

تفريغ صيدلية صناعية 1

المحاضرة: Mixing

الصيادلة: Rahaf Zyouf

تهدف ها ي العملية لخلط api مع additive api لحتى تطلع dose المكتوبة على العلبة خصوصا انه احنا بالصانع بنصنع كميات كبيرة بعدين بنحطه بالعلب الصغيرة فبدي لضمن انه الجرعة تكون نفسها بكل ال continar

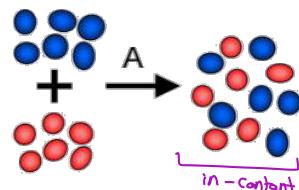
تبعد على التيلجرام اذا عدلت على اشي عشان
تنتبهوا

نفترض انه بدننا نعمل دوا قوي و الله therapeutic index قليل زي digoxin بنعرف انه dose الله قليلة بالصانع بحط ال api مع ال exipient ويحطهم بالله عشان تعمل لهم mixing فاذا ما كنت مراقب العملية ممكن يصير اخطاء مثل ال mixing كان سريع فهذا يعني انه ما صار متجانس فبلاقي حبة فيها كلها digoxin وحبه مافي exipient وفيها بس عشان هيك بهمني كثير انه الخليط يكون متجانس

Mixing

Dr. Isra Dmour

Credit: Prof. Nizar Al-Zoubi


1

عملية أساسية بالتهجين

Mixing

- Mixing may be defined as a unit operation that aims to treat two or more components, initially in an unmixed or partially mixed state, so that each unit (particle, molecule etc.) of the components lies as nearly as possible in contact with a unit of each of the other components.

يعملية ال Mixing تهدف انه الا دا [Particels] مخلوطة اد اش [in contact]

This may be:

- 1) Mixing of Powdered materials (e.g. tablets, capsules, dry powder inhalers).
- 2) Mixing of miscible liquids (e.g. solutions) or immiscible (e.g. emulsions).
- 3) Mixing of insoluble solid and liquid (e.g. Suspensions).
- 4) Mixing of semisolids or dispersion of particles in semisolids (e.g. pastes and ointments).

من افلامه التي اعطيها اياها يسوق انه اخفى
كل اسقال الصيانتي فبما كد اياها فعليه .²

كمية بدي اهنتف ال mixture

هل احتجت Work عياد اوغير الها \rightarrow mixing Particles او

هل بعد ما وقفت او Work المواد رج ترجع تفصل

ناداً مفهون رصنت او 3 type of mixture

Positive mixture	Negative mixture	Natural mixture
------------------	------------------	-----------------

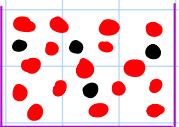
ماخذين صفة من او مفهون او (+) بدل اشي

انتزف اهنتف اهل emulsion

نفترض اهنتف نوعين [اه] water [اه] حامض اخر energy

بعارات حفظهم مع بعض وامرك ورس ابهل تحريله

ملح ينخلعوا الحاله


السيكل اهنتف احمر ع

[اه] energy [اه] ادماهين (-)

بس اهل التحريله

[+] ينخلعوا [اه] من او

eg: powder, past, and ointment

Random mixture ②

اذا ابدي اعدي من مادتين A / B حسب

● $\Delta \rightarrow 20\%$ \rightarrow mixture من اهنتف

● $B \rightarrow 80\%$ \rightarrow mixture من اهنتف

المعروف اد اخذت 10 Particles من لا مختلط 8 من A و 2 من B

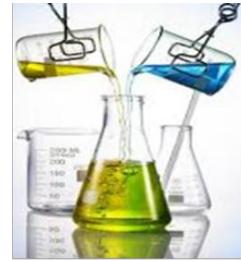
والمفترض انه اذا اخذت 2 Particles من A و 8 Particles من B

الجينة من اهنتف مطابق يطلع نفس الامثل

عدد الا Particles الماءه يتناسب مع النسبة اي انا حطبيها

Particle is proportional to the number of

Such particles on the total Mix


والحاله هاي هي اي انا بدي اعملها بالحال الطبيعي

Mixing

- Types of mixtures:

1) **Positive mixtures**: Mixtures that form spontaneously (do not need energy) and irreversibly (when formed do not tend to separate).

(e.g. gases and miscible liquids)

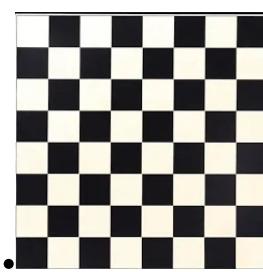
2) **Negative mixtures**: Mixtures that need energy input (work) to form and keep. Once the energy input is stopped they tend to separate.

(e.g. Suspensions, emulsions and creams)

3) **Neutral mixtures**: Mixtures that do not form spontaneously (i.e they need energy input) but once formed they do not tend to separate.

(e.g. Powder mixtures, pastes and ointments)

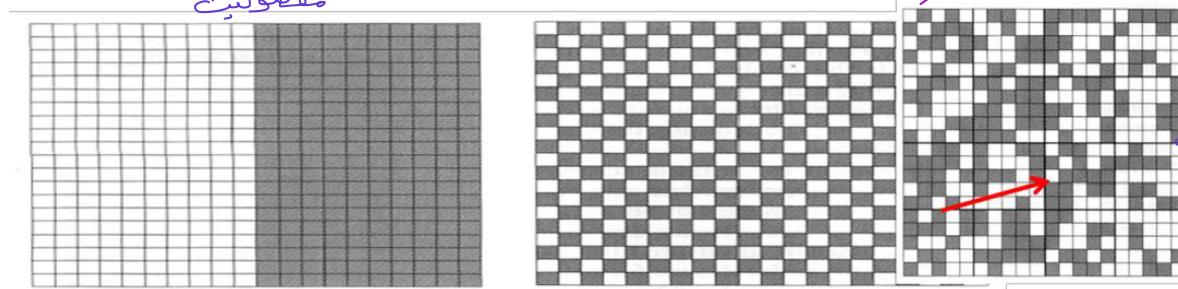
3


The mixing Process

Perfect mixture: The situation in which particles of one component lay as closely as possible in contact with particles of other component.

- It is an ideal situation which is practically impossible.

Random mixture: A mixture where the probability of sampling a particular type of particle is the same at all positions and is proportional to the number of such particle on the total mix.


4

هادي رقهه الشطرنج
سنانقونت گيفه متمايزه
نمط متكرر

The mixing process

مخلوط

Unmixed system

Complete segregation

Mixed Ordered system

Perfect (ideal) mix

Mixed random system

التوزيع مع random بس
الضم الـ 16 اخذت عينه من معلمات
الايجي لا يقدرهم Particles الى لونهم عدد
الـ 16 عدد هم تقارب عدد الـ 16
الـ 16 الى لونهم عدد بس من مكان
Partikel تايو

• **Ordered system:** particles are arranged in iterative rule (repetitive pattern)
(not random)

• We can consider mixing as vector quantity (spatial orientation and translational velocity of the particles)

The mixing Process

- It is the weight/volume of the dosage unit that dictates how closely the mix must be examined/analyzed to ensure it contains the correct dose/concentration.
- This weight/volume is known as **the scale of scrutiny** and it is the amount of material within which the quality of mixing is important.

هذا الـ weight or volum الي اخذته عشان اشيك على الـ conc يسمى the scale of scrutiny
مثلا الـ dose بحبه الدوا الي اعمل الها تحليل 500mg كم رح اخذ من الـ bulk (الكمية
الكبيرة الي عملت الها) mixing (رح اخذ 500)

هون نفس الاشي يحكى اذا الحبة وزنها 200mg وفيها 100 mg من الـapi كم رح اخذ العينه؟

أخذ العينه؟

اكيد رح اخذ 200mg واحللهم واشوف هل فيها 100mg من الـ api؟

The mixing Process

- For example, if the unit dose of tablets is 200 mg (containing 100 mg active drug) then 200 mg sample from the mix needs to be analyzed.
- The number of particles in scale of scrutiny depends on sample weight, particle size and particle density.

Scale of scrutiny If number of particles ≥ 5 to give 1s

INC Particle number ← INC weight Sample weight ⑦

inc Particel number \leftarrow dec P.Z Particel size \leftarrow ?

② ① ریز ترکیبیاتی را $\frac{\text{mass}}{\text{volume}}$ می‌نامیم \leftarrow Particle density ③

هون دي الشوف اذا احده الاتصال
كسيه او صغيره وين رج هون الا
اكله يعني دي تلوف صيانت رج بغير عن الاصاله
ناسو و مفرقة

Number of particles of a minor active constituent present in samples taken from a **1:1000** random powder mix with different numbers of particles in the scale of scrutiny

لهما المحتال بتحكى ذئب نسبة اد
100000 Mixture \rightarrow 10000 دعوى المفترض من كل 10000
الذئب 2 من اد API و بعدها اخذ اثر من معاشر

میں کل S_{cat} اخندو ۵ عینات ویسانو اور $Mean$ لا فیضم و بعدھا اخند دا $Mean$ دا بعدھا $S_{particel}$ اخندو ۵ عینات ویسانو اور S_{scale} اخند دا SD ملھظہ ایہ دا S_{cat}

واحده او SD ملاحظه اهه اهه اهه
 الهغيره فها Variation اهه اهه اهه
 الحطي کا اثر وک بال بعض اهه اهه اهه
 بمحالا بشوون النسبة فعلا اختن من اهه اهه اهه

Sample number	Number of particles in scale of scrutiny			
	1000 <small>الذريخ 1 Particul</small>	10 000 <small>10 ان بار 1000</small>	100 000 <small>100 ان بار 10000</small>	1000000 <small>1000 ان بار 100000</small>
1	1 <small>بالذريخ</small>	7	108	
2	0	10	91	
3	1	15	116	
4	2	8	105	
5	0	13	84	
6	1	10	93	
7	1	6	113	
8	2	5	92	
9	0	12	104	
10	1	13	90	
Mean	0.9	9.9	99.6	
SD <small>Standard deviation</small>	0.78	3.38	11.18	
% CV	86.86	34.17	11.23	
Deviation from theoretical	±100%	±50%	±16%	

Deviation from theoretical content

يشتوف العنبة - ١ فيها 140π

إذا النسبة متح كنها $1/500$ بعد حما
بروح للعنجه 2 فعنها $Zero$ ap; إذا ال

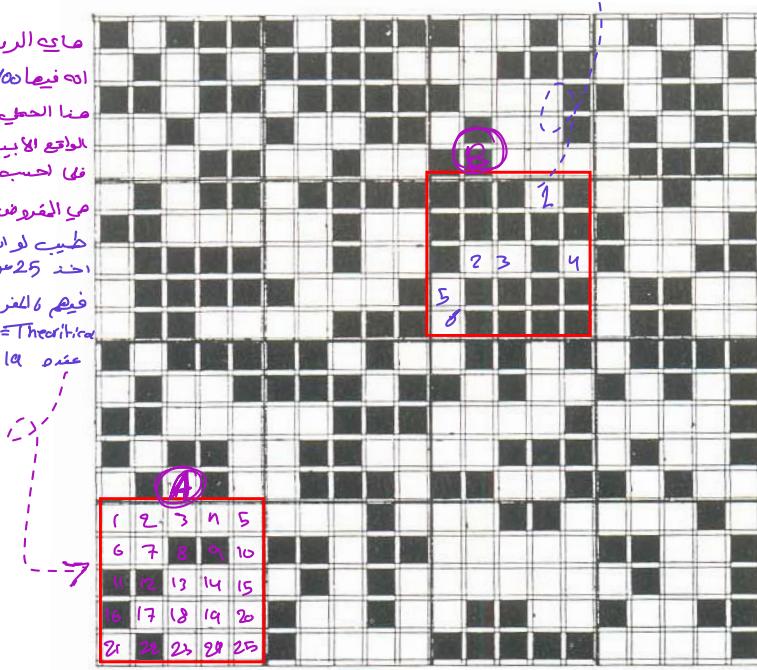
جزء معتبر 2 تغيير 100% variation

٢ بس هو مانع ٦ برو ٢ للعنف ٢ بالغى
١ ١٥٥٪ Δ زارت بحسب ١٠٠ ولا ينبع Δ Variatio

	—100%	—50%
--	-------	------

المفروض يطلع 100 API فيروع للعنف

پیغوف! انه في 1080Pi اذا في زيارة


بعض اذواه variation بھائی الحال 8%

میانگین \bar{X} میانگین مجموعه داده ها است.

