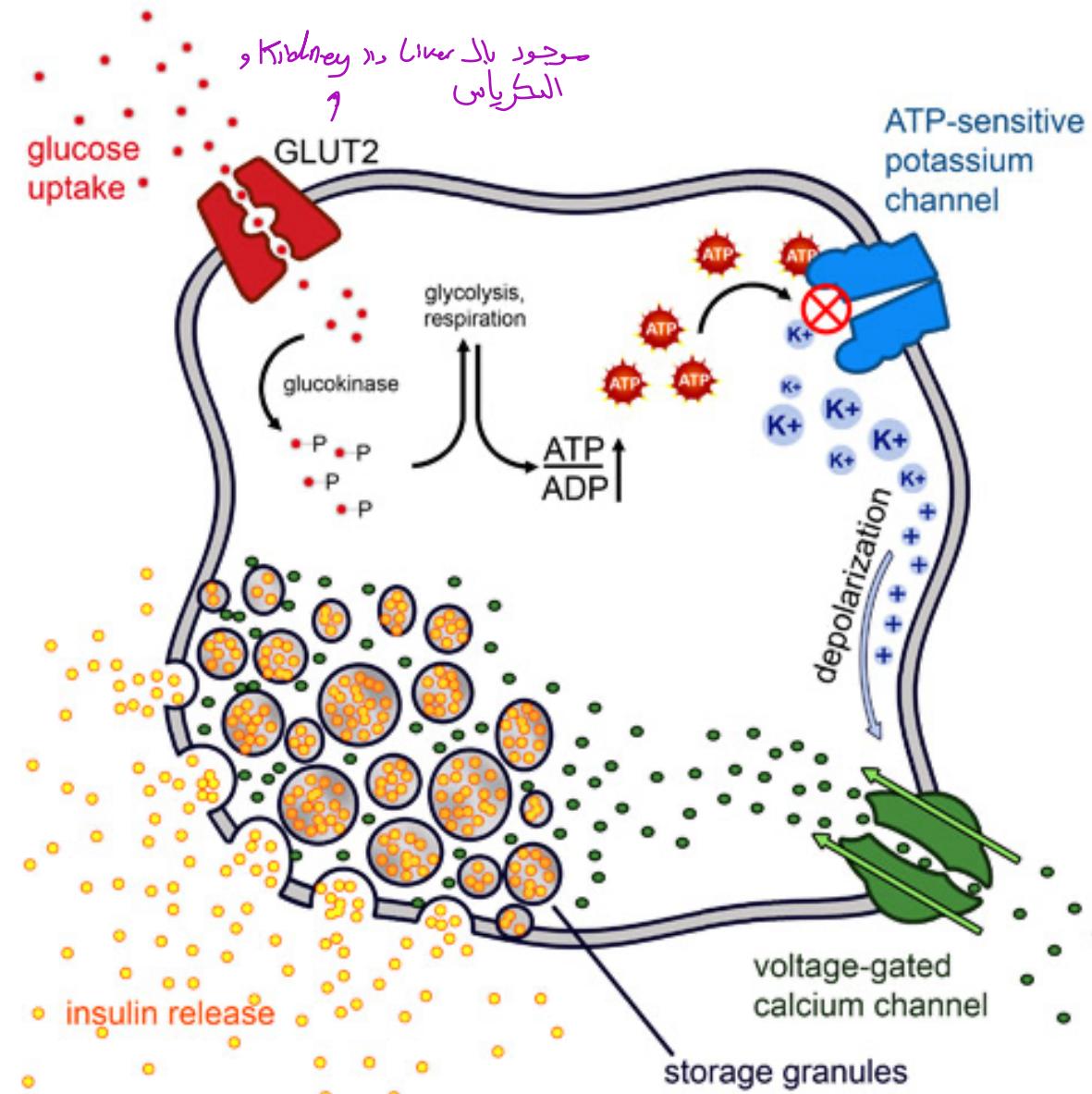


تغريغ كلينكال

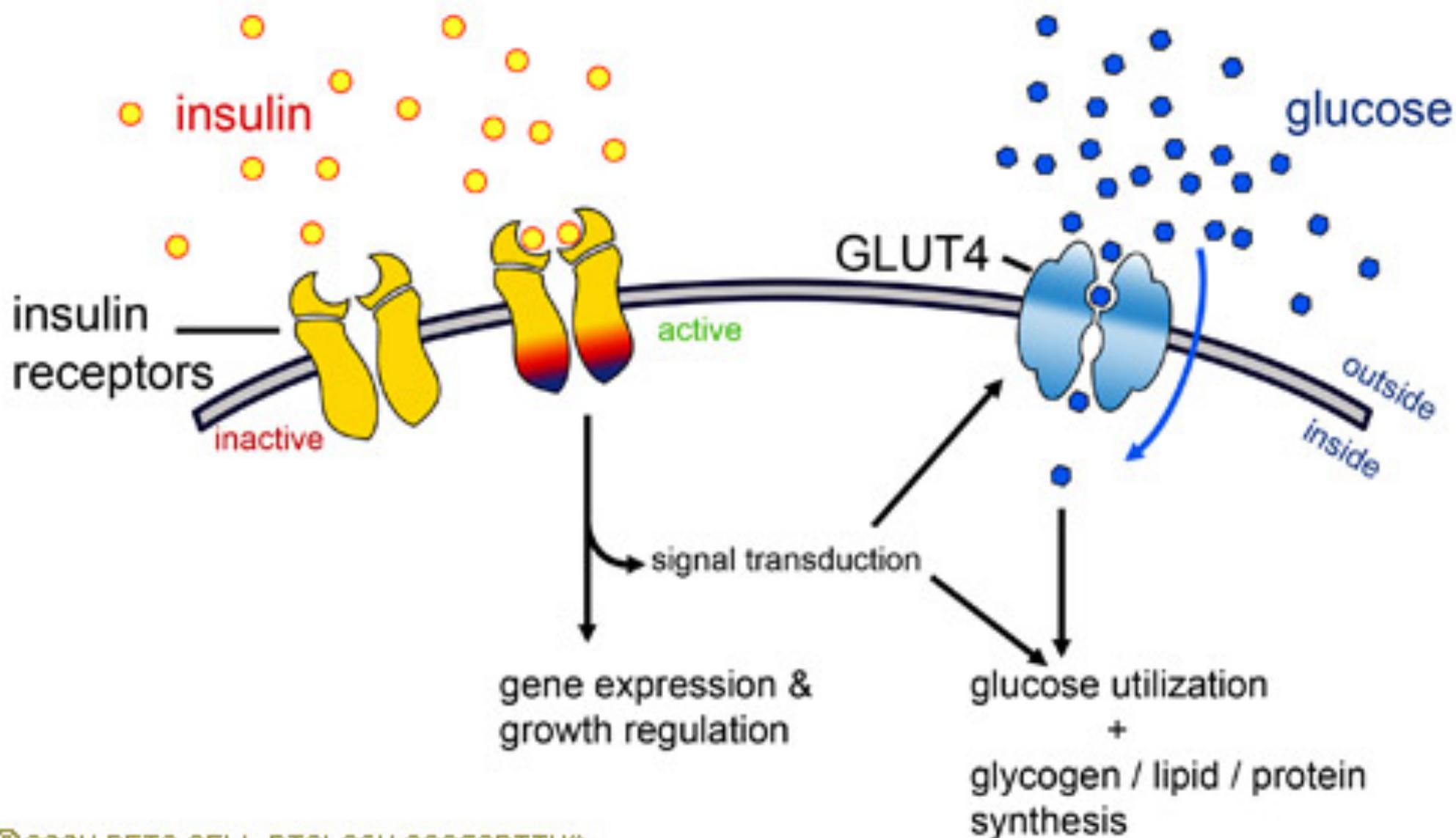
المحاضرة:

الصيدلاني/ة:

جامعة


Glucose Metabolism and diabetes Mellitus

وفي Cases باختصار الماء المي بحسب
ليس كذلك فهم

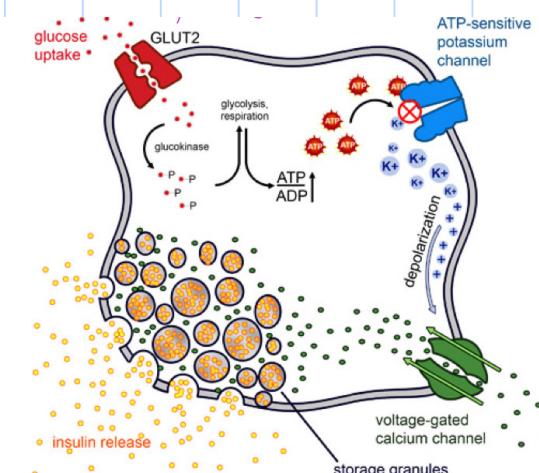

تابعوا التهالج رام لتهنوفوا التهدىلات

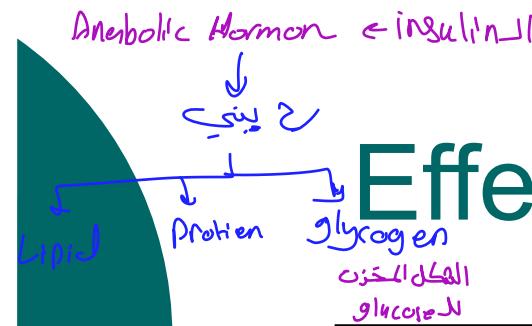
لَا تَنْسُوا زِصِّيلَنَا إِلَّمَ اللَّهُ يَرْحَمُ مَنْ دَعَاهُ

