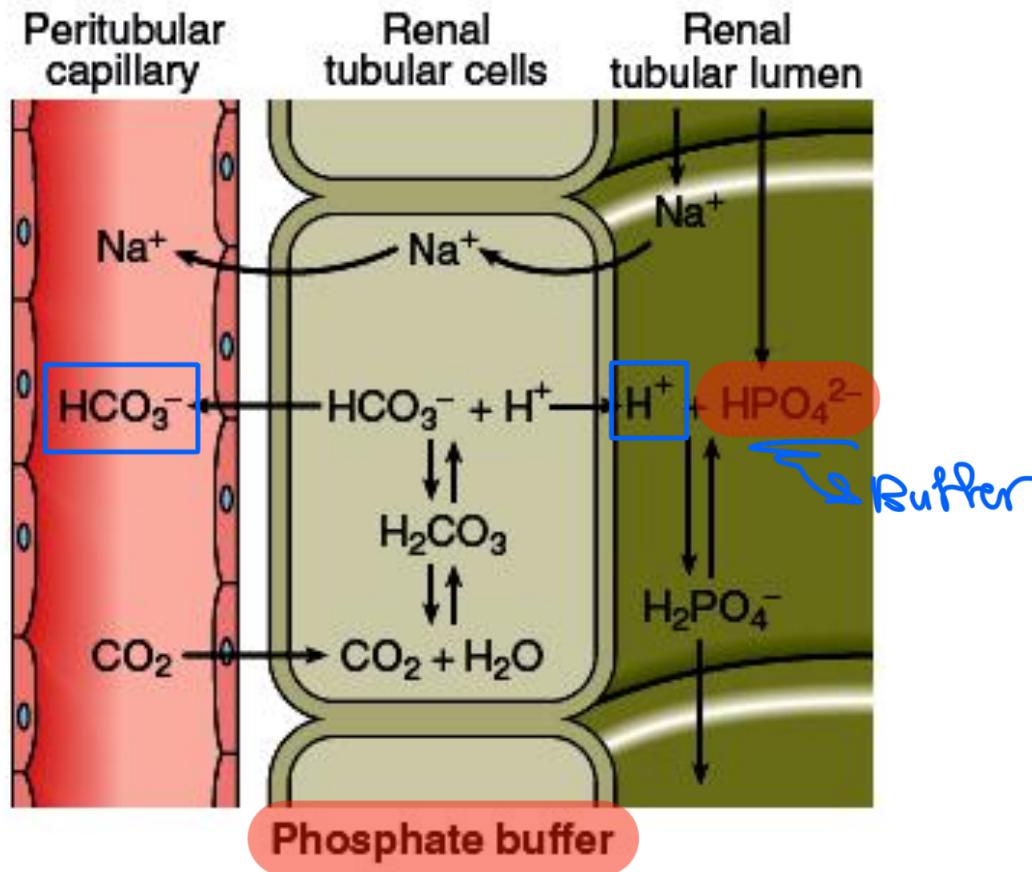
acid وبلغ اـ H⁺
ـ اـ H⁺ اـ H⁺
ـ H⁺ blood



استعادة ➤ Secretion of H⁺ by the tubular cells serve initially to reclaim bicarbonate from the glomerular filtrate so that it is not lost from the body

➤ When all bicarbonate has been recovered, any deficit due to the buffering process is regenerated.

➤ The mechanisms for bicarbonate recovery and for bicarbonate regeneration are very similar and sometimes confused.

➤ The excreted H⁺ must be buffered in urine or the [H⁺] would rise to very high levels, phosphate acts as one such buffer, while ammonia is another



H⁺ excretion in the kidney

H⁺ excretion in the kidney

(2-4) days لاملاً طبيعياً ←

الآن في Respiratory component e.g.: COPD, asthma

Assessing status

problem by acid-base balance by
↓
metabolic → respiratory (ventilation)
{ Respiratory → Kidneys
↓

- The carbonic acid (H_2CO_3) component is proportional to carbon dioxide, which is in turn proportional to the partial pressure of the CO_2
- Because the body's cellular and metabolic activities are pH dependent, the body tries to restore acid-base homeostasis whenever an imbalance occurs **(Compensation)**
- The body accomplishes this by altering the factor not primarily affected by the pathologic process. For example, if the imbalance is of non-respiratory origin, the body compensates by altering ventilation (fast response). ↗ metabolic
- For disturbances of the respiratory components. The kidneys compensate by selectively excreting or reabsorbing anions and cations. The kidneys are slower to respond (2-4 days)