1

ما يرسمه يعبر عن الجدول حيث
في 400 مربع 50% أبيض = 200 مربع
هذا يعني $\frac{200}{400} = 50\%$
الواقع الأبيض هو $\frac{200}{400} = 50\%$
فهي تتناسب مع النسبة المئوية
في المقدار تكون 50% فالنسبة المئوية
طبيعة لونها مائية أو مسحوق أبيض
أحد 25 مربع يعطى 20% مسحوق أبيض
فيهم 6 المربعات تكون 12 أو $\frac{12}{25} = 48\%$
بالتالي النسبة المئوية
76% مسحوق أبيض ولذلك 76%

2
وهي كافية لبيان
نحو 20 مربعات من
الأبيض والبيضاء 24%

Theoretical percentage of white particles is 50 %

In the total 400 particles ($20 * 20$) the percentage of white is 51% (= 102% of theoretical)

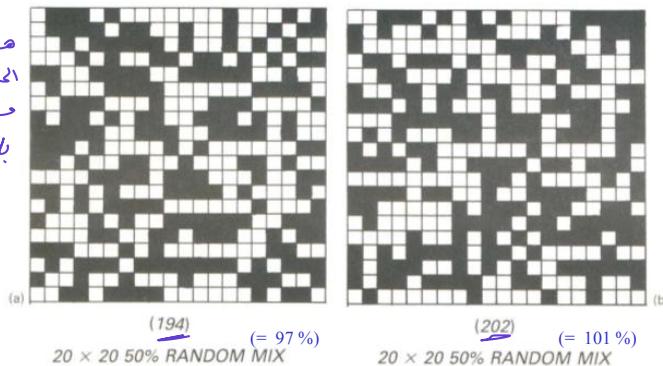
If divided to 16 blocks of 25 particles ($5 * 5$) the percentage of white is 24-76% (= 48 - 152% of theoretical)

$24\% * 200$

$48\% * 200$

عذراً! مربع خطاً عنده قيمة كبيرة
mixing scale

The mixing Process


- Another factor to consider in mixing is the proportion of the active component in the dosage form/scale of scrutiny.

في عملية التدوير عملية الـ mixing

(1) حجم الـ scale الألا خارجه

(2) كمية الـ API يعني إذا كانت API قوية وتنسبها 1:1000 فيختلف عن
صادرات API التي وتنسبها 1:100 كل ما كانت نسبة أعلى قلل الاختلاف

صون اخذت 3 تعدادات من ماء
الماء يناسب النسبة المئوية
وطلعت النسبة
بأخطاء الماء
قليل

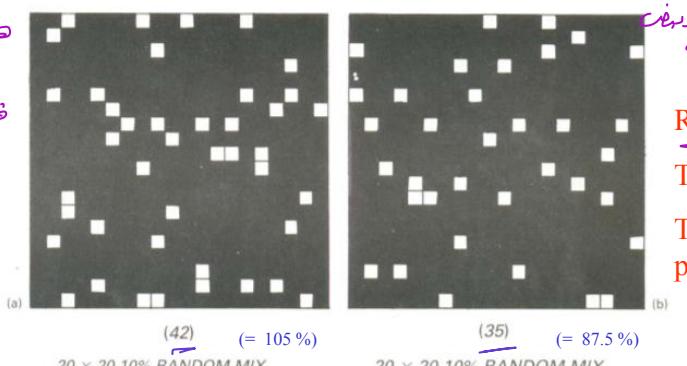
البيفيت مواد API ونسبة

Ratio: 50 %

Total number = 400

Theoretical number of white particles = 200

$$194/200=97\%$$


$$202/200=101\%$$

$$198/200=99\%$$

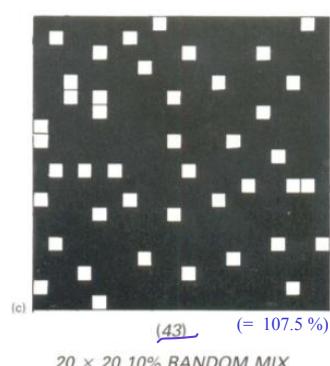
11

Fig. 32.2 Computer generated mixtures of nominal 50% active ingredient. The numbers in parentheses refer to the number of

صون اخذت 3 كميات
وطلعت نسبات
أخطاء الماء
50 % Variation
عالي
87.5%
107.5%

صون سه ماء
بيفيت مواد API

Ratio: 10 %


Total number = 400

Theoretical number of white particles = 40

$$42/40=105\%$$

$$35/40=87.5\%$$

$$43/40=107.5$$

12

Fig. 32.3 Computer generated mixtures of nominal 10% active ingredient. The numbers in parentheses refer to the number of 'white' particles in each mix, theoretically 40

The mixing Process

- The variation in component percentage between different samples taken from a mixture increases:
 1. as the amount (number of particles) in scale of scrutiny decreases.
 2. as the proportion of a component in mixture decreases.

The mixing Process

- This indicates that:
 - the **lower** the percentage of active ingredient (potent drug) in mixture, the more difficult it is to achieve an acceptably low deviation in active content. *فلا يزيد المكون النشط في الخليط على 10%* *Careful Mixing*
 - The more particles are present in dose (scale of scrutiny) the lower the deviation of content → The number of particles can be increased by decreasing particle size (This can be done by **milling**). *التركيز على المكون النشط*

دائماً في pharmacopia varation تسمح انه يكون في varation بسيط يعني الجبهة
 لازم تكون 100mg بس لما احل كل الحبوب الي بشرط الدوا را حبه 101 وحبة 99
 وهكذا بس اذا كان الدواء potent (قوي) كثير تكون اي زيادة عن ال dose تسبب toxicity (الاحظ انه المسمر كثير بسيط varation)

Mathematical treatment of mixing process

- There will be always some variation in the composition of samples taken from random mixtures.
- The aim during formulation and processing is to minimize this variation to acceptable levels by selecting appropriate :
 - scale of scrutiny
 - particle size
 - mixing procedure *اله الماء ال يدخل*

مكثف تخليل

15

$$\frac{SD}{\text{Mean}} = CV \text{ اور } \neq$$

نفس اور
P
القانون

Mathematical treatment of mixing process

- For random mix, if we consider that particles are all of same size, shape and density then:

$$SD = \sqrt{\frac{p(1-p)}{n}}$$

فترض انه اور
الحجم نفس الا
density, size, shape
فجعل هنا القانون لـ Random
variation mixing
المشكلة SD حتي اعنه فوق
Random mix

- P is the proportion of a component in total mix

- As p increases, %CV decrease

Example:

نحو 1 المحتويات بالقانون ر
نحو A بـ CV اقل يعني variation اقل
لذلك A بـ CV اقل يعني variation اقل
له نسبة API اقل

$$n_A = 100,000, p = 0.5 \Rightarrow SD = 1.58 \times 10^{-3}, \%CV = 0.32\%$$

$$n_B = 100,000, p = 0.001 \Rightarrow SD = 9.99 \times 10^{-5}, \%CV = 10\%$$

- The scale of scrutiny can be increased by increasing the amount of additives in the mixture but this will lead to a decrease in p.

16

بقدر ازيد الـ scale additive حيث اني اضيف variation بس بهاي الحاله الـ مارح
 يقل لانه هيك مثلاً بدل ما اخلي نسبة الـ API 1:100 خليتها 1:500 عشان هيك ما بزيد
 الـ scale بهاي الطريقة فالطريقة الافضل اني اطعن

Evaluation of degree of mixing

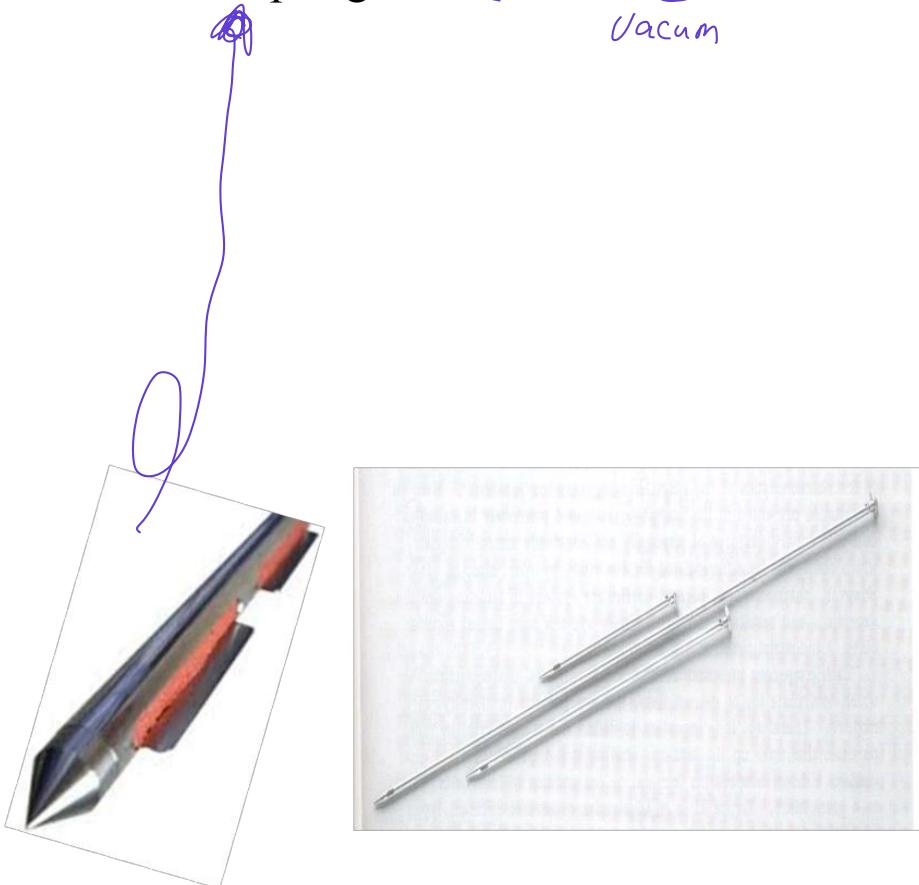
Needs for monitoring of mixing: ليش لازم اضل اتابع ال mixing

- To follow a mixing process:

عشان نعرف متى رح نوصل لدرجة ال mixing عشان

مش كل المواد كل ما زدت افضل mixture في مواد بس تزيد للوقت الافضل mixing للرج ترجع توصل عشان هيك مهم ارقب شو الوقت المناسب لانهي ال mixing

- To assess the efficiency of a mixer


عشان اشوف الاله الي يستخدمها لل mixing شغاله ولا

Sampling → Sample كيف اخذ ال

- Scoop sampling

- Thief sampling → ممكن تكون مع Vacuum

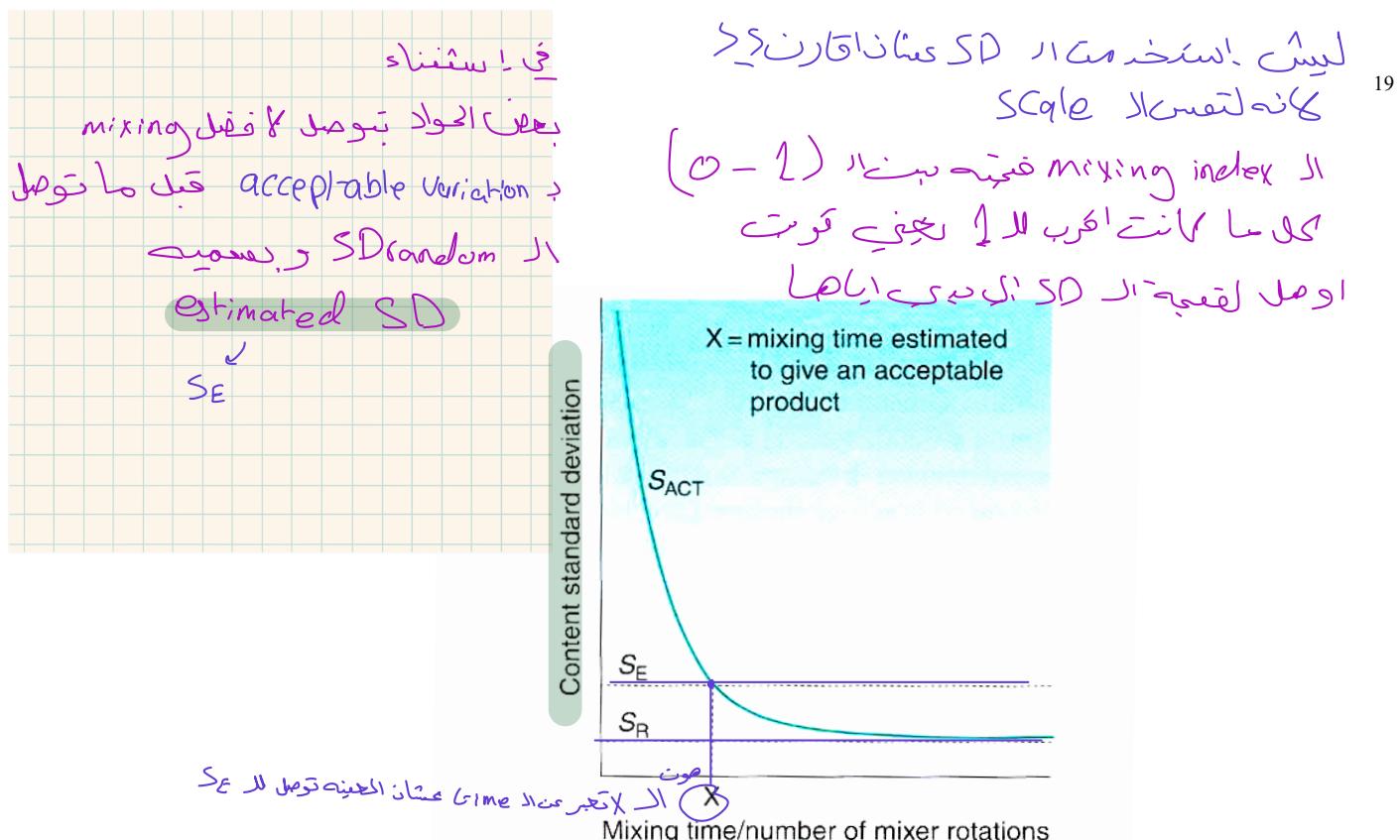
17

Unit dose thief sampler

18

Evaluation of degree of mixing

باستخدام عيّنات احرف
إذا دخلت درجة الحرارة
نحو Mixing


Mixing Index (M)

$$M = \frac{S_R}{S_{ACT}} \rightarrow \text{SD}_{\text{Random}} \rightarrow \begin{array}{l} \text{هو ار SD} \\ \text{نی اوسنے} \end{array} \rightarrow \begin{array}{l} \text{هو ار SD} \\ \text{نی اعنیا} \end{array}$$

S_R : Content standard deviation of random mixture

S_{ACT} : Content standard deviation of mixture under investigation. \rightarrow Mixing Joints JKS

- In some cases, it is possible to achieve an acceptable variation in content before obtaining a random mix

Fig. 12.4 The reduction in mixing time possible if a random mix is not required. S_{ACT} represents the content standard deviation of samples taken from the mix, S_E the estimated acceptable standard deviation and S_R the standard deviation expected from a random mix.

Mechanisms of mixing

Powders

There are three main mechanisms for powder mixing:

a) **Convection** (the transfer of large amount of particles from one part of the powder bed to another).

This may occur when a mixer blade or paddle moves through the mix.

This mechanism contributes mainly to macroscopic mixing of powders, but mixing does not occur within the group of particles moving together.

21

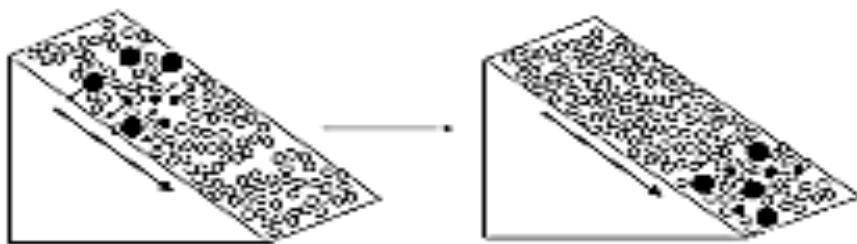
Mechanisms of mixing

Powders

b) **Shear** (Layer of powder flows over another layer)

This may occur when some of the material is removed (e.g. by convective mixing) causing powder bed to collapse.

22

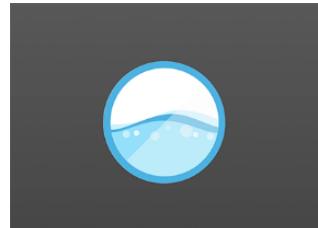

Mechanisms of mixing

Powders

c) Diffusion (mixing of individual particles)

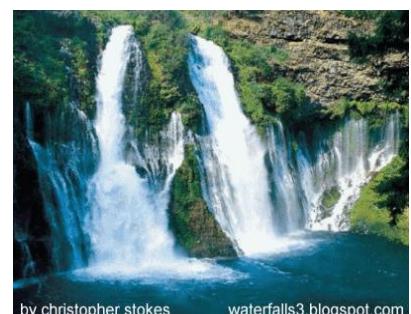
This mechanism is necessary to form true random mixture.

When a powder bed is forced to move or flow it will dilate (the particles become less tightly packed and the voids between them increase). This allows particles to fall under gravity through the voids created.


23

Mechanisms of mixing

Liquids


a) Bulk transport

- The movement of a large portion of the material being mixed from one position in the system to another.

b) Turbulent mixing

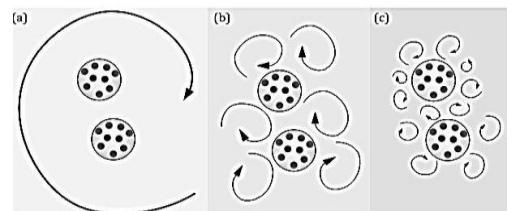
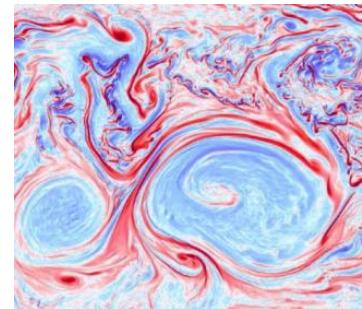
- The haphazard movement of molecules when forced to move in turbulent manner, which means random fluctuation of the fluid speed and movement direction, so that the fluid has different instantaneous velocities at different locations at the same time.

by christopher stokes

waterfalls3.blogspot.com

24

Mechanisms of mixing

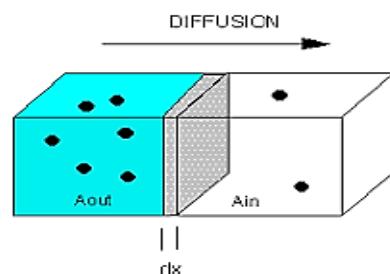


Liquids

b) Turbulent mixing

- It can be seen as a composite of different eddies (small portions of fluid moving as a unit) of various sizes.

The large ones tend to break into smaller and smaller sizes until they are no longer distinguishable.

- Turbulence is a highly effective mechanism for mixing.


25

Mechanisms of mixing

Liquids

c) Molecular diffusion

- The molecular diffusion is the primary mechanism responsible for mixing at the molecular level.
- This mechanism produces well mixed liquids if there is sufficient time.
- Considerable time is needed if this is the only mixing mechanism.