Effect of Insulin

Effect of Insulin

Signal transduction بالنقل بال muscle
GLUT4 \rightarrow مع بفتح + Adipose tissue \rightarrow insulin receptor \rightarrow activation \rightarrow insulin \rightarrow يدخل \rightarrow transportar
gene expression \rightarrow ملبي


إذا أخذ الشخص بياكل سكر كثيرة جسمه في النهاية ينتهي بـ insulin أكثر فيتلاقي كثرة كثرة GLUT4 lets Adipose tissue و muscle خلايا الـ growth regulation


اللدون في مستوى العضلات حيث الوارد اداً بسائل او كثير ريجو 2 لا عا muscle لكن
اللدونة ريج تغير

Protein synthesis ① Lipid ⑥ glycogen ②
③, ④, ⑤ و ساختار چیزی از چیزی و پروتئین

لها ناكل اي لاثيء في Carbohydrate و glucose لما يهسبر
 هنهم رج تحولا لها او صلب رج يرتفع مستوى الها او بالدم ، لما
 الدرم يوملا البكتيريا لا او رج يدخل الها او β ورحقر افراز الانسولين
 طيب ال ها او لتف رج يدخل بالها او β-cell او α-cell عن طريق trionporter او sow
 $\beta\text{-cell}$ \leftarrow تحسن \leftarrow ارتفاع الها او بالدم وتدخله لل GIUT2
 ، دخل الها او β-cell بتغير سماته او disaccharide او glycolysis او لسكر
خلال سماته الها او glycolysis او يكون تحت enzyme اسمه glycolkinase
 • ATP ويبرد الها او ADP ويترتبط معها ويكون phosphate

الـ ATP ومسكـ ATP sensitive potassium channel يـعـلـمـ رـطـلـوـ مـنـ نـاـلـيـوـنـاـسـيـوـمـ يـعـلـمـ رـطـلـوـ مـنـ

Effect of Insulin

ادا الوارد اعلاه هو بس ما عمل اعى نشاط عصان جسمه يستخدم
Lipid

ادا هو رح يروح بخزنه \downarrow
glycogen protein

بس اذا عمل نشاط مثلا راح يلعب رياضه رح يحتاجه هو

عصان يهضم طاقه بس لانه من اماكل ما راح يلقيه عصان هبلى
رح يروح لاده او المخزن ويطرسه عصان تشو هو ويستعمله عصان يهضم طاقه

Carbohydrate

- Facilitates the transport of glucose into muscle and adipose cells

- Facilitates the conversion of glucose to glycogen for storage in the liver and muscle.

ادا ما كان في glu بالدم الـ insulin نارح يتم افرازه عشان هيك بقدر اكسر
الـ glycogen الموجود بالـ liver وادا ما افضل بالـ liver بروح للـ muscle

- Decreases the breakdown and release of glucose from glycogen by the liver

Protein

- Stimulates protein synthesis بما انه رح يبني protien ويمنع تكسر protien (خصوصا عمليه gluconeogenesis)

- Inhibits protein breakdown; diminishes gluconeogenesis

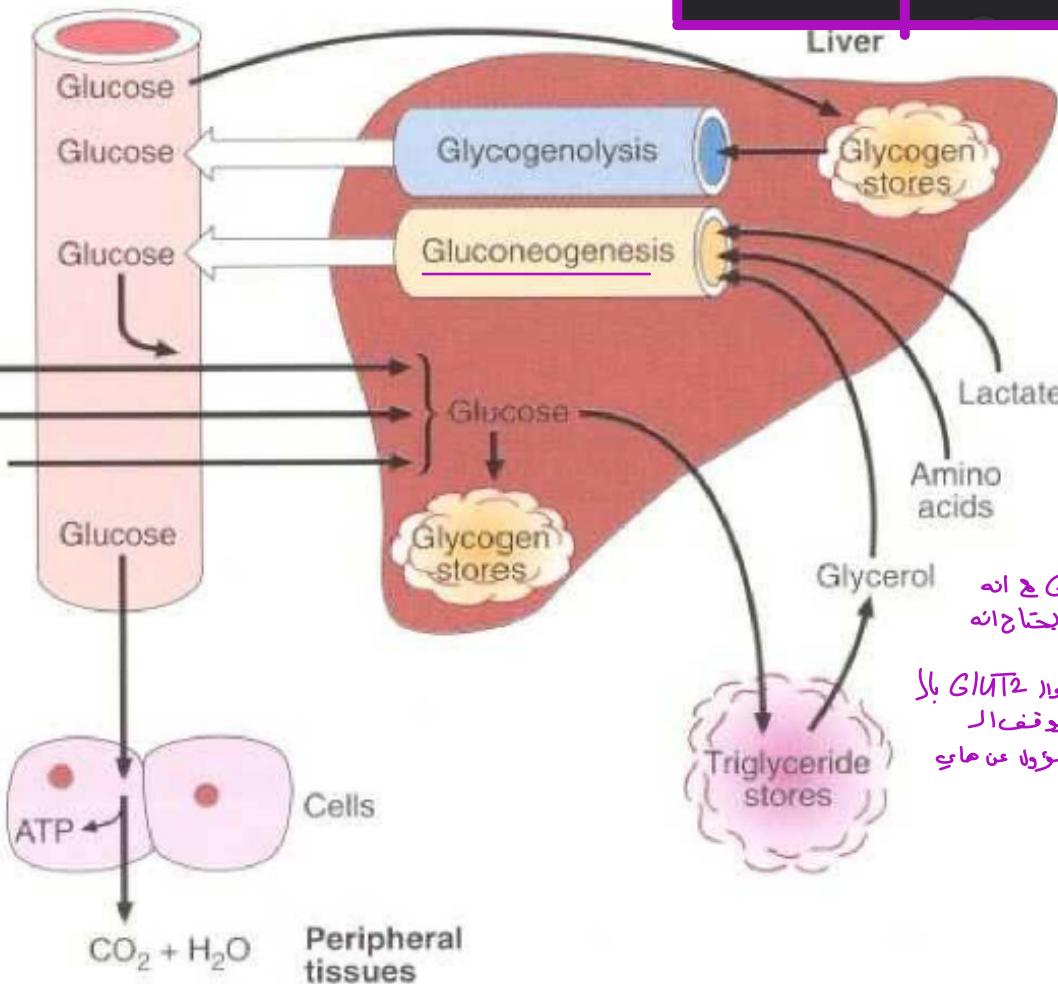
ادا رح يزيد من تخزينه او \downarrow Adipose Triglyceridal تكتفيه او
وصلك رح يزيد حجم الـ triglyceride عشان هيك ابي باللوا سكر اكتر عنهم دز زائد

Fat

- Stimulates lipogenesis- the transport of triglycerides to adipose tissue

- Inhibits lipolysis – prevents excessive production of ketones or ketoacidosis

الـ keton body تنتج من تكسر fatty acid بس بما انه في انسولين بالدم ما رح تنتج الـ keton
ادا ما في انسولين خصوصا عند مرضى السكري مارح يكون في glycogen مخزن بالجسم ما في قادمه مكان يروح ويطلع
منه او glu غير الـ fatty acid عشان هيك رح يزيد انتاج الـ keton وومن يصير عنده ketoacidosis ادا ما التزم
بالـ insulin وهذا يفسر ليش مرضى السكري متواترون الاول ضعاف كثير


Effect of Insulin

اکلت سکر کفر Carbohydrates

١١

Systemic circulation

لليل ال Liver عليه GLUT2 في انه
ما ينفع insulin وعواليه ليس يحتاج انه
يتسلل ليس لا ٥٥ و ٦٤
٨- اذا همار ارتفع بال ٦٤ و ٥٥ GLUT2 بال
Liver تحسنت انه رجع يوقف ال
ما ينفع ولا انسولين برفقه مسؤولة عن حامي
العملية

<p>ارتفاع مستوى الجلوكوز في الدم (بعد الوجبة).</p> <p><u>Insulin</u></p>	<p>انخفاض مستوى الجلوكوز في الدم.</p>	<p>يزيد من دخول الجلوكوز إلى الخلايا والأنسجة الطيفية.</p> <p>▶ يشجع تكوين مخازن الجلابيكوجين (تحويل الجلوكوز إلى الجلابيكوجين).</p> <p>▶ يبطئ عمليتي تحلل الجلابيكوجين واستحداث الجلوكوز.</p>
<p>انخفاض مستوى الجلوكوز في الدم (أثناء الصيام).</p> <p><u>glycagon</u></p>	<p>يرفع مستوى الجلوكوز في الدم.</p>	<p>▶ يحفز عملية تحلل الجلابيكوجين (تكسير الجلابيكوجين).</p> <p>▶ يحفز عملية استحداث الجلوكوز (صنع جلوكوز جديد).</p> <p>▶ يبطئ استخدام الجلوكوز من قبل الخلايا الطيفية للحفاظ عليه.</p>

Introduction

دینہ بیٹھل مفاجئ

Type 1 diabetes

خلال المراحل اللاحقة من النمو، يكتسب الماء القدرة على إفراز الماء.