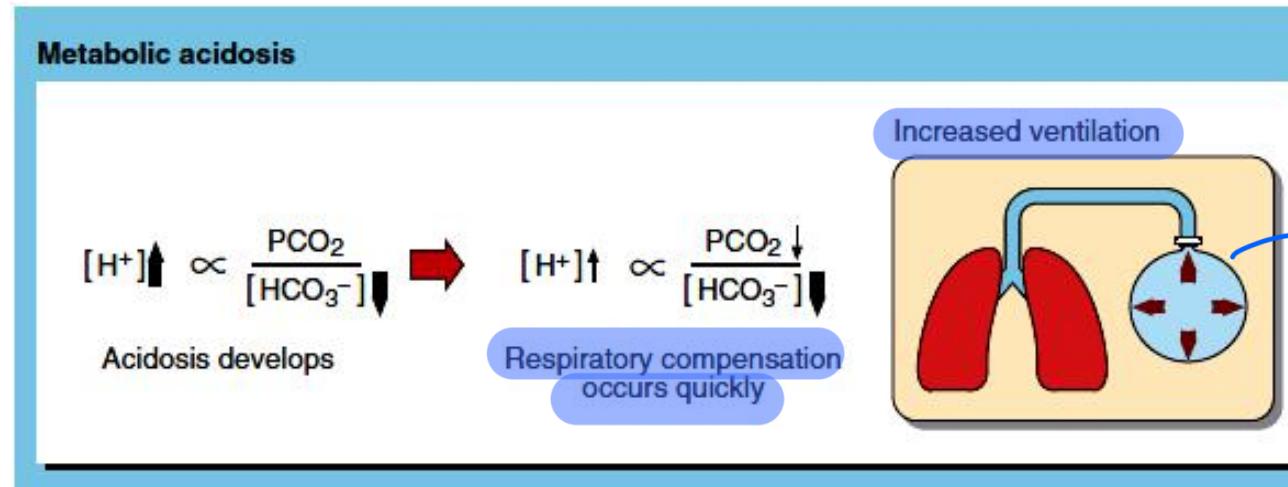
Assessing status

- The H concentration in blood varies as the bicarbonate concentration and pCO₂ change. If everything else remains constant.
- Adding H, removing bicarbonate or increasing the pCO₂ will all increase $[H^+]$ ***Acedosis*** → ***Hyperventilation*** → \hookrightarrow **acidity↑**
- Removing H, adding bicarbonate or lowering pCO₂ will all cause the $[H^+]$ to fall. ***Alkalosis*** → ***Hypoventilation***
- An indication of the acid base status of the patient can be obtained by measuring the components of the bicarbonate buffer system

Normal ranges

**TABLE 16-1 ARTERIAL BLOOD GAS
REFERENCE RANGE AT 37°C**

pH	7.35–7.45
pCO ₂ (mm Hg)	35–45
HCO ₃ [−] (mmol/L)	22–26 → venous (23–29)
Total CO ₂ content (mmol/L)	23–27
pO ₂ (mmol/L)	80–110
SO ₂ (%)	>95
O ₂ Hb (%)	>95


Causes of metabolic acidosis

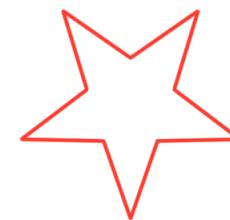
- Metabolic acidosis with an elevated anion gap occurs in:
no excretion → still in blood. → acidosis.
- **Renal disease.** Hydrogen ions are retained along with anions such as sulphate and phosphate.
metabolic acidosis.
- **Diabetic ketoacidosis.** Altered metabolism of fatty acids, as a consequence of lack of insulin causes endogenous production of acetoacetic and β -hydroxybutyric acids
e.g.: hypoxia -
- **Lactic acidosis.** Particularly tissue anoxia. In acute hypoxic states such as respiratory failure or cardiac arrest. It can be caused by liver disease. The presence of lactic acidosis can be confirmed by the measurement of plasma lactate concentration.
- Certain disease of overdosage or **poisoning**. As in **salicylate overdose** where build-up of lactate occurs, or **methanol poisoning** when formate accumulates, or **ethylene glycol poisoning** where oxalate is formed.

Causes of metabolic acidosis

- Metabolic acidosis with a normal anion gap is sometimes referred to as **hyperchloraemic acidosis** because a reduced HCO_3 is balanced by increased Cl^- concentration. It is seen in chronic diarrhea or intestinal fistula. Fluids containing bicarbonate are lost from the body
- **Renal tubular acidosis**: Renal tubular cells are unable to excrete hydrogen ions efficiently and bicarbonate is lost in urine

↳ $\text{Cl}^- \uparrow$

hyperventilation.