26

طبيعة مسادر الـ Liquid هي اسوف

الـ Mechanism of mixing

Bulk transport →

كميات نقل كبيرة من مكان لآخر - تواري

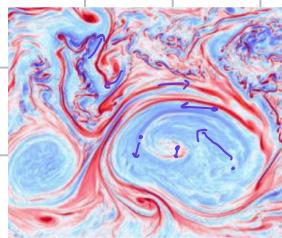
الـ Convection - Powder

اسواح البحر حيث الحركة تنقل الماء

من البحر الى الماء

Buoyancy of mixing - 2

عملية نقل عشوائية حيث كل مolecule لها اتجاه

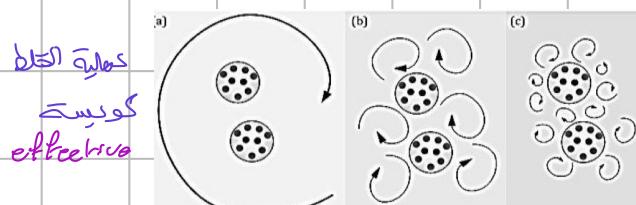

سريري مختلف عن Convection . في الحال

وهذه هي mixing و هي تتم في

Haphazard movement

الحركة الحشوائية

الـ Convection هي في اتجاهها


الـ eddies

حيث الدوامات التي

تحتفي بـ Convection لعوامل

اصغر و الدوامات الصغيرة التي تقطع برضه نفس اتجاه

الـ Particles فيها تتحرك بسرارات و اتجاهات

Molecular diffusion - 3

انتقال solute الى solvent و هو

تحل molecule في mixing العادي و هو مسح

ارها بطيئه ، فممكن استخدم bulk و Convection

لما استمرت دبر mixing بها في الطريقة الحالها في تقط

in sufficient time → Well mixing

يطلب تحلي عن mixing بـ Convection

يساهم تهيز Liquid بـ Convection

[Powder] خلوات نبات بلا Powder

Convection - 1

نقل كمية كبيرة من Particle طبع Convection

الـ Powder bed كمطارة الى ادتها بالماضية و بـ Convection

انقدم نقل دصاره تتم في mixing الـ Paddles blade

الـ Convection الـ mixing سري لوجه

انه بـ Convection اذ mixing مادته اعتبر انه حاصلت الماء بخلط

Shear - 2

بتوجه غالبا بعد الـ Convection

بسارع يوصلني الى mixing احصوي

بسارع يوصلني الى mixing الـ Diffusion - 3

او mixing الـ individual particle

الـ Convection دار shear group Particle

الطريقة الـ Convection الـ Random mixer

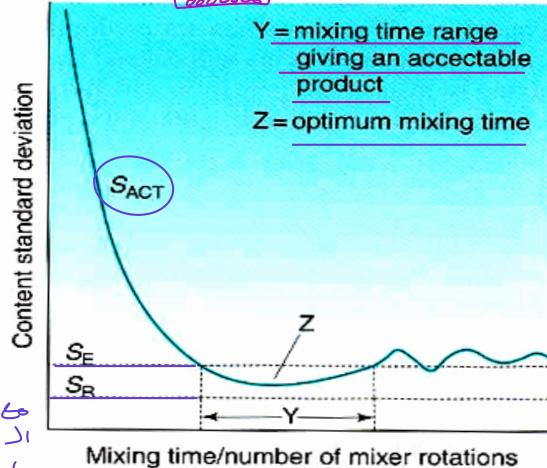
عما تنسو زميلنا ايم الله يرحمه

من دينكم

خوب

مسأله حکمتیاً ایکاً $SACT$ کے حکم \rightarrow
 لیسونوف کم ایک $SACT$ را فارمازیا میں
 segregation اسے بدلے۔ بس بلا
 المفروض اسے بدلے۔
 المفروض بحکم الحکم \rightarrow $SACT$ فیضی
 بحکم ایک دو دو بیزیار
 variation بھائی الحال

Powder segregation (demixing)



great Polarity ②
 كل ما كان الماء اقرب للكرة يناد
 Polarity له طبيبة شفاعة
 ٤.٤ ان العالقون بين الماء Particles Segregation
 سأثبت عدته العالقون بالسطح المقرب
 الماء منطقه العالقون
 الماء منطقه العالقون
 Mixing / ارجو يغسلوا عن بعض

27

Segregation can be due to difference in :

1. Particle charge
2. Particle density
3. Particle shape
4. Particle size and size distribution

Fig. 12.5 Possible effect of extended mixing time on the content standard deviation of samples taken from a mix prone to segregation. S_{ACT} represents the content standard deviation of samples taken from the mix, S_E the estimated acceptable standard deviation and S_R the standard deviation expected from a random mix.

إذا زدت الورقة بزادة عن
لحد المقبول / يهلو
Segregation

Particle size and distribution (4)

Particel shape (2)
lets us! Particel \rightarrow
des- 'the needle'
مُصْبِّحَةَ دُمْبَعَةِ
mimay \rightarrow

Particled density (2)

Segregation J) 28

Particular changes

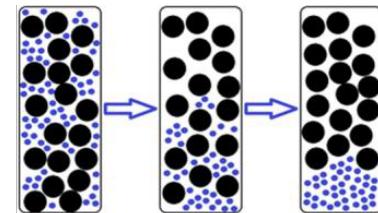
Net-charge on a molecule = $\sum \text{charge of atoms}$

Mixing of molecules = $\text{Sum of partial charges}$

Repulsion = $\text{Sum of partial charges}$

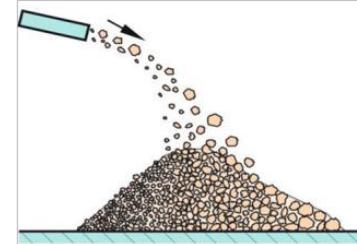
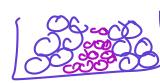
Attraction = $\text{Sum of partial charges}$

بعن داده حجم د Particles متناسب


Powder segregation (demixing)

Factors affecting segregation:

1. Particle size

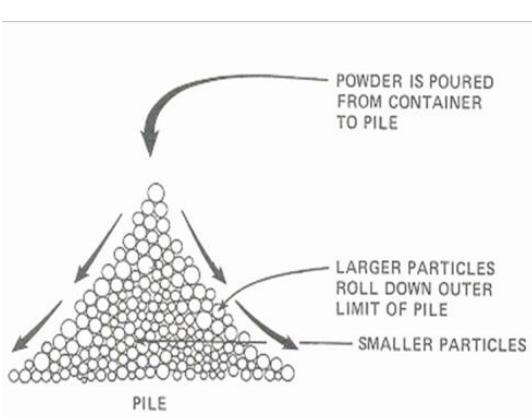


Percolation segregation

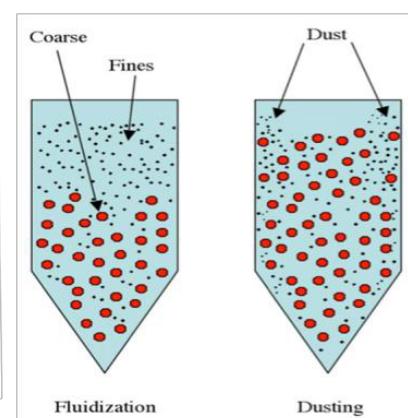
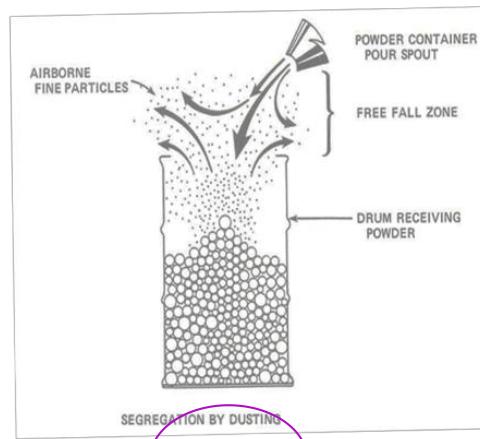
(small particles tend to fall through voids between large particles)

Percolation segregation:

الكبار رح يتجمّع على الأطراف
(large particles tend to have greater kinetic energy)

Percolation segregation:


(Air-blown small particles sediment and form a layer over coarse particles)



لما بدی احاط طحین بجاط اثناء ما بنزل الطحین رکون في dust منه تتطاير ، فيعد فترة من الوقت رح الاخط انه های الـ dust(small particle) رح تنزل ورح تحمل هالشكل

Trajectory segregation

29

Trajectory segregation

30

Powder segregation (demixing)

Factors affecting segregation:

2. Particle density \rightarrow less less

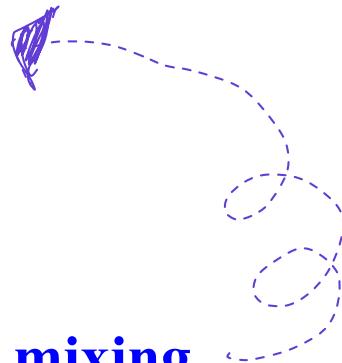
Segregation occurs due to density differences.

3. Particle shape

Spherical particles are easier to be mixed but also to segregate than irregular or needle shaped particles.

الـ particels الي شكلهم غير منتظم او shape صع صعب يصير لهم segregation بس اذا segregation صعب جدا يصير لهم mixing

ال particel الشكلهم كروي (spherical) سهل يصير لهم
ال flowability عاليه ولنفس السبب رح يصير
ال segregation عاليه فسهل ترجع
ال تفصل 31

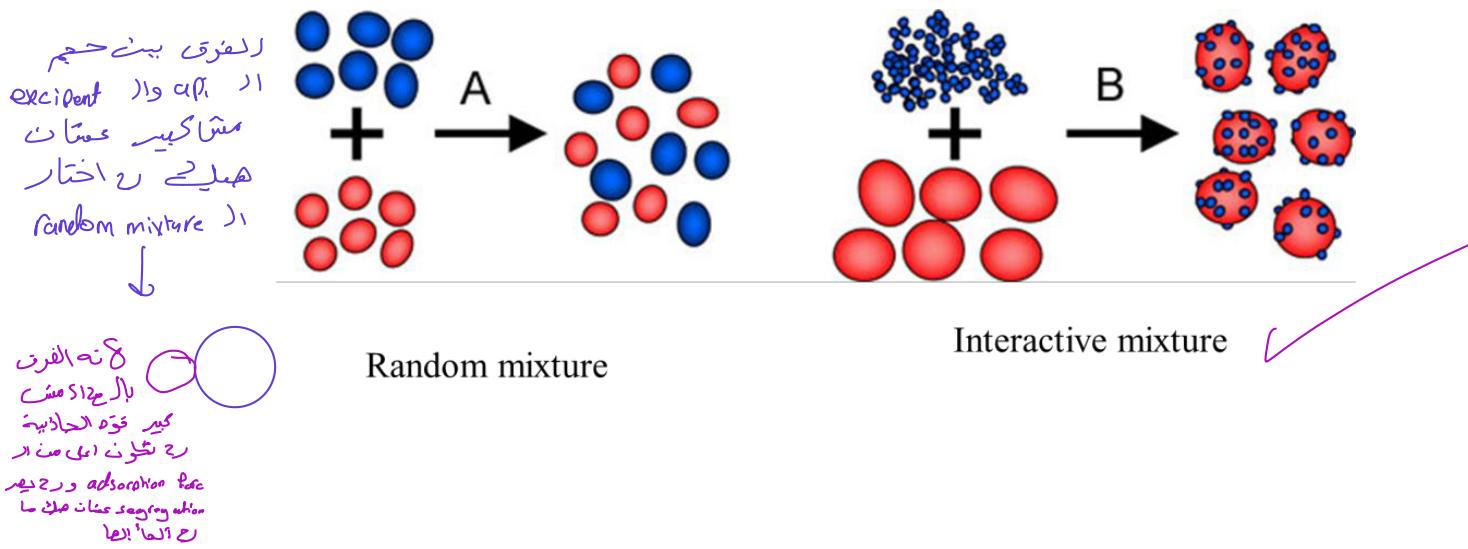

Approaches to solve the problem of segregation

1. Selection of particular size fractions to achieve drug and excipients of the same particle size range.
اخطي الـ rang لـ particel
excipient وـ api مقاـرب
2. Milling of the components so that there size becomes small and same.
اذا مافي حجمها يقارب حجم api بعمل milling لـ particel الاكـير
3. Controlled crystallization during production of drug or excipient to give particles of particular size or shape.
بتـحكم بـشكل الـ particel عن طـريق
انـي اـتحـكم بـعملـية
crystallization الـ
4. Selection of excipients which have similar density to the drug.

الدواء: - api II 100 mg density 1.11 excipient 100 mg

Approaches to solve the problem of segregation

الخلايا (excipient) هي جسيمات كبيرة تحيط بجزء من الخلية (الخلايا) (adsorption) وهي مكونات مساعدة (regulation) في إنتاج الدواء (excipient).