Most frequently affects children and adolescents. مراهقتین می باشد

Symptoms include excessive thirst, excessive urination, weight loss and lack of energy.

Daily insulin injections required for survival.

Type 2 diabetes

حالہ تغیر شوئیں گے اور یہون میں عتمد

Occurs mainly in adults.

Usually people have no early symptoms.

People may require oral hypoglycaemic drugs and may also need insulin injections.

مريض الـ Diabetic type 2 ما عنده امراض بس ادا راح يفحص ، راح يدرك انه معد سكري ليهش 8% من السكري يعني مستوى السكر بالدم اعلى من 125mg/dl بس اذا Symptom بتبيت لما تجي اعلى من 180mg/dl عسان هيدى في تجيء مريض الـ Diabetic type 2 يعني المطر عنده بيست اعلى من 126mg/dl مدار 180mg/dl بالانسان ما يسكن ظاهره

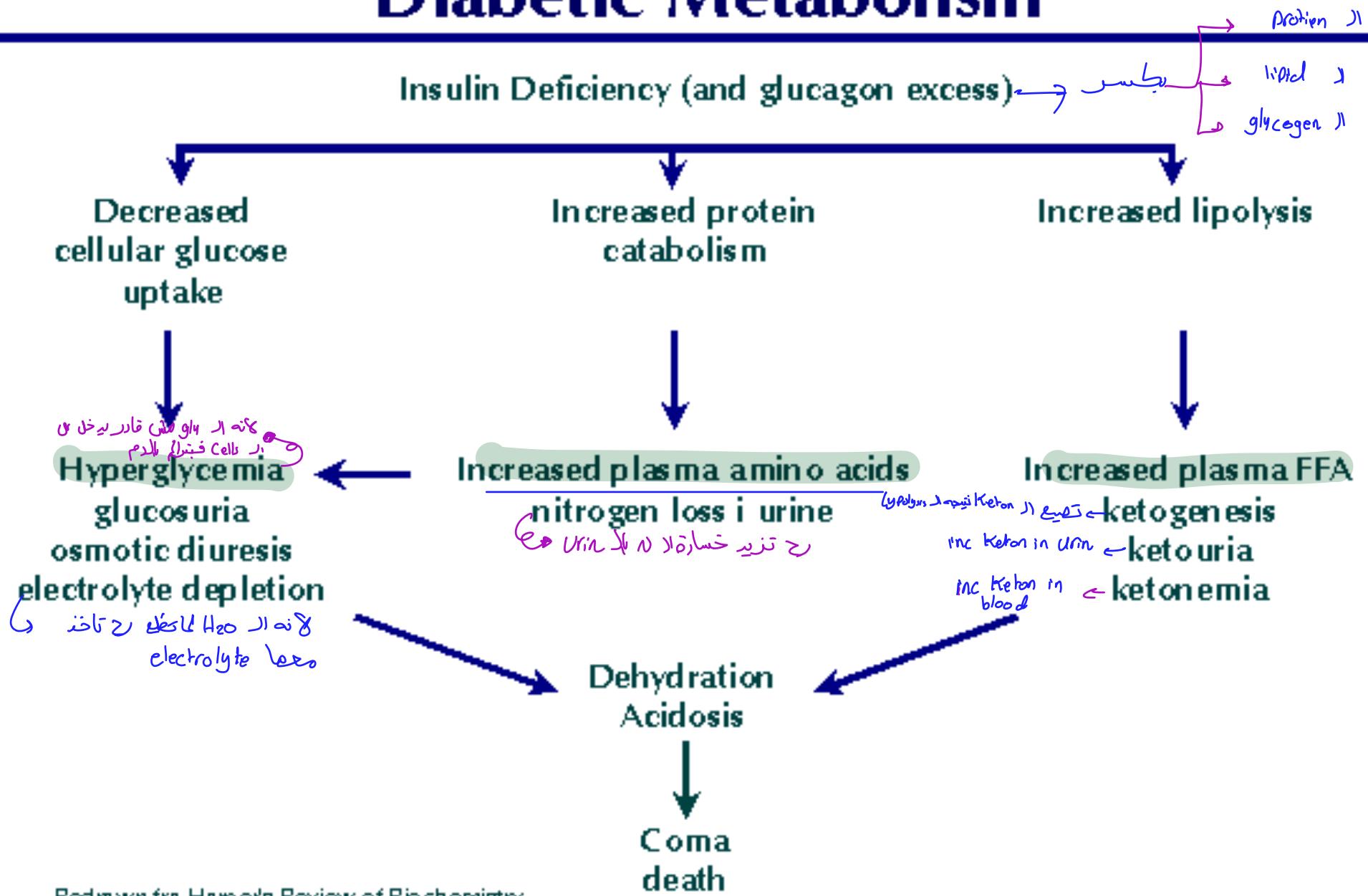
صريفيه لا ٢٠٢٧ باخته العده بتنزل المطر بالدم ونارى
مل سكك حبوب من لير - drug hypoglycaemic drug اى
بيت اولادان uncontrolled في باخته لير insulin

بما انه الا h_{min} من موجود ما راح
يغير $h_{\text{inhibition}}$ \rightarrow $h_{\text{inhibition}} = h_{\text{max}} + h_{\text{inhibition}}$
مصدره \rightarrow اساسه الطلقه \rightarrow $h_{\text{inhibition}} = h_{\text{max}} + h_{\text{inhibition}}$
يغير $h_{\text{inhibition}}$ \rightarrow $h_{\text{inhibition}} = h_{\text{max}} + h_{\text{inhibition}}$
كثير و ماعنده طلاقه \rightarrow $h_{\text{inhibition}} = h_{\text{max}} + h_{\text{inhibition}}$
من اي جانب من الا $h_{\text{inhibition}}$

صياغة مريضات ادا [diabetics] ماء عن
Insulin يدخل الى المخالب اعصاب
صياغة ال باور بروج الـ
بطبيات كبيرة فالـ Kidney تغير تطابعه
دلـ H2O بفتح الـ باور عصان هيـ بروج
من العـام كثيراـ -excessive urination-
حيـك تخـسر مـيـ كـثـيرـ خـجـسـه بـهـمـ يـخـوضـ
excessive urination تـقـعـ الـ يـخـطـطـشـ كـثـيرـ

الفروقات بين
Type 2, Type 1

po po


Insulin dependence diabetes Mellitus ← IDDM ←
Insulin dependence diabetes Mellitus ← NIDDM ←
Non Insulin dependence diabetes Mellitus
secretion ↓ Insulin secretion ↓
الحالة ↓ Insulin secretion ↓

Diabetes mellitus

- Disease in which the body doesn't produce or properly use insulin, leading to hyperglycemia

Main Features	IDDM	NIDDM
Epidemiology		الانتشار
Frequency in Northern Europe	1-3%	
Predominance	Worldwide Lowest in rural areas of developing countries	
0.02-0.4%		
N. European Caucasians		
Clinical Characteristics		
Age	<30yrs	>40yrs
Weight	Low	Normal or <u>increased</u>
Onset	Rapid	Slow
Ketosis	Common	Under stress
Endogenous insulin	<u>Low/absent</u>	Present
HLA associations	Yes	No
Islet cell antibodies	Yes	No
Pathophysiology		
Aetiology	Autoimmune destruction of pancreatic islet cells	Unclear. <u>Impaired insulin secretion</u> → <u>Insulin resistance</u>
Genetic associations	Polygenic	Strong
Environmental factors	Viruses and toxins implicated	Obesity, physical inactivity

Diabetic Metabolism

ال hypoglycemia عبارة عن انفاض السكر بالدم تحت الحد الطبيعي
ولما ينزل ال glu mg/di (70-65) رح يحفز انتاج glucagon الي رح يكسر glycogen وينتج منه
glu ويرفع السكر بالدم
بس ال symptom تظهر لما (50-55) والاعراض بتكون بال CNS تكون دايخ عنده غثيان والخ
للاسف اعراض ال hypoglycemia نفسها اعراض hyperglycemia عشان هيك الخيار الاسلم لما يكون في
هذا تظهر هاي الاعراض عليه هو اني اتعامل معه على اساس انها اعراض hpglycemia ليش؟ لاته اذا كان مرتفع
واعطيته اشي حلو زي مي وسكر صح رح يرتفع بس ما رح يكون ارتفاع عالي جدا اما اذا كان عنده قليل مثلا
50 ورفعته لل 70 هيك بتكون انقت حياته فاذا خربت وطلع hypo بدل hyper ما رح تكون الخطورة عالية وزي
بنعرف انه hypo اخطر

Hypoglycemia

Hypoglycemia involves decreased plasma glucose levels

The plasma glucose concentration at which glucagon and other glycemic factors are released is between 65 and 70 mg/dL; at about 50 to 55 mg/dL, observable symptoms of hypoglycemia appear all related to the central nervous system.