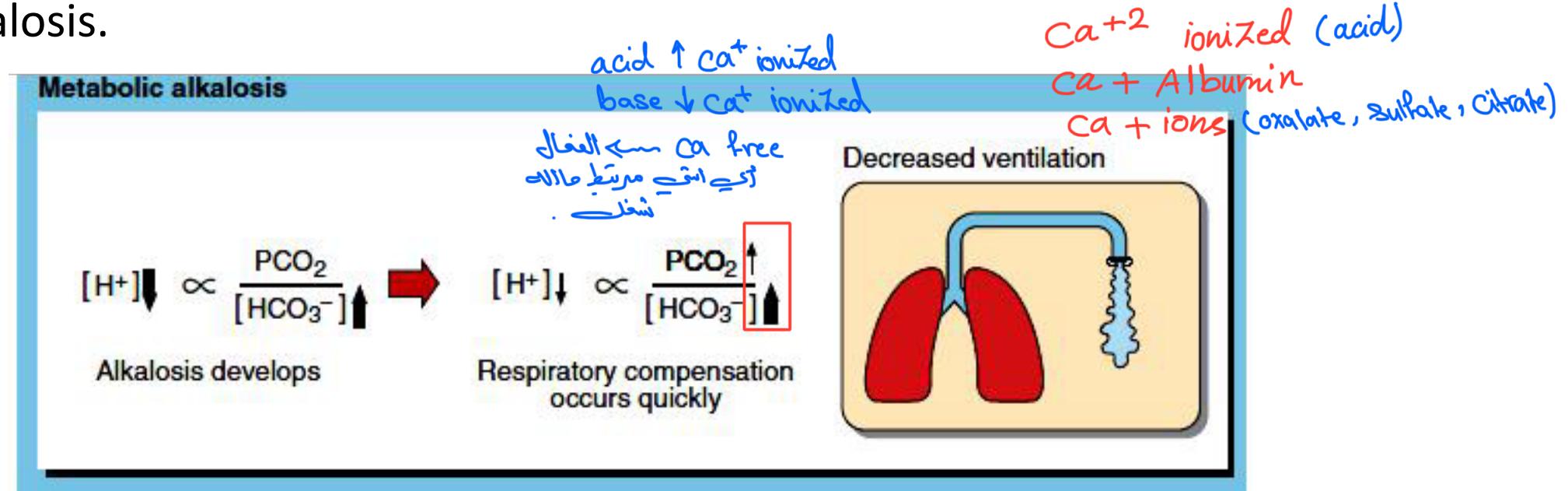

Clinical effect of acidosis

Second

- The compensatory response to metabolic acidosis is hyperventilation, since the increased [H⁺] acts as a powerful stimulant of the respiratory centre.
- The deep rapid and gasping respiratory pattern is known as Kussmaul breathing. Hyperventilation is the appropriate physiological response to acidosis and it occurs rapidly.
- The raised [H⁺] leads to increased neuromuscular irritability. There is a hazard of arrhythmia progressing to cardiac arrest and this is more likely by the presence of hyperkalemia, which will accompany the acidosis.
- Depression of consciousness can progress to coma and death

Metabolic alkalosis

برائحة الماء


Clinical effects of alkalosis

➤ The clinical effects of alkalosis include:

➤ Hypoventilation $\downarrow \text{CO}_2$

➤ Confusion and eventually coma

➤ Muscle cramps, tetany and paraesthesia may be a consequence of a decrease in the unbound plasma calcium concentration. which is a consequence of the alkalosis.

Respiratory acidosis

- **Lung disease:** in which CO₂ is not effectively removed from the blood. In certain patients with chronic obstructive pulmonary disease (COPD, where CO₂ is retained in the blood, causing chronic hypercarbia (elevated pCO₂)
↳ *infection in the lung*.
- In **bronchopneumonia**: gas exchange is impaired because of the secretions. White blood cells, bacteria and fibrin in the alveoli
- **Hypoventilation** caused by drugs such barbiturates, morphine, or alcohol will increase blood pCO₂ levels
↳ *respiratory depression.*
- **Mechanical obstruction** or asphyxiation (strangulation or aspiration).
↳ *الاختناق*
- **Decreases cardiac output** such as in CHF also will result in less blood to the lungs for gas exchange and an elevated pCO₂
↳ *less blood to the lungs* *less gas exchange* *less blood to the lungs* *less gas exchange*
- Kidney will compensate for acidosis but it takes time

Respiratory alkalosis

كمية عادةً بتنفس من التفون السريع.

➤ The causes include:

hypoxia
↓
lactic acidosis
(metabolic)

نقص الأكسجين
في الدم
Respiratory center
مالي يتعين على الماء

- Hypoxemia
- Chemical stimulation of the respiratory center by drugs, such as salicylate
- An increase in environmental temperature, fever, hysteria (hyperventilation), Pulmonary emboli and pulmonary fibrosis.

الناس الذي يتعززنا الله في يحيى
عندما ينامون مسكناتي :-
لأنه لا metabolic * acidosis
acidic the salicylate
alkalosis ذي العادم يتنفس بسرعة وبالتالي
* بعد Chemical
stimulation

➤ الخل بخطيبه ليس ورق
يتنفس فيه عذائب يرجع لكتبه او CO_2 .

- The kidney compensates by excreting HCO_3^- in the urine and reclaiming H^+ to the blood
- The popular treatment for hysterical hyperventilation, breathing into a paper bag, is self -explanatory