33

Ordered mixing

- It is termed also **adhesive** or **interactive** mixing.
- In this case, very small particles may become adsorbed onto the active sites of large particles.
adsorbed *means* *adsorption* *اُدْسُورْبِيشن*
Carrier *means* *adisor* *اُدْسِير!*
- This minimizes the segregation between small (adsorbed) particles and large (carrier) particles.
- Ordered mixing is most likely to occur when the adsorbed particles are very small so that the adsorption force is higher than the gravitational force trying to separate the components.

متى بلجأ الطريقة؟ لما **excipient** يمون حجمها اكتر بكثير من **api** حيث القدرة التصاق **api** (adsorption) رح تكون اعلو من قدرة الحانبيه

Application of ordered mixing

1. Dry antibiotic formulations (fine antibiotic powder is blended with and adsorbed onto the surface of large sucrose or sorbitol particles. **ال جمجمة كتبيير صغير (api)** dry antibiotic
2. Dry powder inhaler formulations
3. Direct compression formulations
4. Formulation of potent drugs

2 بحاجة api تكون صغيرة شان تدخل الى alveoli بس بنفس الوقت بدئ حجم كبير عشان اقدر استنشقها وتدخل للرئتين عشان هيك رح اخلي الى excipient كبيرة واخلي الى api صغيرة واعمل الهم adsorption

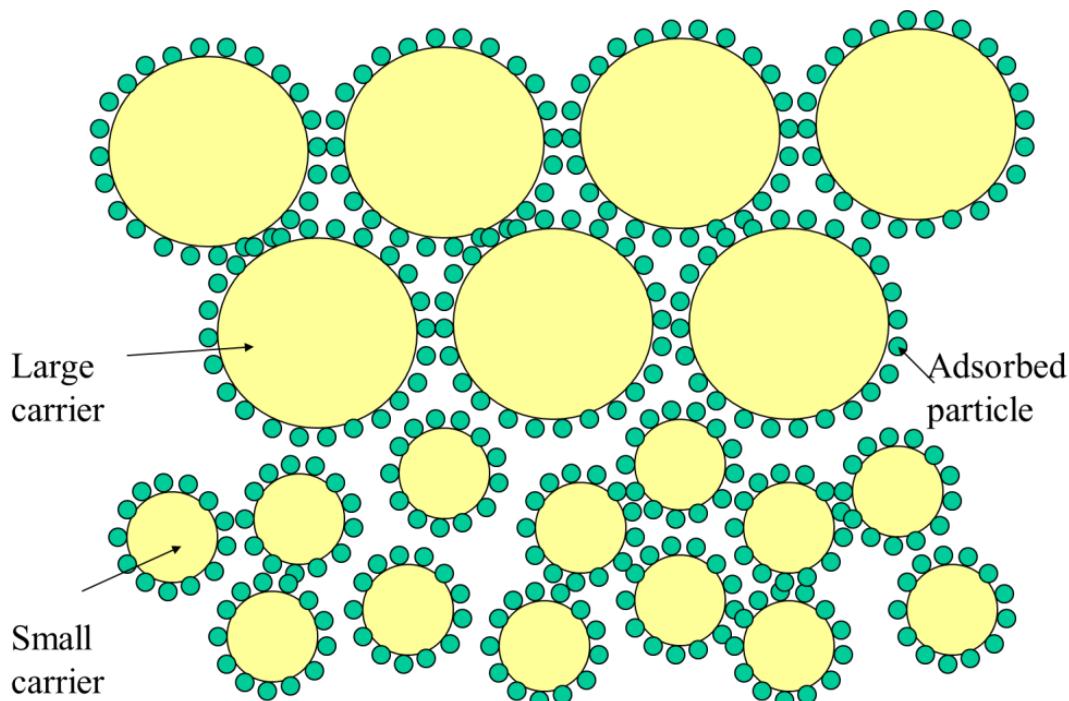
36

36

با **formula** بال **potent drugs** تكون الـ **api** كميتها قليلة عشان هيک بدی ایاها منتروع بشکل مثالی بال **فیستخدم** **هالطريق**

Segregation in ordered mixes

Ordered unit segregation


- The carrier particles vary in size.

ال segregation ممكن يصبر بهاي الطريقة بسبب اختلاف size لل carrier يعني وحدة كبيرة ووحدة صغيرة فالشكلة انه ال particels الاصغر رح يصبر عليها adsorption اكتر لنه عندهم على عشان هيك رح varation dose بس هون اسوء لنه ما رح اقدر اشوف انه بالطريق الي قبل ال الكبار والصغار بكونوا مفصولين بالشكل واضح

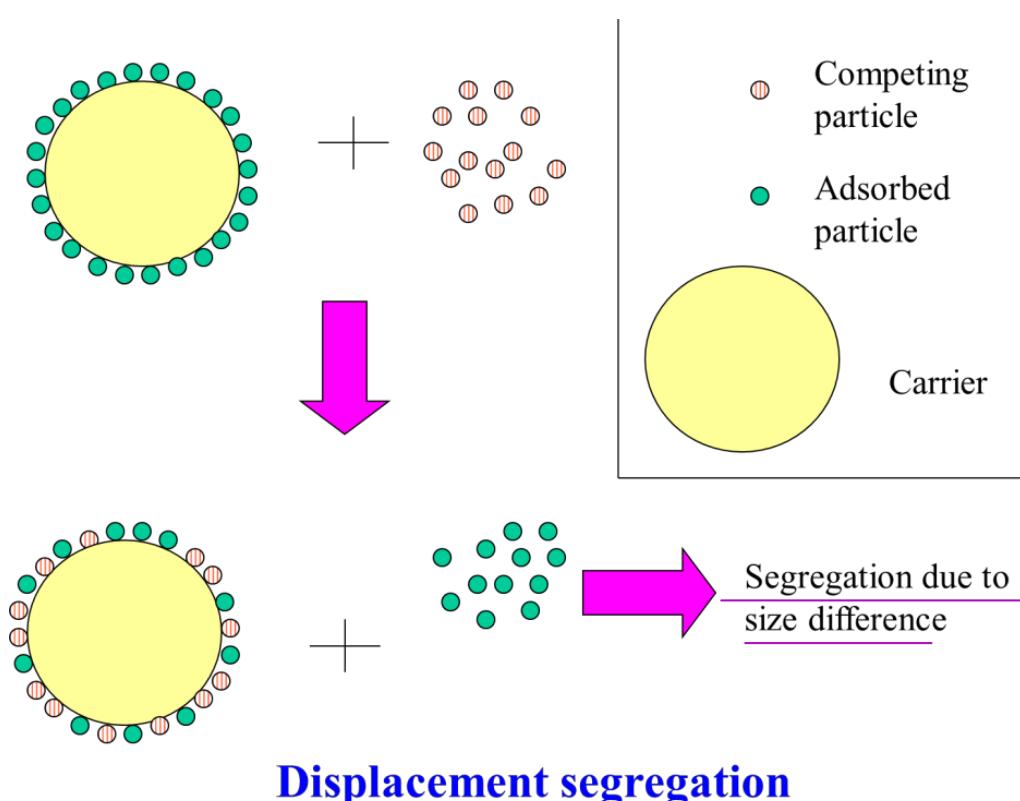
- In this case segregation occurs within the carrier particles according to size.
- The small particles have higher specific surface area than the large and so higher content of adsorbed material.

لنه نستخدم هاي الطريقة لل toxicity size for carrier potant drugs عالية تكون في

37

Ordered-unit segregation

38


Segregation in ordered mixes

Displacement segregation

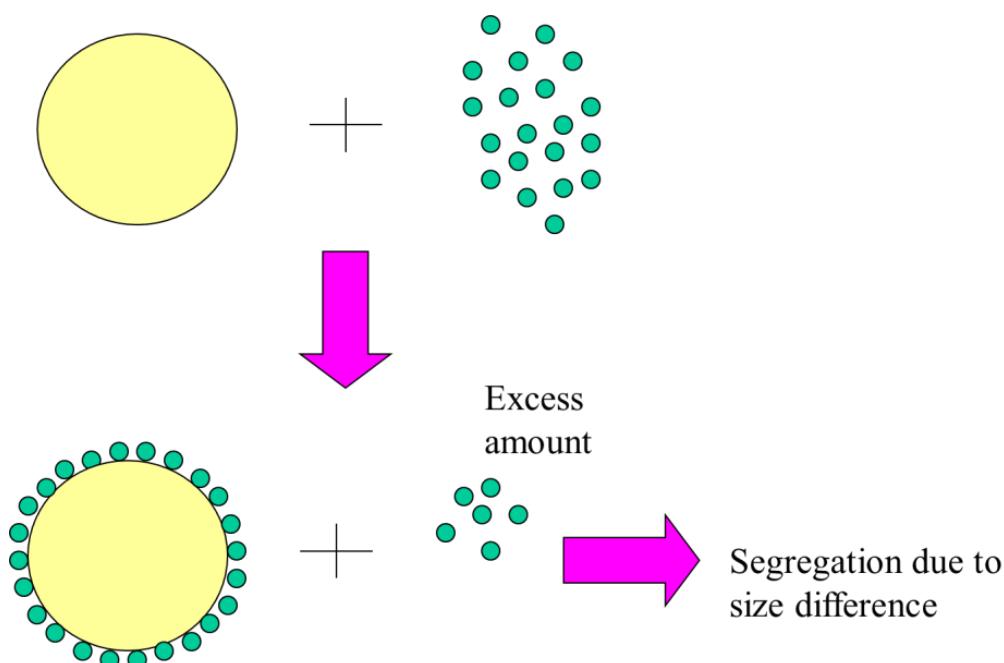
بكون في اكتر من نوع من ال excipient واحجامهم مختلفين رح الاخط انه اال excipient على حجمهم اكتر وهيك رح يصير في api مش لاقيه مكان تعامل adsorption segregation لحالها ويصير اختلاف بين حجمها وبين حجم ال excipient الكبار وهيك صار

- There is competition for the active sites on the carrier.
- This occurs when a component is added to an ordered mixture that competes with the adsorbed material for the site on the carrier and displaces it

39

40

Segregation in ordered mixes


Saturation segregation

- There are insufficient carrier particles
- If the added amount of small-sized material is higher than the capacity of the carrier particles then the excess amount will be free (not adsorbed) and it segregate due to size difference.

بتصير لما يكون في خطأ في الحسابات فمثلاً بشفوف ال excipient كم لها وكم تتحمل ؟ api

فإذا حسبت أنها مثلاً ال 10kg من ال excipient بدهم 15kg من ال api ببس بالحقيقة بدبي 12kg بس لأنه خربطت بالحسابات حطيت زيادة api عشان هيك ال 3kg مارح يلاقو مكان يعملو عليه segregation ورح يضلوا بالشكل free adsorption الصغير وهيك رح يصير

41

Saturation segregation

42

42

Practical considerations in Powder mixing

- When mixing formulations where the proportion of active drug is low, a more even distribution may be obtained by building up the amount of material in the mixture sequentially (geometric dilution).
- The volume of powder mixture in the mixer should be appropriate. Both overfilling and underfilling may reduce mixing efficiency.

لازم اعبي الالازم mixture اكتر من الالازم (overfilling) لانه الالازم particels ما رح تلاقي مكان كافي عشان يصير الها mixing وما بصير
يه باقل من الالازم (underfilling) رح يبطل mixing رح يصير convection (تحريك بس)
- The mixer should produce the mixing mechanism appropriate for the formulation:

particulate mixing

 - Potent drugs: diffusion is necessary
 - Cohesive material: shear mixing

لازم اآلله تخلف ال mixing دى يبي
جسم نور ال Ap'

43

Practical considerations in Powder mixing

1. In order to determine suitable mixing time, the mixing process should be checked by removing and analyzing representative samples after different mixing intervals.