- The release of epinephrine into the systemic circulation and of norepinephrine at nerve endings of specific neurons act in unison with glucagon to increase plasma glucose.
- Glucagon is released and inhibits insulin. \uparrow insulin \downarrow glucagon anabolic catabolic
ما الشخص يصير عنده hypo ويصير افراز لل glucagon رح يصير افراز لل epinephrine الي بشتغلو معه ويكسرو ال glycogen
- Epinephrine is released, increases glucose metabolism and inhibits insulin.
- In addition, cortisol and growth hormone are released and increase glucose metabolism

برهنه يكسرو ال glycogen

ويرفعوا السكر بالدم

hypoglycemia

TABLE 13-8 CAUSES OF HYPOGLYCEMIA

PATIENT APPEARS HEALTHY

No coexisting disease	Drugs
	Insulinoma → insulin (انسولينوما → انسولين)
	Islet hyperplasia/ nesidioblastosis] او رام
صريرن السكر مني مسموح بعدم مراجعة طبيب لأنه لا يستهلك طعاماً كثيرة لفتح تنزيل الدهون بالدم نزول حاد من حاسه افلا النطاق مثلاً ما يكون مالاً، او من مالاً	Factitious hypoglycemia from Insulin or sulfonylurea → اخذ الدوا على تهتك بالدوك و مما اكله، و يمكن خربط بحساب الوجبة
	Severe exercise
	Ketotic hypoglycemia

Compensated coexistent

Drugs/disease

PATIENT APPEARS ILL

Drugs

Predisposing illness

Hospitalized patient

Laboratory Testing in Diabetes

- Fasting morning venous glucose is the best initial test for diagnosing diabetes.

اول فحص هو ال fasting حيث المريض لازم يكون صائم لمدة 12hr اقل اشي وبعديها الصبح بعمل الفحص وبيأخذ العينة من الـ vein فاذا كان مرتفع يعني في مشكاة والـ glu مقدر يدخل للـ cell بما انه صائم من وين اجا هذا الـ glu؟ اكيد لانه مش قادر يدخل للخلايا بتراكم بالدم

- An oral glucose tolerance test is reserved for people with equivocal fasting glucose results.

الناس الي طلع عندهم مشكلة بالـ fasting test بنعمل لهم هذا الفحص عشان اتأكد اذا في diabete ولا

- Patients with impaired glucose tolerance or impaired fasting glucose benefit from lifestyle intervention and annual review.

للحكم impaired يعني قراءة السكر طلعت اعلى من الطبيعي بس اقل من الحد الي نحكم عن انه مريض سكري فاذا كان طالع عندهم impaired fasting glucose tolerance او impaired glucose tolerance اذا غيروا life style ممكن ترجع قراءات الـ glu ولوضعها الطبيعي وكل سنة لازم يرجع يعمل فحص

الراكمي

- HbA1C is the best test of glycaemic control in diabetes.

ادق فحص وهو عبارة عن قياس كمية السكر المرتبطة بالـ hemoglobin خلال الـ 3 اشهر

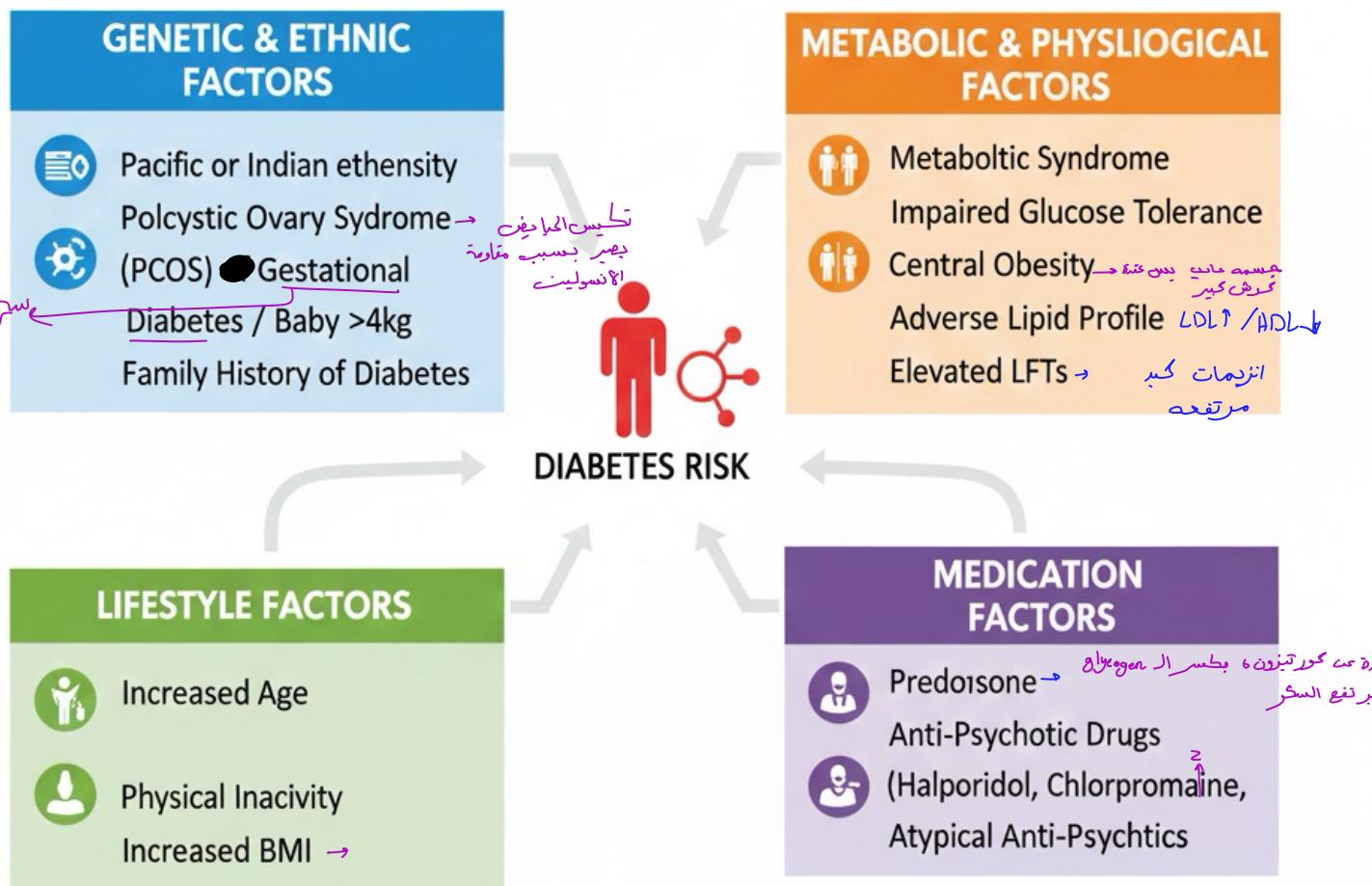
- Patients with diabetes benefit from aggressive monitoring and management of all cardiovascular risk factors.

ادا عملت diabetes mellitus CVS risk factors Control لـ CVS risk factors

والعكس صحيح

People at high risk of diabetes

Unfortunately the risk factors for diabetes, unlike those for cardiovascular disease, have not been quantified.


Factors associated with increased risk for diabetes include:

- Pacific or Indian ethnicity
- Increasing age
- **Metabolic syndrome**
 - Impaired glucose tolerance
 - Polycystic ovary syndrome
 - History of gestational diabetes or having a baby over 4 kg
 - Family history of diabetes
 - Physical inactivity
 - Increased BMI
 - Central obesity
 - Hypertension
 - Adverse lipid profile
 - Elevated IFTs
- Patients taking some drugs e.g. prednisone or anti-psychotic drugs (haloperidol, chlorpromazine, and newer atypical anti-psychotics).