Oxygen and gas exchange

Oxygen and carbon dioxide

٤) مرض الإفراط في امتصاص الأكسجين end adequate oxygen

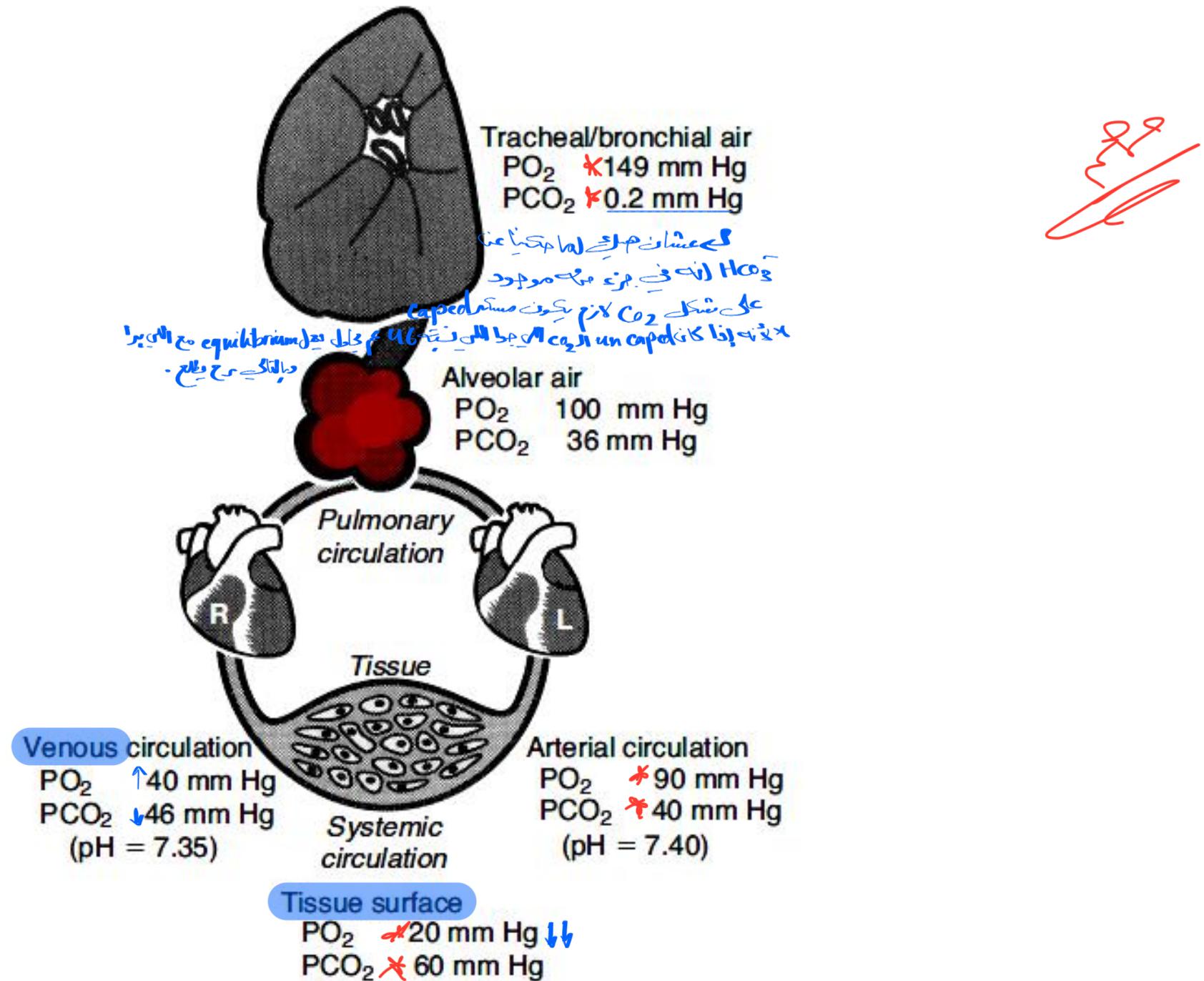
myocondria \rightarrow oxidative phosphorylation

- The role of oxygen in metabolism is crucial to all life. In cell mitochondria, electron pairs from the oxidation of NADH and FADH₂, are transferred to molecular oxygen *membrane oxygen من الهواء الجوي لـ (أكسجين مembrane)* *ذئب تحرير ملائمة الطريقة يغير مسكنة*:
- For adequate tissue oxygenation, the following seven conditions are necessary:

(1) available atmospheric oxygen

(2) adequate ventilation e.g. COPD, asthma

(3) gas exchange between the lung and arterial blood \rightarrow *اکسیجن سینکر لار*


(4) Loading of O₂ onto hemoglobin

(5) adequate hemoglobin

(6) adequate transport (cardiac output), and

(7) release of O₂ to the tissue

➤ Any disturbances in these conditions can result in poor tissue oxygenation

Oxygen and carbon dioxide

- Factors that can influence the amount of O₂, that moves through the alveoli into the blood and then to the tissue include:
- Destruction of the alveoli:** the normal surface area of the alveoli is as big as tennis court. When the surface area is destroyed to a critical low value by diseases such as emphysema

no gas exchange ← alveoli ← ساخته ي ←

lung elastic → elastase بكتيريا يرتبط بالبروتينات الستيلاز →

↓ Alpha-1 antitrypsine.

- Pulmonary edema:** Gas diffuses from the alveoli to the capillary through a small space. With pulmonary edema, fluid leaks into the space, increasing the distance between the alveoli and capillary walls

- Airway blockage.** Airways can be blocked, as in asthma and bronchitis

- Inadequate blood supply:** As in pulmonary embolism, pulmonary hypertension or a failing heart not enough blood is being carried away to the tissue where it is needed.

يُذكَرُ أَعْطَانُهُ لِكَدِّ 100% فِي مَالِ كَانَ مُخْنَقَتِ الدَّاهِنَةِ CO2 مُخَازَنَاتِهِ بِعَدِّ الْأَنْجِلِيَّةِ الْأَنْجِلِيَّةِ 220 مَرَّةِ مِنْ O2.

- Diffusion of CO₂ and O₂.** Because O₂ diffuses 20 times slower than CO₂, it is more sensitive to problems with diffusion. This type of hypoxemia is generally treated with supplemental O₂. 60% or higher O₂ concentrations must be used with caution because it can be toxic to lungs

↑ Toxicity of O₂ Cause Respiratory depression.