خلال الـ mixing لازم اضل اسحب عينات بعد فترة محددة من الوقت عشان اشيك على mixing ووأتأكد انه ماصار segregation اذا زدت الوقت زيادة عن اللازم

تحتاج لازم اخذ عينات من اماكن مختلفة زرني هيلات <img alt="mixing icon" data-bbox="17675 180 177

های حکیناها حيث انه vibration رح يخلی الـ particels و بالـ segregation يصیر الـ normal mix(random mix) وبالـ carriar بفضل عن الـ adsorbed و الـ order mix

يزيد الرطوبة حيث ان particels لا تكون ناشفة سهل يصير عليها
 charg 44 مرات mixer نفسه هو الذي يعطي الشحنة بسبب حركة
 particel جوا فكيف اتخلص منها ؟ يعتبره زمي الغسالة او الثلاجة
 مش فيهم بشبکهم بخط ارضي عشان ما يکهربو نفس الاشي
 mixer يشکله خط ارضي (عمل earthered)

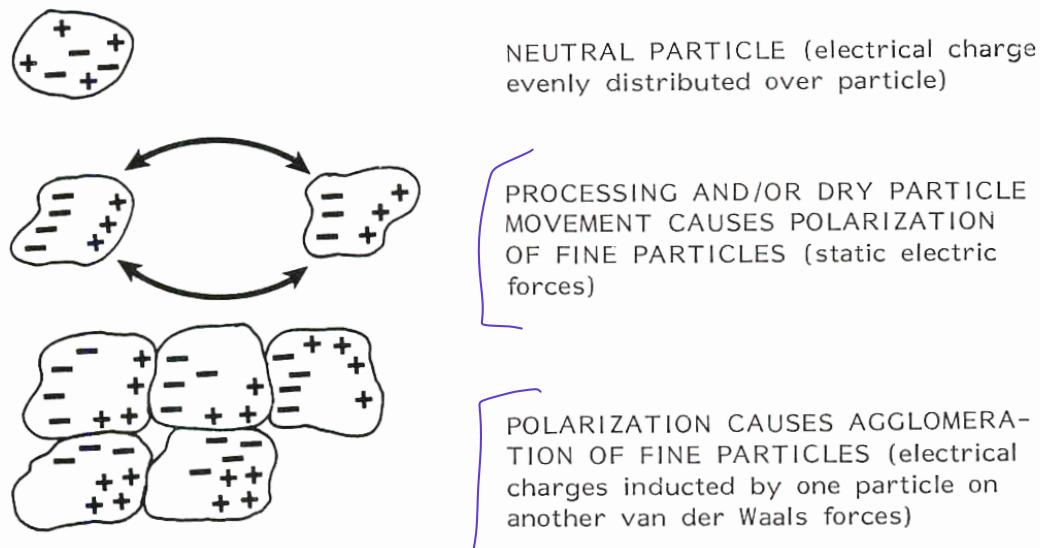
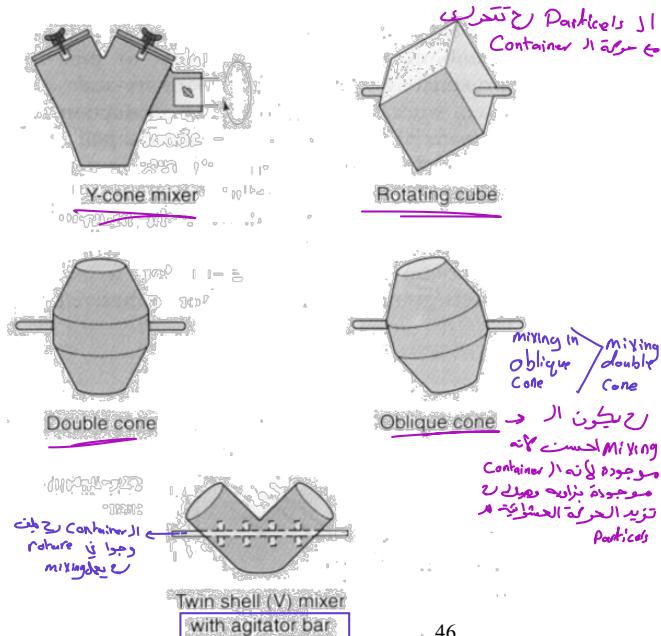


Figure 22 Effect of electrical forces on fine particles.


45

Powder mixing equipment

Tumbling mixers

عبارة عن Container مرتبطة بـ axis 1 و axis 2 معاً

--- granule \rightarrow mixer \rightarrow glidant, lubrifiant et excipient

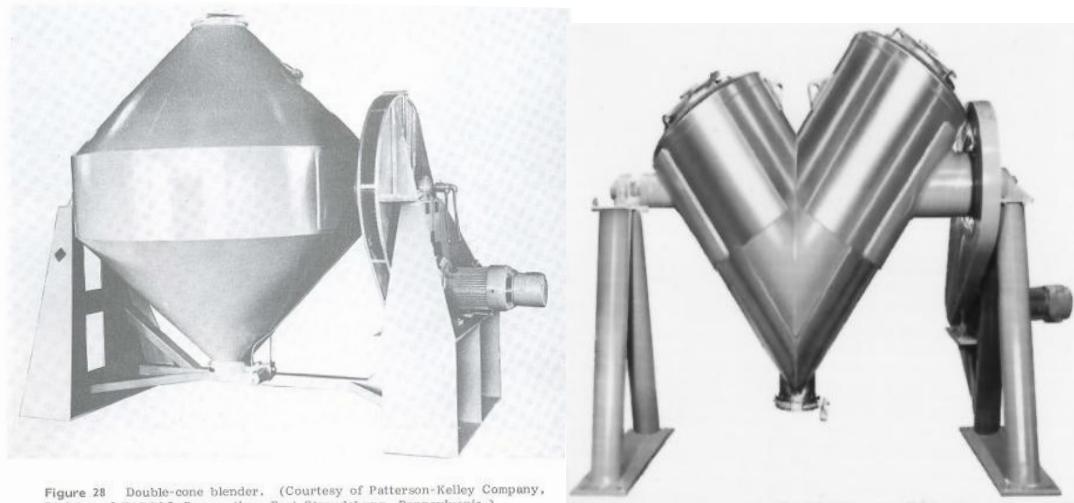


Figure 28 Double-cone blender. (Courtesy of Patterson-Kelley Company, Division of Harsco Corporation, East Stroudsburg, Pennsylvania.)

47

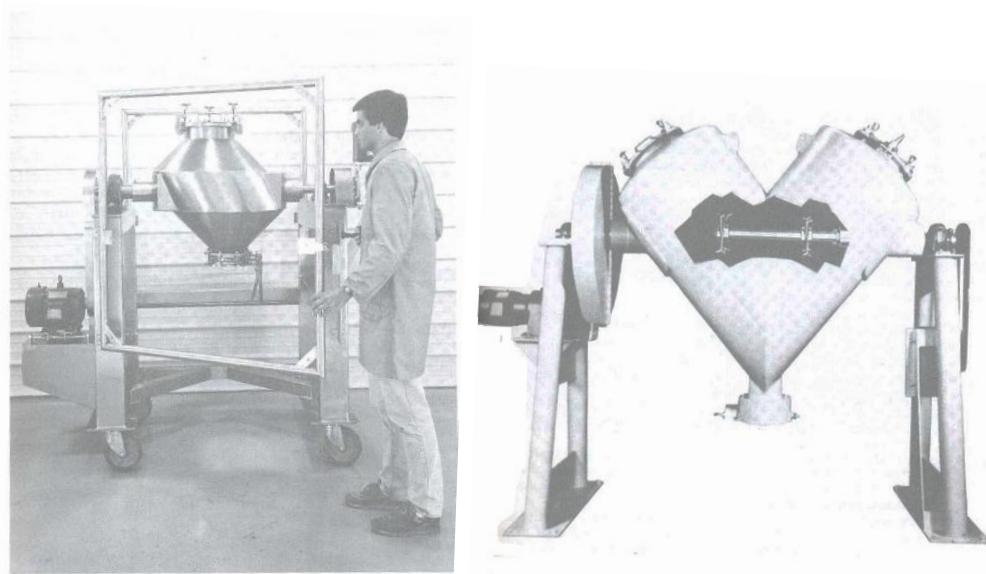


Figure 29 Slant double-cone mixer. (Courtesy Gemco, Middlesex, New Jersey.)

Figure 31 V-shaped blender with agitator mixing assembly. (Courtesy of Gemco, Middlesex, New Jersey.)

oblique ملمسه

48

➊ بنفس ما تكون ال layer الماسية غالباً سرعهها بطيئه والا Layer Shear diffusion هي بسبب انزلاقات ال رح تكون بال Powder bed الناتجه من حرره او Particles ويندر اندخلها الا ➋

Powder mixing equipment

Tumbling mixers

- The shear mechanism occurs because of velocity gradient produced while diffusion occur through voids produced during powder flow.
- The addition of prongs, baffles or rotating bars helps convective mixing.
- Care about segregation is necessary.