الكلام داخل بعضها
هي خطبة صوره اوضح
في الكلام

FACTORS ASSOCIATED WITH INCREASED RISK FOR DIABETES

Risk factors, unlike for cardiocirculatory disease, have not been quantified.

People at high risk of diabetes

متناهي اته ميزة

Three or more of the following risk factors listed below are required for a **diagnosis of metabolic syndrome**.

شو ال مشكله بال metabolism لـ lipid ,glycogen ,protien

Risk Factor	Defining Level
1- waist circumference*	Men ≥ 100 cm Women ≥ 90 cm
2- Triglycerides	≥ 150 mg/dL
3- HDL cholesterol	Men < 40 mg/dL Women < 50 mg/dL
4- Blood pressure	SBP ≥ 130 or DBP ≥ 85
5- Fasting glucose	≥ 100 mg/dL

People with the metabolic syndrome are at increased risk of diabetes, cardiovascular disease, sub-fertility and gout despite only moderate elevation in individual risk factors.

إذا كان هناك محيط اخر عند اول

*It is likely that people of Indian ethnicity will have features of the metabolic syndrome at lesser waist circumferences than people of European or Pacific ethnicity.

Prevention and identification

Opportunities for prevention

حلياً من (Impaired) خوف

Both impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) refer to metabolic stages intermediate between normal glucose homeostasis and diabetes, in which there is an increased risk of progressing to diabetes.

مسنلار حنفه
Who to test
هذا الشخص عنده IGT/IGT Risk عالي للإصابة بالسكري

- ① Asymptomatic people without other known risk factors, Men (45 years) and women (55 years)
الرجال الي عمرهم فوق الـ 45 والسيدات فوق الـ 55
- ② People with one or more risk factors, Men (35 years) and women (45 years)
إذا عندك risk factor
بفحص الرجال على عمر
الـ 35 والسيدات 45

Testing for diabetes

- Fasting morning blood glucose is the best initial test.
إذا العزارة طبع فيها بارتنال غربت وبعد فحص للشخص
oral glucose tolerance test
- Urine glucose should not be used for diagnosis while HbA1C can be used according to the new protocols
نستخدم
لـ diagnosis
diabetes هو انتابه حـ المريض بعد 60 مـ،

ظهرت عليه اعراض المرض

People with symptomatic hyperglycaemia

Symptomatic hyperglycaemia may have an acute onset, usually in younger people with type 1 diabetes, or a more insidious onset, usually in older people with type 2 diabetes. The usual symptoms of hyperglycaemia are thirst, polyuria and weight loss but hyperglycaemia can also cause fatigue, lack of energy, blurring of vision or recurrent infections, such as candida.

في microorganisms يعيش بالبيئات أي فيها ما وگير ، فمرتفع السكر عنده ٦٤ او أكثر سواد بالمع او الى عنان صرى ينعايد بال microorganisms من صنفه يشكل مكثف

For people with symptomatic hyperglycaemia,
a single fasting glucose of $\geq 126 \text{ mg/dl}$

OR

a random glucose of $\geq 200 \text{ mg/dl}$
is diagnostic of diabetes.

type 1
↓
الأعراض مفاجئه
وشديد ، متزمن
٦٤ او
ارتفاع سكري
بالمع او

type
↓
الأعراض تتطور سويف
شديد ، منتكر اخف
من type 1
↓
ارتفاع ادق
شدة صذا
type 1

- إذا كان السكر العصامي ٦٤ او أكثر
- لو ادى هنا لوفى وهو سكر مفاجئ
- احوال للمرتفع تجيي كان يومين دير ضده طبع
- صائم ، فإذا قلصت القنطره ١٢٦ لو ادى خلق
- وهو diabetes او السكر
- Random
- يعني اذا مارتبى له ا LAN اعلى من ٢٠٠ هنا
- يعني احواله بين الشفط المركب عنده الاعراض

Action following fasting venous plasma glucose

Criteria have been recommended by ADA for the diagnosis of diabetes, IGT and IFG.

35 ← male have Risk factor
 45 ← female 45 ← male no risk factor
 55 ← female

مذول الـ ٤٥ هي خطينا انم ٤٥ نفحه بعد عمر معين test

	Normal	Diabetes	
Fasting glucose result	< <u>110</u>	110-125	
Interpretation	Normal result	IFG \rightarrow Impaired fasting glucose	
Action	<u>Retest in five years</u> or <u>three years</u> for those at risk.	Assess with OGTT. Re-test annually \uparrow those with IFG or IGT <p>رجبي كل سنة</p>	Two results > 126 on two different days are diagnostic of diabetes. OGTT is not required.

اذا كان < 110 \rightarrow بقول المريض
 يفحض مرتاحه
 ماعنى Risk factor على \rightarrow بعد 5 سنوات
 اذا عاد على Risk factor على \rightarrow بعد 3 سنوات

OGTT
 OGTT = Oral glucose Tolerance Test
 ناد اطلاعه برونه IGT
 رعييد الفحص كل سنة + لحسن
 Type style

اذا عدلت ال fast gly best
 مرتين و 3 أيام
 مختلفات هنا يعني انه على Risk factor على داعي
 OGTT

سكرى الحمل ؛ يهسءه الحامل لأنه يهسء عندما
تتغير هرموناته منها الـ *hormone steroid hormone* ترفع المطر
ومنها التي سيسه حامل رج يهسء معها سكري الحمل
في عوامل تأثيره بناءً على حليه

Gestational diabetes mellitus

Gestational diabetes mellitus (GDM) increases the risk of many fetal and maternal complications in pregnancy and the development of type 2 diabetes later in life. Screening is currently recommended for all women between 24 - 28 weeks gestation.

صح اذا صار عند السيدة الحامل سكري الحمل تكون الوضع عادي ، بس هذا لا يعني انه ما نعمل *control* للكسر لانه ممكن يأذى السيدة نفسها او الجنين (ممكن يصير اجهاض)

والسيدة ممكن بعد عمر الـ 40 او بعد الـ 50 احتمال كثير كبير يصير عندها *diabete type 2* بعض السيدات بعد ما تولد ما بروح سكري الحمل وبسب ويتطور

Screening for GDM using 50 gram load

If the one hour blood glucose is ≥ 190 mg/dL, a two hour OGTT is performed.

لازم السيدة الحامل تفحص عن سكر الحمل بين الاسبوع الـ 24-28 كيف؟
بخلي السيدة تشرب مي فيها 50g سكر وبعد ساعة بعمل لها فحص لـ *glu* او اذا طلع عندها 190 او اعلى بخليلها تعمل الفحص مرة ثانية بيوم ثاني بس بعد ساعتين من اعطائها 75g سكر مذوبه بالي (OGTT)

OGTT for diagnosis of GDM

A fasting glucose ≥ 105 and/or a 2 hour value ≥ 165 mg/dL is diagnostic of GDM.

اذا طلع عندها السكر بعد الساعتين (OGTT) 165 او اكتر اذا معها سكري GDM الحمل

واذا عملت الـ *fasting glu test* وطلع الـ 105 او اعلى اذا هي معها سكري حمل GDM

اذا صار عندها سكري الحمل احتمال كبير تولد طفل وزنه اكتر من 4kg لاته الام السكر عندها عالي كثيرو هو بياخذ السكر من الام خلال الحمل فرج يصير افراز كثيرو للانسولين ورج يصير عنده عمليات بناء كثيرو وينولد ناصح وبس ينولد رج يصير عنده *hypoglycemia* لاته متعددة على كميات سكر كثيرة

Interpretation of the glucose tolerance test

A 75 gram oral glucose tolerance test (OGTT) is used to follow up people with equivocal results who may have diabetes, IFG or IGT.

بقياس الـglu بعد ساعتين لما اعطي
الشخص 75g من السكر مذوبين
بالماء

500

	Fasting mg/dL		2 hours post load mg/dL
Normal	< 110	and	< 140
IFG	110-125	^{fast} مسکلة نار IFG ممتاز صير	< 140
IGT	< 126	and	140-200
Diabetes mellitus	<u>≥ 126</u>	and/or	≥ 200
GDM	<u>≥ 105</u>	and	<u>≥ 165</u>

ممكن استخدموه للتنبؤ [Prognosis] هل المرض ملائم بادوية ورد ورد الجيدة

Target level for HbA1C

اده او المربيط بالهيموغلوبين hemoglobin درج يعطي قراره
تقليل الماء او الماء Control الماء خلال الـ 3 اشهر خلائنا
كان مرتفعه يعني السكر خلال الـ 3 اشهر الماضيات
كان بسيط يعني ارتفاع فيه

كل ما قد يملأ
كان احسن

Any sustained reduction of HbA1C is worthwhile because there appears to be a direct relationship between cardiovascular risk and HbA1C. *CVD* اذا كان المريض اذا نزد HbA1C مكرر كاحمال يغير فيه

The goal is to achieve an HbA1C as low as possible, preferably less than 7.0%, without causing unacceptable hypoglycaemia. \rightarrow 8% ما يكون عنده *hypoglycemia* صناعي يأخذ انسولينه وما يبال منع HbA1C عنه قليل صنع منتج

$\text{HbA1C} > 7\%$ is a sign of inadequate control for most people.