Oxygen transport

* الناس امراض خلقت لا CO بربط مع Hb
 ينبع بضرر release لا O₂ معاناها الامراض ترجع بطبع
 عنه تم Hb من نعالة دلما يدعوه kidney Hb الملا
 لا Sensor تفع الـ hypoxia فبروح مطلع مادة امسها
 يتبروح على erythrobiodin bone marrow و تغير التنسـ
 و بالاكـ تتحـت قـة دمـ عـالـيـ مـلاـكـ تـعـلـيـ يـدـمـ

So :-

- * $\uparrow H^+$ ($\downarrow pH$)
- * $\uparrow pCO_2$
- * 2,3-DPG

} decrease affinity
to O_2 in Hb.

affinity $\uparrow 220$ times O_2
 HbO₂ \rightleftharpoons Hb + O_2

Oxygen transport

- With adequate atmospheric and alveolar O₂ available and with normal diffusion of O₂ to the arterial blood, more than 95% of the “functional” hemoglobin will bind O₂.
↳ saturated with O₂
يعني بذلك أن 95% من الأكسجين ي binds مع Hb نضيف.
- Increasing the availability of O₂ to the blood further saturates the hemoglobin. However, once the hemoglobin is 100% saturated, an increase in O₂ to the alveoli serves only to increase the concentration of dissolved O₂ (dO₂) in the arterial blood. This offers minimal increase in oxygen delivery.
↳ Very toxic cause inhibition to respiratory center.
- Prolonged administration of high concentration of O₂ may cause oxygen toxicity and in some cases, decreased ventilation that leads to hypercarbia

Oxygen transport

- Normally blood hemoglobin exists in one of four conditions:
 - Oxyhemoglobin (O₂Hb), which is O₂ reversibly bound to hemoglobin. 97%
 - deoxyhemoglobin (HHb; reduced hemoglobin), which is hemoglobin not bound to O₂ but capable of forming a bond when O₂ is available 3%.
 - Carboxyhemoglobin (COHb), Which is hemoglobin bound to CO. Binding of CO to Hb is reversible but is greater than 200 times as strong as that of O₂
بروتوكول السجن
 - Methemoglobin (MetHb), which is hemoglobin unable to bind O₂, because iron (Fe) is in an oxidized rather than reduced state. The Fe +3 can be reduced by the enzyme methemoglobin reductase, which is found in RBC's *Ferric → Cholate Brown color.*
لـ الأوكسـ جـ مـ هـ بـ دـ 0ـ 2ـ دـ مـ كـ إـ فـ كـ كـ
ـ مـ هـ بـ دـ 0ـ 2ـ دـ مـ كـ إـ فـ كـ كـ
ـ مـ هـ بـ دـ 0ـ 2ـ دـ مـ كـ إـ فـ كـ كـ
- Co-oximeter are used to determine the relative concentrations (relative to the total hemoglobin) of each of these species of hemoglobin.

Assessing a patient oxygen status

► Four parameters used to assess a patient's oxygen status are:

➤ Oxygen saturation (SO₂)

* لا 200 إدا کات مسادی سے نا Fractional (b); ف مانے داعیے اربع اعماں and . fractional

➤ Measured fractional (percent) oxyhemoglobin (FO2Hb);

➤ Transcutaneous pulse oximetry (SpO2) assessments and

➤ The amount of O₂ dissolved in plasma (PO₂)

کوئی مال گانو ایز متساویت م Gunnaha
dishemoglobin \rightarrow carboxy
 ↳ e.g. met Hb or carboxy Hb

- Oxygen saturation (SO_2) represents the ratio of O_2 that is bound to the hemoglobin compared with the total amount of hemoglobin capable of binding O_2

$$\text{SO}_2 = \frac{c\text{O}_2\text{Hb}}{(c\text{O}_2\text{Hb} + c\text{HHb})} \times 100$$

Oxygen saturation (SO₂)

- Software included with the blood gas instruments can calculate SO₂ from pO₂, pH and temperature of the sample.
- These calculated results can differ from those determined by direct \rightarrow Hb A, measurement due to the assumption that only adult hemoglobin is present and the oxyhemoglobin dissociation curve has a specific shape and location
كل وجوه متعددة لـ Hb A في الواقع
different spectrum
- These algorithms for the calculation do not account for the other hemoglobin species, such as COHb and MetHb
- So calculated SO₂ should not be used to assess oxygenation status

Fractional oxyhemoglobin

- Fractional (or percent) oxyhemoglobin (FO₂Hb) is the ratio of the conc. of oxyhemoglobin to the conc. of total hemoglobin (ctHb)

$$\text{FO}_2\text{Hb} = \frac{c\text{O}_2\text{Hb}}{ct\text{Hb}} = \frac{c\text{O}_2\text{Hb}}{c\text{O}_2\text{Hb} + \underline{c\text{HHb}} + \underline{dys\text{Hb}}}$$

- Where the dysHb represents hemoglobin derivatives, such as COHb, that can't reversibly bind with O₂ but are still part of the "total" hemoglobin measurement.
- These two terms SO₂ and FO₂Hb, can be confused because as the numeric values for SO₂ are close to those of FO₂Hb (differ in smokers and if dyshemoglobins are present)

Partial pressure of oxygen dissolved in plasma

- Partial pressure of oxygen dissolved in plasma (pO₂) accounts for little of the body's O₂ stores.
- Noninvasive measurement are attained with pulse oximetry (SpO₂). These devices pass light of two or more wavelength through the tissues of the toe, finger or ear.
- The pulse oximeter differentiate between the absorption of light as a result of O₂Hb and dysHb in the capillary bed and calculates O₂Hb saturation. Because SpO₂ does not measure COHb or any other dysHb, it overestimates oxygenation when one or more are present.
- The accuracy of pulse oximetry can be compromised by many factors, including diminished pulse as a result of poor perfusion and severe anemia.