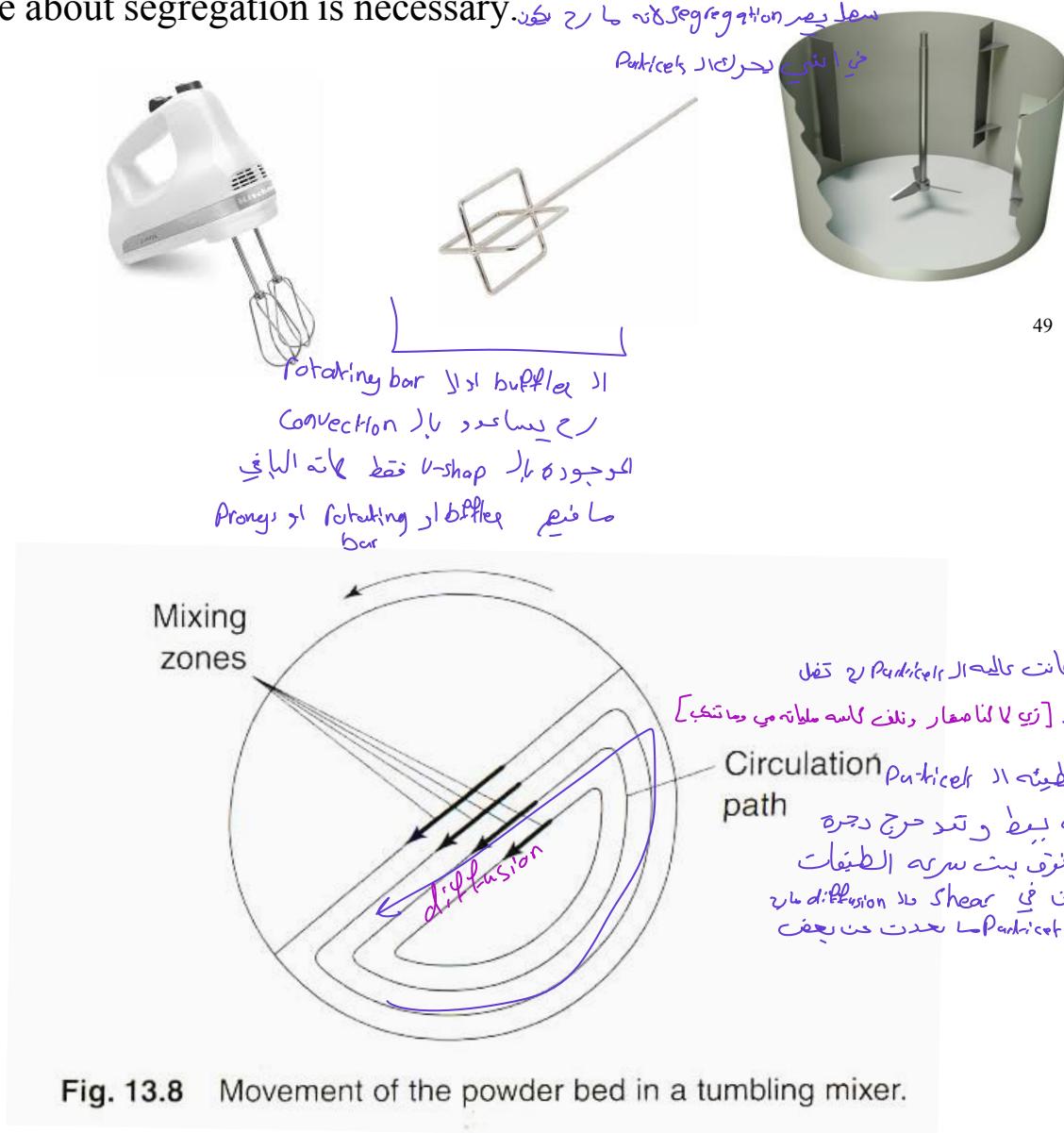


Fig. 13.8 Movement of the powder bed in a tumbling mixer.

Powder mixing equipment

Tumbling mixers

in small scale

مكعب

البعض من 2/3 إلى 1/2 mixer

- Capacity ranges from 50 g to 100 kg.
- The material typically occupies 1/2 to 2/3 of the mixer volume.
- The mixing efficiency depends on speed of rotation. Speed of rotation should be suitable:
 - Very high speed will cause the powder to be held on the mixer walls by centrifugal force.
 - Very low speed will generate insufficient bed expansion and little shear mixing.

فروض في المكعب

51

Table 9 Effect of Powder Fill on Blending Time of Double-Cone Blenders^a

Volume percent of blender filled with powder charge	Approximate blend time (minutes) in production-size blenders
50 % نسبة تعبئه المكعب	10 كل مازلت التعبئه زاد الوقت اللازم
65 % نسبة تعبئه المكعب	14 لتحقيق التوزيع المتساوي
70 % نسبة تعبئه المكعب	18 الوقت لالوحل لا يزيد عن 18
75 % نسبة تعبئه المكعب	24 الوقت لالوحل لا يزيد عن 24
80 ^b % نسبة تعبئه المكعب	40 ^b الوقت لالوحل لا يزيد عن 40

^a Blending done in double-cone blenders and times measured to obtain comparable blends.

^b Uniform blend not attainable with this fill level.

Source: Sweitzer, G. R., Blending and Drying Efficiency Double Cone vs. V-Shape, GEMCO, Newark, New Jersey.

52

Powder mixing equipment

Tumbling mixers

اسكالا متطرفة من ١١ حسب Tumbling
فقط على مساحة جزء

Powder mixing حسب دليل
بعد ذلك mixing الجرار للرج
Tableting بعد حسب

- **The Turbula shaker mixer (WAB, Switzerland)** is a more sophisticated form of tumbling mixer that uses **inversional motion** in addition to the rotational motion leading to more efficient mixing.

رج يكون في اكثر من axis مثلا واحد رج يلف من فوق لتحت وواحد بلغ من
اليمين لليسار والحرمة العشوائية رج تصير اكثر والرج يصير احسن mixing

53

سو استفدت من هاي الاختيارات؟
صارح اصلال Powder يعني

Vibration صافى

54

Powder mixing equipment

2 High speed mixer granulators mixer مخلط \rightarrow mixing & granulation مسحوق

- They are used both for mixing and granulation.
- It contains centrally mounted impeller blade that rotate at high speed throwing the material towards the mixing bowl.
- The side-mounted chopper blade helps in granulation.
- Care if material fractures easily.
- Not normally used for blending lubricants. ما يستخدم هنا الجهاز عمان اعطا \rightarrow Lubricant

55

اداءه يعتمد على dry particles ليس بحاجة الى تشغيله وحيث يدور
طبلة بمحرك اعلى بجهة لا الجهة التي تدخل blade (hopper) وحيثما
ينزل لا الارض يدخله binder solvent - Particle لا binder solvent

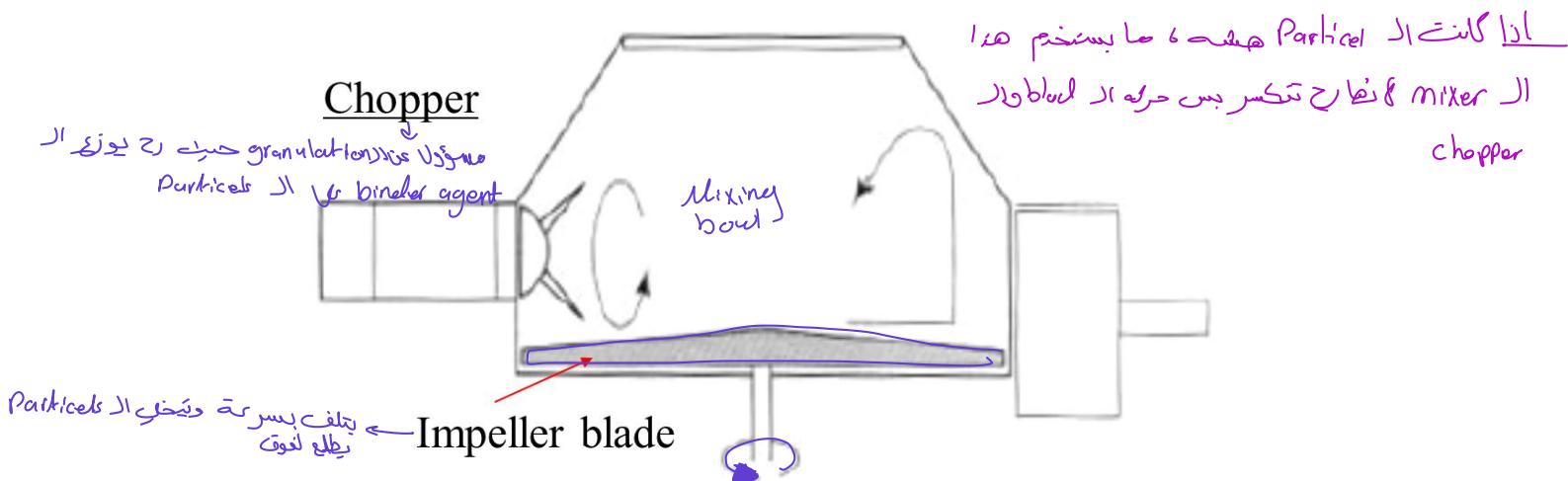


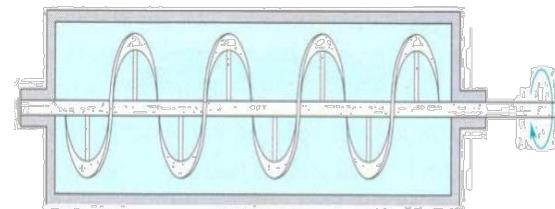
Fig. 13.9 Diagrammatic representation of a high-speed mixer-granulator.

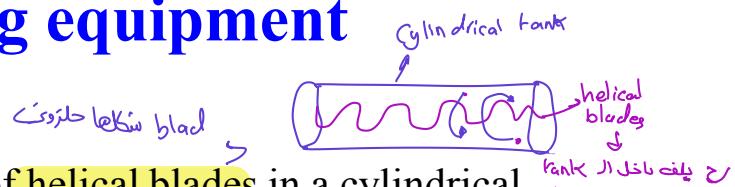
56

Powder mixing equipment

3- Agitator mixers → جهاز التحريك من داخل الصنف Container

- These types of mixers depend on the motion of a blade or paddle through the product, and hence the **main mixing mechanism** is **convection**.
- There are three main designs of agitator mixers:
 - Ribbon mixer
 - Planetary (Orbital) mixer
 - Nautamixer




Fig. 12.10 Ribbon agitator powder mixer

57

Powder mixing equipment

Ribbon mixers

- Mixing is achieved by the rotation of **helical blades** in a cylindrical tank.

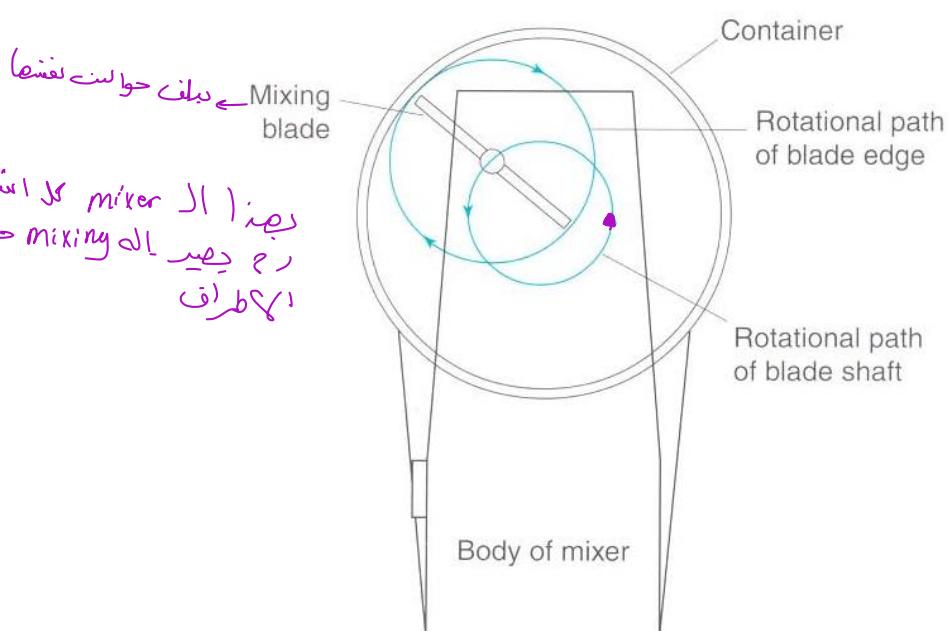
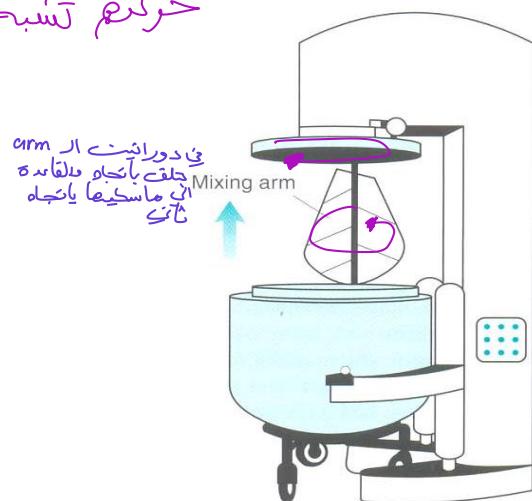
Advantages

- Suitable for mixing of poorly flowing materials.
- Segregation is less likely to occur than in tumbling mixer

Disadvantages

- Dead spots are difficult to eliminate.
- The shearing action caused by movement of the blades may be insufficient to break up drug aggregates.