HbA1C targets need to be individualised, taking into consideration the patient's age and co-morbidities. \rightarrow ما في تقييم بترتبط على المرض ولا مربيه \rightarrow الى target يعني اعمله حسب عمره او عند امراضه

الخ - -----

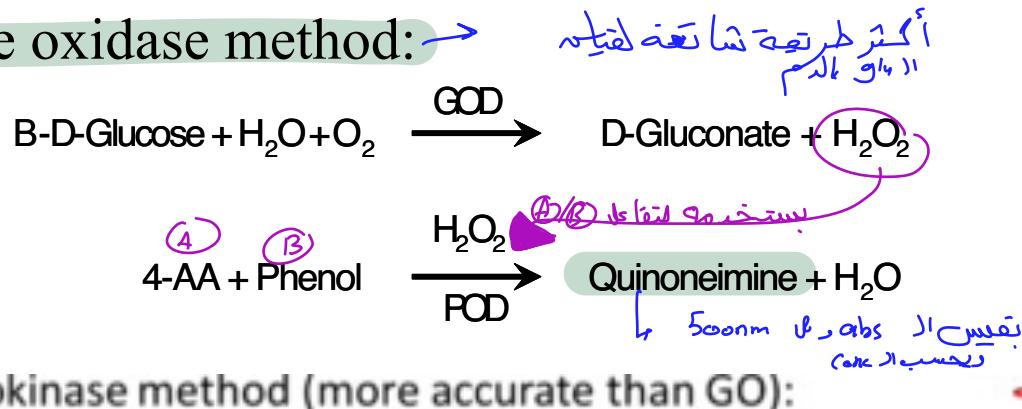
Stable diabetes	Test six monthly \rightarrow
Changes in treatment	Test no more than three monthly

إذا الطبيب غير العلاج او عمل على

إذا ملائم لأدوات السكر
وونعه تمام

لازم المريض يعرف بالضبط قديه اكل
عشان ياخذ الانسولين على القد لان اذا اخذ زيادة رح
يصير عنده hypoglycemia اذا اخذ اقل رح يصير عنده
hyperglycemia ولازم يعرف كيف يحسب الجرعة الي لازم
اخدها

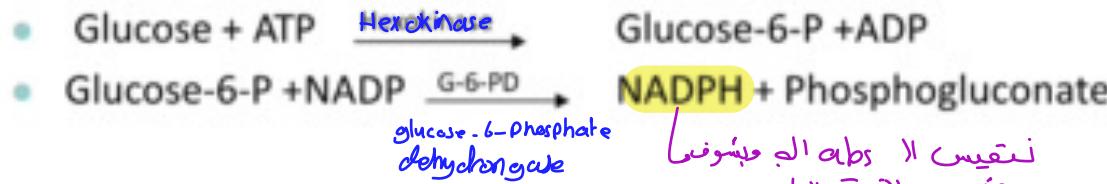
Self monitoring blood glucose (SMBG)


مین الي بياخذ انسولین ؟ مريض ال1 type diabete و مريض ال2 dianete اذا السكر كثير عالي وما بنتظم بالادوية
هذول المرضى لازم يقيسو السكر بالدم 3-4 مرات باليوم ولازم المريض يعرف كم وحدة انسولين لازم ياخذ مثلاً بده يأكل وجبه كبيرة لازم يحسب كم وحدة رح ياخذ

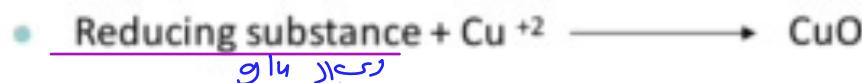
- People who take insulin should regularly self monitor blood glucose (3-4 times daily according to ADA).
- For people with non-insulin treated type 2 diabetes testing is most useful if patients use the results to learn and alter behaviour, or medication.

الناس الي عندهم type 2 بيفحصوا السكر قبل ما يأكل شوكولاته نثلا او كنافه اذا كا مرتفع ما بيأكل او اذا اخذوا دوا جديه زي ال cortisone ويدهم يشييفو هل بعمل ارتفاع بالسكر ولا لا يعني مش على الطالعة والنازلة يفحص

Methods of glucose measurement


- Glucose oxidase method:

GOD \rightarrow Glucose oxidaseenz
POD \rightarrow Peroxidase enzym


هدف بس اتنى

- Hexokinase method (more accurate than GO):

glucose-6-phosphate
dehydrogenase

- Clinitest

السكر الماء ينعكس على القيمة المائية

Reducing substance على
Pseudohyperglycemia

Methods of glucose measurement

- The patient should be on a normal-to high carbohydrate diet and fasting for at least 10 hrs and not more than 16 hrs

اذا الشخص بده يعمل الفحص لازم ما يكون عامل دايت وقاطع الcarbohydrate (لازم ويكزن صائم من 10 ساعات ل 16 ساعة لا اكثرا ولا اقل)

- The test should be performed in the morning because of the hormonal diurnal effect on glucose
- The preferred specimen for glucose analysis is fluoride oxalate plasma

الفحص بازم يكون الصبح لانه تأثير الهرمونات على النسخة
يمون اقل

قبل ما اعمل test للمربيه 8 زم ما بالك او يشرب او يدخن [نقط بشرب ماء]

طفل وزنه 40kg فـ
OGTT اعطيه 1.75 g/kg
1kg ~~→~~ 1.75
40 → ??
= 70g of glucose

Before and during performance of OGTT, the patient should not exercise, eat, drink (only water), or smoke

In OGTT, the adult dose of glucose solution is 75g and children receives 1.75 g/kg of glucose to a maximum dose of 75 g

بر 100g طفل يعطي للكيلو 1.75g ← kg 100g
adult \rightarrow 75g [يعني الطفل تلقيع غير جريء او داخلي معه او ما يكتر من 75g]

HbA1C

Measurement of glucosylated hemoglobin

- The specimen required is EDTA whole blood sample
- Method based on structural differences
 - Immunoassay (antibodies against the glycated N-terminal of Hb)
 - Affinity chromatography (separated based on chemical structure using borate to bind glycosylated proteins)
- Methods based on charge differences:
 - Ion exchange Chromatography (positive charge resin bed)
 - Electrophoresis (difference in charge)
 - Isoelectric focusing (method uses isoelectric point for separation)
 - HPLC (ion exchange column)

Keton

١٣) لغست (Ketone acids) هي يخفى المريض [hypoglycemia]

acetocetate acid \downarrow Ketone body
 β -hydroxybutyrate \downarrow

جذري كeton body \rightarrow باكتي \leftarrow type 1 \rightarrow
الكتين \rightarrow اسوك \leftarrow باكتي \leftarrow type 2 \rightarrow

also \leftarrow starvation ②

Feasting ①

ایسے کل بیاکلو رج \rightarrow Prolong Vomiting (6)

ستفرنه فما رح يستفرنه

لاد (LAD) میں حصہ میں نہیں

Ketone body

Method based on structural differences

Immunoassay -1

الـ *N-terminal* هو طرف اسفل شحنة (+) ويرتبط عليه الـ *heme* او *hemoglobin*.

كم الـ N-terminal (N-terminus) وكم الـ C-terminal (C-terminus)؟

antibodies ॥

Affinity chromatography 2

storing glycols of Hemoglobin in the form of borate esters.

hemoglobin حمېګلوبېن

Method based on charge difference

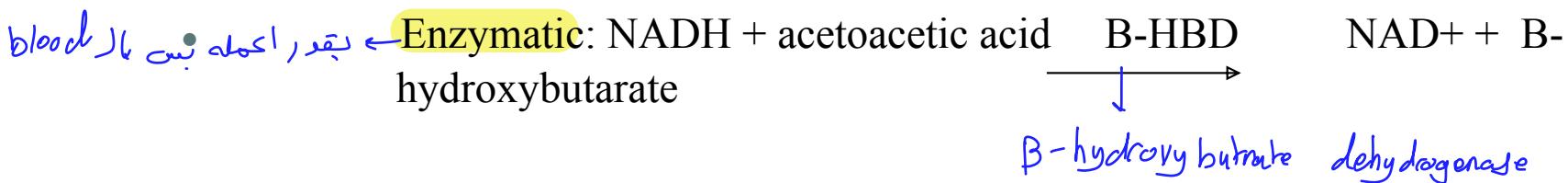
ـ حملنا انه (+) leads N-terminal الحادي عليه hemoglobin

بس هى يرتبط فئها باو رج تناقض اى (+) ورثها يطرد هنالك

• $AbA1C$ رج نستخراج لفظاً واحداً

electrophoresis (2) ion exchange chromatography (1)

4BLC


④ isoelectric focusing ③

Ketones

- They increase in case of DM, starvation/fasting, high-fat diet, prolonged vomiting and glycogen storage disease
- Measurement of ketones:

Urin
blood +

← Nitroprusside: with acetoacetic acid and alkaline pH gives purple colour

اده انت نیز نیز NADH نیز نیز

acetoacetic acid نیز نیز NADH نیز نیز

کتون بکس نیز نیز

Laboratory tests to prevent and delay complications of diabetes

للحصص او المرضي
اكي بعلهم السكري بي

People with diabetes usually die from **macrovascular** complications of their diabetes; namely cardiovascular disease. This is influenced by all of the commonly recognised risk factors for cardiovascular disease as well as glycaemic control. Fasting lipid levels are measured three monthly until stable and then 6 - 12 monthly thereafter.