- The maximum amount of O₂ that can be carried by hemoglobin in a given quantity of blood is the hemoglobin oxygen (binding) capacity. The molecular weight of tetramer hemoglobin is 64,458 g/mol.
- One mole of a perfect gas occupies 22,414 mL. Therefore, each gram of hemoglobin carries 1.39 mL of O₂

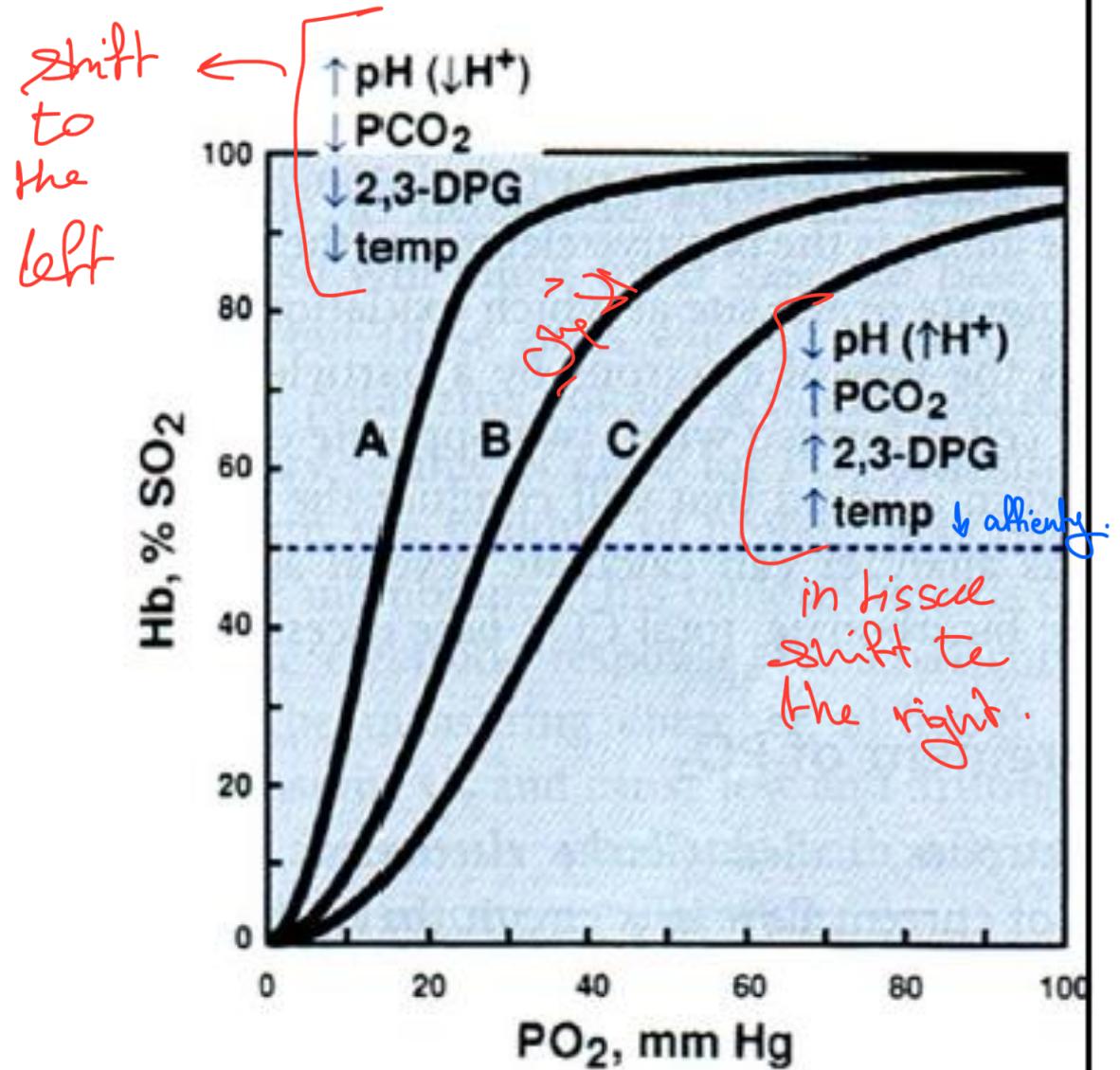
$$\frac{22,414 \text{ mL/mol}}{64,458 \text{ g/mol}} = 1.39 \text{ mL/g}$$

- When the total hemoglobin (tHb) is 15 g/dL and the hemoglobin is 100% saturated with O₂, the O₂ capacity is:

$$\begin{aligned} & \frac{15 \text{ g}}{100 \text{ mL}} \times 1.39 \text{ mL/g} \\ & = 20.8 \text{ mL O}_2/100 \text{ mL of blood} \end{aligned}$$