It is important that management should be individualised

1. المضاعفات الرئيسية للسكري
 - سبب الوفاة الرئيسي: يموت مرضى السكري غالباً بسبب مضاعفات الأوعية الدموية الكبيرة (macrovascular complications).
 - المضاعفة الأكثر شيوعاً: أمراض القلب والأوعية الدموية (Cardiovascular disease).
 - العوامل المؤثرة: تتأثر هذه المضاعفات بعوامل خطر أمراض القلب المعروفة، بالإضافة إلى مدى التحكم في مستوى السكر في الدم (glycaemic control).
 - مراقبة الدهون: قياس مستويات الدهون في الدم أثناء الصيام كل ثلاثة أشهر حتى تستقر، ثم كل 6-12 شهراً.
2. عوامل الخطر للإصابة بالسكري
 - ملاحظة عامة: لم يتم تحديد عوامل الخطر للسكري كمية، على عكس أمراض القلب والأوعية الدموية.
 - العوامل الرئيسية تشتمل:
 - متلازمة الأيض (Metabolic syndrome).
 - ضعف تحمل الجلوكوز (Impaired glucose tolerance).
 - زيادة مؤشر كتلة الجسم (Increased BMI) والسمنة المركزية (Central obesity).
 - الخمول البدني (Physical inactivity) وزيادة العمر (Increasing age).
 - ارتفاع ضغط الدم (Hypertension) واضطراب دهون الدم (Adverse lipid profile).
 - التاريخ المرضي (سكري الحمل، متلازمة المبيض متعدد الكيسات، تاريخ عائلي).

Parameter	Optimal value
Total cholesterol	< 4 mmol/L
LDL cholesterol	< 2.5 mmol/L
HDL cholesterol	> 1 mmol/L
TC:HDL ratio	< 4.5
Triglycerides	< 1.7 mmol/L
HbA1C	< 7 %

ادا عند سكري او مطلع عنده ارتفاع
لاته منهن بس ملئن صرتفع لدرجة اعدي عنه
مريض نه [زب ار لاما] لميسه على اولا العلاج الحاله صرقتا

Diabetic renal disease

صریفہ السکر کا ہر یہ مختصر عطا لفظ
انٹی دانماً ہے شفیا گئے یہ مختصر عطا لفظ
Chronic renal disease
failure

The best way of testing for diabetic renal disease is by urinary albumin:creatinine ratio (ACR) and serum creatinine with estimated glomerular filtration rate (eGFR). These tests are performed on everyone with diabetes at diagnosis and repeated at least annually – more frequently if there is proteinuria, microalbuminuria or reduced eGFR.

Test
یہ لازم یہ

بعد الفحص کل سی سو بس ادا کیا گل زیست

یعنی اکثر

Albumin:creatinine ratio

- **ACR** provides an estimate of daily urinary albumin excretion.
- Microalbuminuria cannot be detected on a conventional urinary protein dip stick.
- Microalbuminuria is urinary albumin excretion between 30 and 300 mg/day; above 300mg/day represents **proteinuria**.
- ACR is best measured in the laboratory using a first morning urine sample where possible when the patient is well.
- An abnormal initial test requires confirmation by testing on two further occasions. If at least one of these tests is positive microalbuminuria has been confirmed.

صریفہ لازم یکون منیج ماعنہ
انٹی مانٹر میں
ACR

ACR
لے یہ مختصر اول albumin creatinin ratio ہے ادا کیا گلے مرتفع ہے بعد الفحص مرتبتے ادا

microalbumin urea ←
واحد من الفحصین طبع مرتفع

Renal testing in diabetes

ACR mg/mmol (confirmed)	eGFR mL/min/1.732	Risk	Management
men < 2.5 women < 3.5	and	> 60	2 - 4% per year progress to microalbuminuria. <i>الخطوة سغاله ولازم يفهم السعر هناك خطوه</i> Annual ACR and eGFR. Good diabetes & BP management.
men \geq 2.5 women \geq 3.5	or	< 60	One third progress to <u><u>overt nephropathy</u></u> . CVD risk doubled. <i>الفحص كل زيارة للمرتفع</i> Review ACR and eGFR at <u>each visit</u> . Intensive management of glycaemia and CVD risk factors. <i>Risk factor</i> <i>PCV</i> <i>ان</i> Use ACE inhibitor and low-dose aspirin. Avoid nephrotoxic drugs. <i>aminoglycoside</i> <i>دواء</i> Investigate if suspicious of causes other than diabetes*
> 30	or	< 30	Almost all proceed to end stage renal disease or die prematurely of CVD. Overt nephropathy Refer specialist

*Non-diabetic renal disease is suspected when there is absence of diabetic retinopathy in a person with renal disease, there are urinary abnormalities such as haematuria or casts, or when there is renal disease without microalbuminuria or proteinuria.

Other tests

يُشتبه بوجود مرض كلوى غير ناتج عن السكري إذا تحقق أحد الآتي:

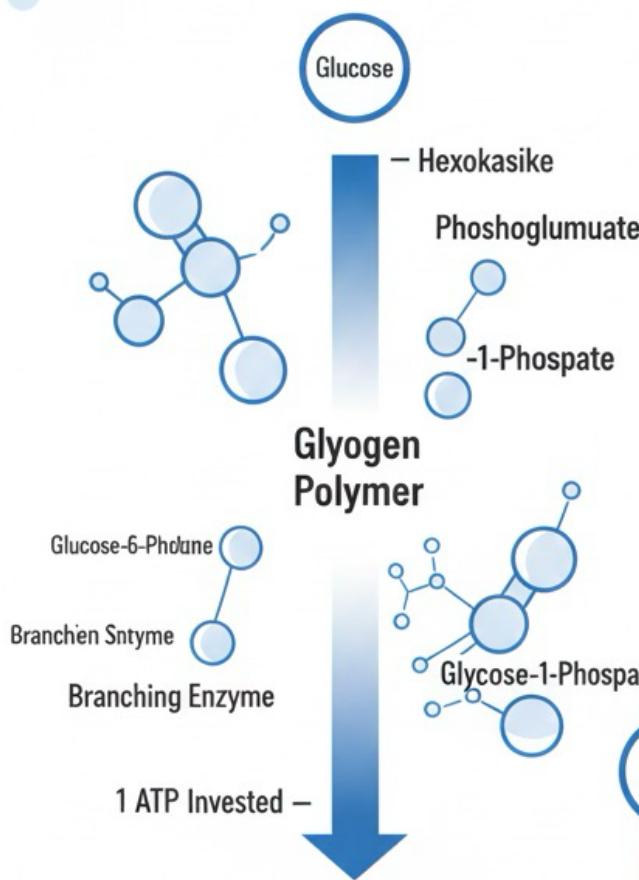
- وجود مرض كلوى من دون اعتلال شبكي سكري.
- وجود شواد في البول مثل الدم (Hematuria) أو الأسطوانات (Casts).
- وجود مرض كلوى من دون زلال بولي (proteinuria) أو microalbuminuria.

يعني: ليس كل مريض سكري عنده مشكلة بالكلى يكون السبب السكري نفسه، وهذه العلامات تشير لسبب آخر.