Oxygen content

- Oxygen content is the total O₂ in blood and is the sum of the O₂ bound to hemoglobin (O₂Hb) and the amount dissolved in the plasma (pO₂)
- Because pO₂ and pCO₂ are only indices of gas-exchange efficiency in the lungs, they do not reveal the content of either gas in the blood.
- If the pO₂ is 100 mmHg, 0.3 ml of O₂ will be dissolved in every 100 ml of blood plasma.
- The amount of dissolved O₂ is usually not clinically significant. However, with low tHb or at hyperbolic conditions, it may become a significant source of O₂ to the tissue. Normally 98-99% of the available hemoglobin is saturated with O₂.
- Assuming a tHb of 15 g/dL, the O₂ content for every 100 mL of blood plasma becomes:

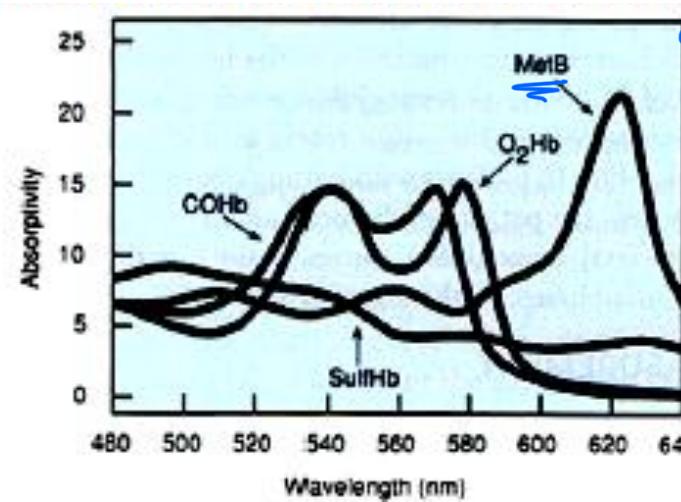

$$0.3 \text{ mL} + (20.8 \text{ mL} \times 0.97) = 20.5 \text{ mL}$$

dissolved O₂

Hemoglobin-oxygen dissociation

زيادة مستويات التنسيل في الأنسجة
اللهم
- release

- 2,3-DPG levels increase in patients with extremely low hemoglobin values and as an adaptation to high altitude.


Measurement

Spectrophotometric (Co-oximeter) Determination of oxygen saturation

- The actual determination of oxyhemoglobin (O_2Hb) can be determined spectrophotometrically using co-oximeter designed to directly measure the various hemoglobin species.
- The number of hemoglobin species measured will depend on the number and specific wavelength incorporated into the instrumentation. For example, two wavelength instrument systems can measure only two hemoglobin species (O_2Hb and HHb), which are expressed as a fraction or percentage of the total hemoglobin.

Spectra \rightarrow Hb λ

• λ (lambda) مختلف (different)

• اداکات جهاز \rightarrow
فیکر \rightarrow کرن \rightarrow wave length (in cm)
جالانک \rightarrow بقیه تسلیم \rightarrow مجب
. deoxy & oxy \rightarrow سایر
meth.

Spectrophotometric (Co-oximeters) Determination of oxygen saturation

عینی عنیی

مغلق بقدر
أقصى ممكناً
لتحقيق Lambda

➤ As with any spectrophotometric measurement, potential **sources of errors** exist, including:

- Faulty calibration of the instrument تتحقق الـ **calibration** على الأكميـن Lambda مـاـلـة ثـوـيـة عـلـى قـرـيـلـه.
- Spectral-interfering substances

➤ The patient's ventilation status should be stabilized before blood sample collection

لـمـتـ بـقـيـنـ الـ oxygenation blood ؟ أـوـلـ فـاـيـوـمـلـ دـيـعـيـنـ بـلـهـ عـلـىـ الـأـكـمـيـنـ

oxygenation blood **between 30% and 50% stabilization** **before** **redrawing** **samples** **from** **mechanical ventilation**

➤ An appropriate waiting period before the sample is redrawn should follow changes in supplemental O₂ or mechanical ventilation

➤ All blood samples should be collected under anaerobic conditions and mixed immediately with heparin or other appropriate anticoagulant.

لـجـبـنـ الـ Oـ 2ـ الـ مـوـرـدـ فـيـ الـهـوـاءـ الـجـيـيـ

يـنـعـلـبـ فـيـ الـعـيـنـةـ عـنـنـاـ

وـ دـيـعـيـنـ أـقـبـنـ الـ Oـ 2ـ الـ يـلـعـ لـبـراـ

tube
or
syringe.

➤ If the blood gas analysis is not being done on the same sample, EDTA can be used as an anticoagulant

لـدـمـ تـكـونـ سـرـيـعـةـ الـيـنـ ؟؟
الـ WBCـ عـلـىـ تـسـهـلـ الـأـكـمـيـنـ الـمـوـرـدـ بـالـعـيـنـةـ

➤ All samples should be analyzed promptly to avoid changes in saturation resulting from the use of oxygen by metabolizing cells'

Blood gas analyzers (pH, pCO₂ and pO₂)

- Blood gas analyzers (macroelectrochemical or microelectrochemical sensors) as sensing devices
- The pO₂ measurement is amperometric (current flow) related to the amount of O₂ being reduced at the cathode
 - oxidation & Reduction
- The PCO₂ and pH measurement are potentiometric (change in voltage)
 - by silver chloride
 - التي تقيس فرق التension
- The blood gas analyzer can calculate several additional parameters, bicarbonate, total CO₂, base excess and SO₂.

Measurement of pO₂

- The primary **source of error** for pO₂ measurement is associated with the buildup of protein material on the surface of the membrane (retards diffusion of O₂)

↳ Hyperproteinemia. لـ دـيـالـاـكـيـ بـعـدـ دـعـفـلـ لـاـ O₂

وـعـ تـعـلـ الـحـيـ لـاـ فـاتـ دـيـالـاـكـيـ بـعـدـ يـقـيـسـ لـكـ اـنـقـلـ مـنـ O₂

- **Bacterial contamination** within the measuring chamber, although uncommon, will consume O₂ and cause low and drifting values

وـعـ يـنـعـبـ لـاـ O₂ اـكـثـرـ.

- It is important not to expose the sample to the room air when collecting, transporting and making O₂ measurement. Conc O₂ ↑

aerobic → O₂ ↑

- Contamination of the sample with room air (pO₂, 150 mmHg) can result in significant error

- Even after the sample is drawn, sample should be analyzed immediately as leukocytes continue to metabolize O₂ leading to low PO₂ values

↳ WBC's

Measurement of pO₂

- **Cutaneous measurement** for pO₂ also are possible using transcutaneous (TC) electrodes placed directly on the skin.
 - ↳ semi-invasive
 - ↳ apply heat
 - ↳ conc of O₂ of lambda
- Measurement depends on oxygen diffusing from the capillary bed through the tissue to the electrode. Although most commonly used with neonates and infants

2 factors:-

- **Skin thickness** and **tissue perfusion** with arterial blood can significantly affect the results.
 - ↳ ربيبة اللد العصبية بجنبة
- Heating the electrode placed on the skin can enhance diffusion of the O₂ to the electrode, however, burns can result unless the electrodes are moved regularly.
 - ↳ ملئن جاهد إذا فحصت لفترة طويلة
 - ↳ مع مررتة البرسي فب Glover كوا ديفير المان

Measurement of pH and pCO₂

→ Reference & Standard.

- **Two electrodes** (the measuring electrode responsive to the ion of interest and the reference electrode) are needed and voltmeter, which measures the potential difference between the two electrodes.
- The potential difference is related to the concentration of the ion of interest.
- To measure pH, a glass membrane sensitive to H⁺ is placed around an internal Ag-AgCl electrode to form a measuring electrode
• Urine \rightleftharpoons salt \rightleftharpoons acid \rightleftharpoons لبستعلب لـ \rightarrow $\text{CO}_2 \rightleftharpoons \text{pH}$.
- **The potential** that develops at the glass membrane as a result of H⁺ from the unknown solution diffusing into the membrane's surface is proportional to the difference in [H⁺] between the unknown sample and the buffer solution inside the electrode

pCO₂

- An outer semipermeable membrane that allows CO₂ to diffuse into a layer of electrolyte, usually bicarbonate buffer, covers the glass pH electrode. The CO₂ that diffuses across the membrane reacts with the buffer, forming carbonic acid, which then dissociates into bicarbonate plus H⁺
- The change in the activity of the H⁺ is measured by the pH electrode and related to pCO₂
- As with the other electrodes, the buildup of protein material on the membrane will affect diffusion and cause errors, pCO₂ electrodes are the slowest to respond because of the chemical reaction that must be completed. Other error sources include erroneous calibration caused by incorrect or contaminated calibration materials

جذب CO₂ إلى جهاز قياس pCO₂ ، كالibrating Buffer

Specimen

- Arterial blood specimen is an excellent reference

لـ مـكـنـ آخـدـ
Venous

مـكـنـ مـنـ لـ 0ـ 2ـ

CO₂

HCO₃⁻

الـمـعـمـلـاتـ الـجـانـبـيـاتـ

أـعـدـ

- Peripheral venous samples can be used if pulmonary function or O₂ transport is not being assessed (the source of the specimen must be clearly identified)

- Depending on the patient, capillary blood may need to be used to measure pH and pCO₂

مـلـعـقـةـ مـنـ مـنـ pـCـOـ2ـ

مـلـعـقـةـ مـنـ مـنـ Cـaـpـiـlـa~ryـ

مـلـعـقـةـ مـنـ مـنـ a~r~t~e~r~i~a~l~

- Although the correlation with arterial blood is good for pH and pCO₂, capillary pO₂ values even with warming of the skin before drawing the sample, do not correlate well with the arterial pO₂ values as result of sample exposure to room air

heparinized
tube
or
syringe

- Sources of error in the collection and handling of blood gas specimens include the collection device, form and concentration of heparin, speed of syringe filling, maintenance of the anaerobic environment, mixing of the sample to ensure dissolution and distribution of the heparin anticoagulant, and transport and storage time before analysis

لـ قـدـمـيـاـ دـاـ اـنـرـكـتـ فـرـةـ نـعـيـ لـ 0ـ 2ـ قـاعـرـ يـسـتـهـلـكـ

Interpretation of results

- **Laboratory professionals** need certain knowledge, attitude and skills for obtaining and analyzing specimens for pH and blood gases.
- Simple evaluation of the data may reveal an instrument problem (possible bubble in the sample chamber or fibrin plug)
- A possible sample handling problem (PO₂ out of line with previous results and current inspired FiO₂ levels)
- The application of knowledge saves time. The ability to correlate data quickly reduces turnaround time and prevents mistakes.