Testing of LFTs is recommended for people with diabetes:

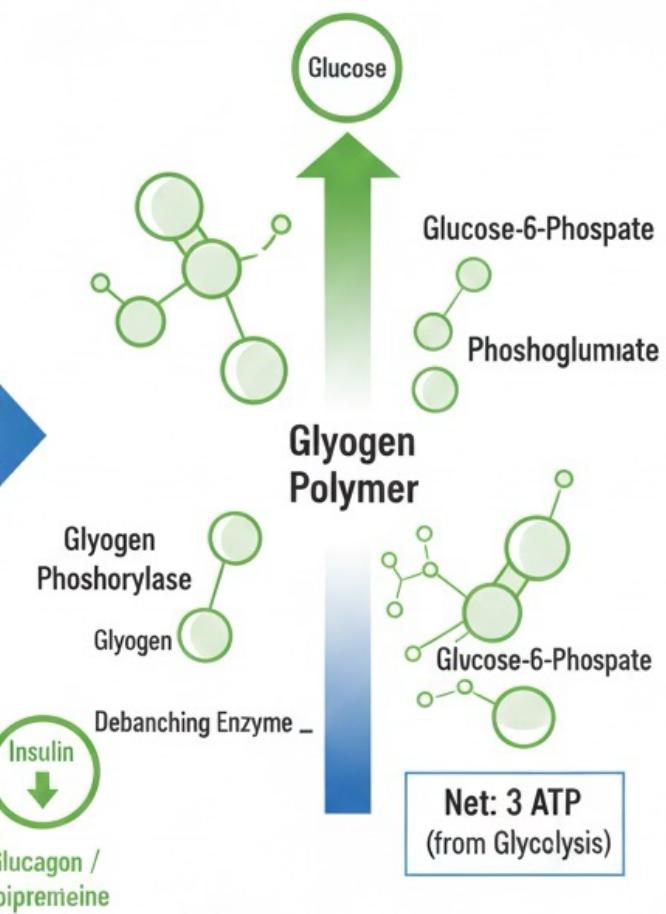
- at diagnosis, وقت التشخيص كما ابليش دوا جديه
- at the start of antidiabetic drug therapy, and
- at any other time indicated by clinical judgement

Other laboratory tests


In patients with type 1 diabetes, intermittent checks for other autoimmune conditions may be useful. This could include testing for thyroid dysfunction or coeliac disease. امتحنات هاممه

إذا كان مريض 1 type 1 لازم يعمل فحوصات ال autoimmune disease لانه اصلا هو المسبب له
فبحفظوا اذا عندهم امراض مناعية زي ال coeliac disease او thyreoid dysfunction

الهرة اي تخت عملتها بال AI ليس للشوفو الفرق بين
ال زاكيلايوجنوز و ال glycogenesis ↓
فمش معالجت فيها Insulin ال يوجد ال glycogen


GLYCOGENESIS

Storage of Glucose as Glycogen

GLYCOGENOLYSIS

Breakdown of Glycogen to Glucose

CASE STUDY 13-1

An 18-year-old, male high school student who had a 4-year history of diabetes mellitus was brought to the emergency department because of excessive drowsiness, vomiting, and diarrhea. His diabetes had been well controlled with 40 units of NPH insulin daily until several days ago, when he developed excessive thirst and polyuria. For the past 3 days, he has also had headaches, myalgia, and a low-grade fever. Diarrhea and vomiting began 1 day ago.

Questions

1. What is the probable diagnosis of this patient based on the data presented?
2. What laboratory test(s) should be performed to follow this patient and aid in adjusting insulin levels?
3. Why are the urine ketones positive?
4. What methods are used to quantitate urine ketones? Which ketone(s) do they detect?

URINALYSIS RESULTS

Specific gravity 1.012

pH 5.0

Glucose 4+

Ketone Large

CHEMISTRY TEST RESULTS

Sodium 126 mEq/L

Potassium 6.1 mEq/L

Chloride 87 mEq/L

Bicarbonate 6 mEq/L

Plasma glucose 600 mg/dL

BUN 48 mg/dL

Creatinine 2.0 mg/dL

Serum ketones 4+

CASE STUDY 13-2

A 58-year-old, obese man with frequent urination is seen by his primary care physician. The following laboratory work was performed, and the following results were obtained:

CASUAL PLASMA GLUCOSE		225 mg/dL	
URINALYSIS RESULTS			
Color and appearance	Pale/clear	Blood	Negative
pH	6.0	Bilirubin	Negative
Specific	1.025	Urobilinogen	Negative
Glucose	2+	Nitrites	Negative
Ketones	Negative	Leukocyte esterase	Negative

Questions

1. What is the probable diagnosis of this patient?
2. What other test(s) should be performed to confirm this? Which is the preferred test?
3. After diagnosis, what test(s) should be performed to monitor his condition?

CASE STUDY 13-3

A 14-year-old, male student was seen by his physician. His chief complaints were fatigue, weight loss, and increases in appetite, thirst, and frequency of urination. For the past 3 to 4 weeks, he had been excessively thirsty and had to urinate every few hours. He began to get up 3 to 4 times a night to urinate. The patient has a family history of diabetes mellitus.

LABORATORY DATA

Fasting plasma glucose	160 mg/dL	
Urinalysis	Specific gravity	1.040
	Glucose	4+
	Ketones	Moderate

Questions

1. Based on the preceding information, can this patient be diagnosed with diabetes?
2. What further tests might be performed to confirm the diagnosis?
3. According to the American Diabetes Association, what criteria are required for the diagnosis of diabetes?
4. Assuming this patient has diabetes, which type would be diagnosed?

CASE STUDY 13-4

A 13-year-old girl collapsed on a playground at school. When her mother was contacted, she mentioned that her daughter had been losing weight and making frequent trips to the bathroom in the night. The emergency squad noticed a fruity breath. On entrance to the emergency department, her vital signs were as follows:

Blood pressure	98/50 mm Hg
Respirations	Rapid
Temperature	99°F

Stat lab results included:

RANDOM URINE		SERUM CHEMISTRIES	
pH	5.5	Glucose	500 mg/dL
Protein	Negative	Ketones	Positive
Glucose	4+	BUN	6 mg/dL
Ketones	Moderate	Creatinine	0.4 mg/dL
Blood	Negative		

Questions

1. Identify this patient's most likely type of diabetes.
2. Based on your identification, circle the common characteristics associated with that type of diabetes in the case study above.
3. What is the cause of the fruity breath?

CASE STUDY 13-5

A 28-year-old woman delivered a 9.5-lb infant. The infant was above the 95th percentile for weight and length. The mother's history was incomplete; she claimed to have had no medical care through her pregnancy. Shortly after birth, the infant became lethargic and flaccid. A whole blood glucose and ionized calcium were performed in the nursery with the following results:

Whole blood glucose 25 mg/dL

Ionized calcium 4.9 mg/dL

Plasma glucose was drawn and analyzed in the main laboratory to confirm the whole blood findings.

Plasma glucose 33 mg/dL

An intravenous glucose solution was started and whole blood glucose was measured hourly.

Questions

1. Give the possible explanation for the infant's large birth weight and size.
2. If the mother was a gestational diabetic, why was her baby hypoglycemic?
3. Why was there a discrepancy between the whole blood glucose concentration and the plasma glucose concentration?
4. If the mother had been monitored during pregnancy, what laboratory tests should have been performed and what criteria would have indicated that she had gestational diabetes?

CASE STUDY 13-6

Laboratory tests were performed on a 50-year-old lean white woman during an annual physical examination. She has no family history of diabetes or any history of elevated glucose levels during pregnancy.

LABORATORY RESULTS

Fasting blood glucose	90 mg/dL
Cholesterol	140 mg/dL
HDL	40 mg/dL
Triglycerides	90 mg/dL

Questions

1. What is the probable diagnosis of this patient?
2. Describe the proper follow-up for this patient.
3. What is the preferred screening test for diabetes in nonpregnant adults?
4. What are the risk factors that would indicate a potential of this patient's developing diabetes?

CASE STUDY 13-7

For 3 consecutive months, a fasting glucose and glycosylated hemoglobin were performed on a patient. The results are as follows:

	QUARTER 1	QUARTER 2	QUARTER 3
Plasma glucose, fasting	280 mg/dL	85 mg/dL	91 mg/dL (FPG)
Glycosylated hemoglobin	7.8%	15.3%	8.5%

Questions

1. In which quarter was the patient's glucose the best controlled? The least controlled?
2. Do the fasting plasma glucose and glycosylated hemoglobin match? Why or why not?
3. What methods are used to measure glycosylated hemoglobin?
4. What potential conditions might cause erroneous results?

CASE STUDY 13-8

A 25-year-old, healthy, female patient complains of dizziness and shaking 1 hour after eating a large, heavy-carbohydrate meal. The result of a random glucose test performed via fingerstick was 60 mg/dL.

Questions

1. Identify the characteristics of hypoglycemia in this case study.
2. What test(s) should be performed next to determine this young woman's problem?
3. To which category of hypoglycemia would this individual belong?
4. What criteria would be used to diagnose a potential insulinoma?

CASE STUDY 13-9

A nurse caring for patients with diabetes performed a fingerstick glucose test on the Accu-Chek glucose monitor and obtained a value of 200 mg/dL. A plasma sample, collected at the same time by a phlebotomist and performed by the laboratory, resulted in a glucose value of 225 mg/dL.

Questions

1. Are these two results significantly different?
2. Explain.