الـ dead spots: نجد في المكان الذي لا يتحركة الـ blades نجد dead spots. طرق تجنب dead spots: الـ dead spots يحصل في المكان الذي لا يتحركة الـ blades. الـ dead spots يحصل في المكان الذي لا يتحركة الـ blades.



58

Powder mixing equipment

تسبيـه العـجـانـه

planetary mixers

- The rotational path of paddle is similar to that of a planet.
- It is used:
 - for mixing powders and semisolids
 - Wet massing (granulation)

60

مختروط وداخله مروحة
Nautamixer

Powder mixing equipment

Nautamixer

- It consists of a conical vessel that contains inside a helical conveyor that conveys the material up to near the top where it cascades back into the mass.

- This mixer combines convective, shear and diffusion mixing

بعض فنون الاتصال وال
mixing

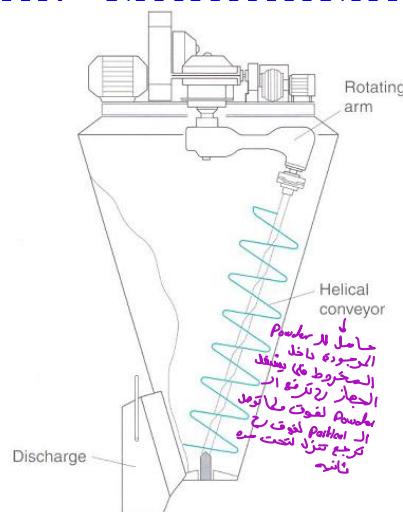


Fig. 12.13 Nautamixer (courtesy of Nautamixer Ltd).

61

62

31

Powder mixing equipment

4- Fluidized bed mixers → all in 1

- The fluidized bed equipment is used mainly in:
 - Drying
 - Granulation
 - Coating
 - Mixing
- However it can be used for mixing of powders before granulation.
من طریق این مرحله
فرازهای از این طریق
- Blown air fluidized and mixes the powder.
- Fluidization is very efficient mixing process.
- Diffusion of particles occur.

63

Fluidized bed mixers

64

Powder mixing equipment

5-Continuous mixers

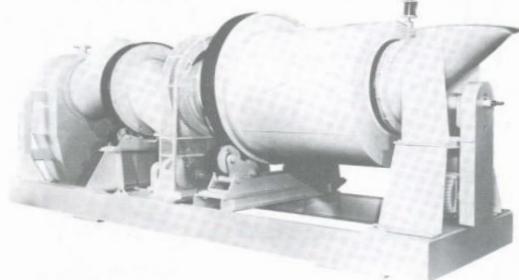
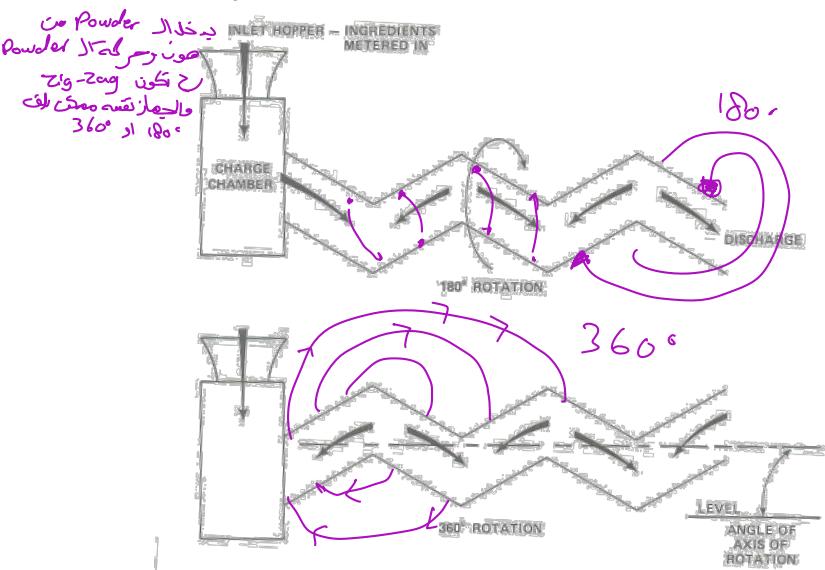



Figure 42 The "Zig Zag" continuous blender. (Courtesy of Patterson-Kelley Company, Division of HARSCH Corporation, East Stroudsburg, Pennsylvania.)

Figure 61 Schematic of "Zig-Zag" continuous blender. (Courtesy of Patterson-Kelley Company, Division of HARSOC Corporation, East Stroudsburg, Pennsylvania.)

65

Scale-up of powder mixing

g لـ **اعمل test بال mixer** \rightarrow **الغير الموجود بال Lab من مزدوج**
نقس النتيجة تتبع على **mixer** **الكلار**
حتى لو كان **ليس** **نقس الجهاز** **والارادات**

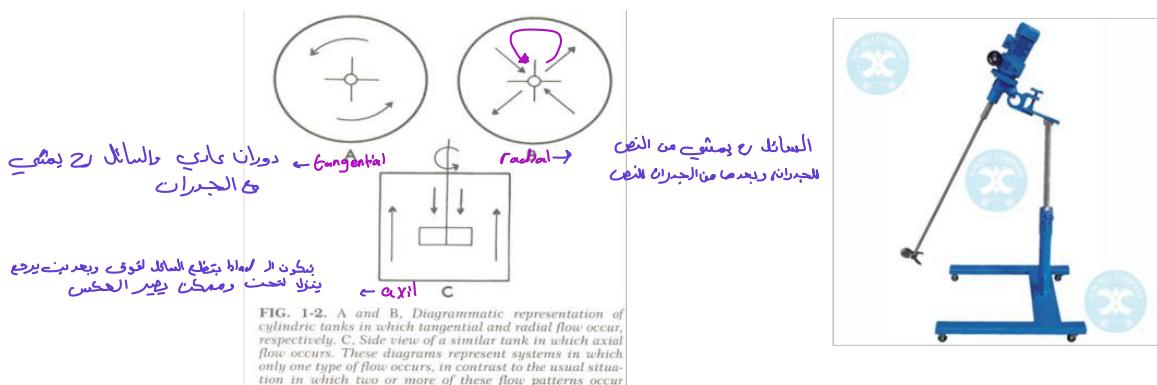
- The extent of mixing achieved at a small laboratory scale during development work may not necessarily be mirrored when the same formulation is mixed at a full production scale, even if the same mixer design is used for both.
- Often, mixing efficiency and the extent of mixing is improved on scale-up owing to increased shear forces. Shear force تکون ایڈ دار اور سان میکن میکن لے لے لے Large-scale mixing اور particle scale mixing
- This is likely to be beneficial in most cases, although when blending lubricants care is needed to avoid overlubrication.

Scale-up of powder mixing

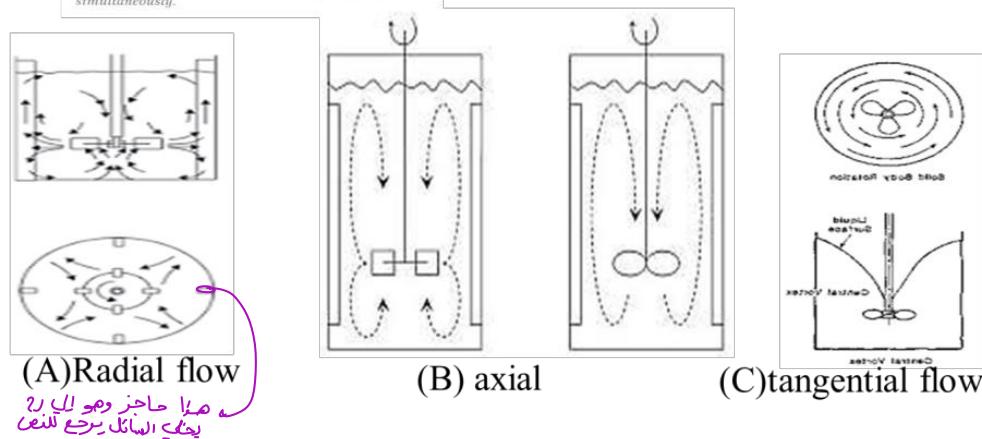
- The optimum mixing time and conditions should therefore be established and validated at a production scale, so that the appropriate degree of mixing is obtained without segregation, overlubrication or damage to component particles.
- Minimum and maximum mixing times** that give a satisfactory product should be determined if appropriate, so that the 'robustness' of the mixing process is established.

انفي اساساً انه رج يوضح كلية التهيئة الى صور يمني دا
 على يها المانع، فحق لـ تغيروا العاملين اـ كـ رج تـ فعل نفسـها

67


Types of mixers used for liquids and suspensions

ابي قبل كانوا لا solved


Propeller (Impeller) mixers

- Three basic types of flow may be produced: radial, axial and tangential.
 يمكن يكون موطاً واحداً دا
 الـ التـ من مـوطـاً دـ يـعـنـ
- Angled blades cause fluid to circulate in both an axial and a radial direction.
 عـيـانـ اـحـصـلـ عـلـ اـ جـمـوـنـ الـدـورـاتـ مـاـلـ اـخـيـارـ دـارـ اـرـادـ اـلـ بـلـادـ اـلـ زـمـ
- The ratio of the diameter of propeller to that of the vessel is 1:10 - 1:20 and it typically rotates at speeds of 1 - 20 rps.
 الـ صـطـاطـ تـبـلـتـ مـعـ 1ـاـلـ 2ـاـلـ دـوـرـةـ دـاـلـ بـلـ ثـانـيـ حـسـبـ السـرـعةـ

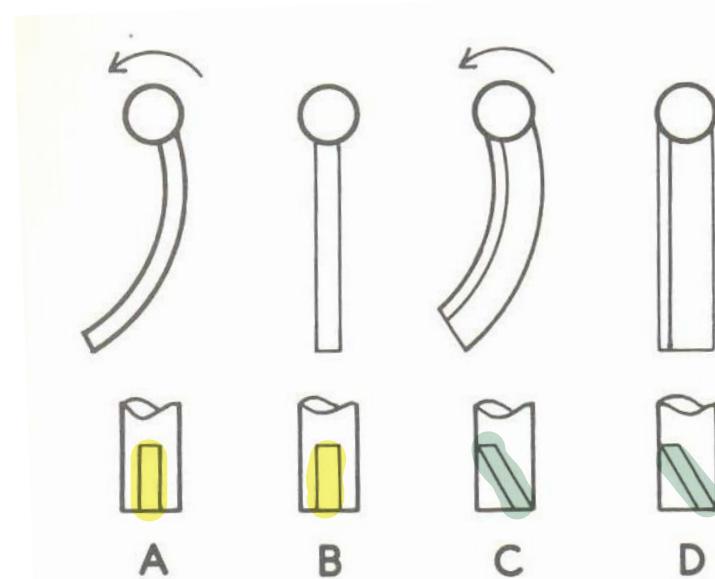
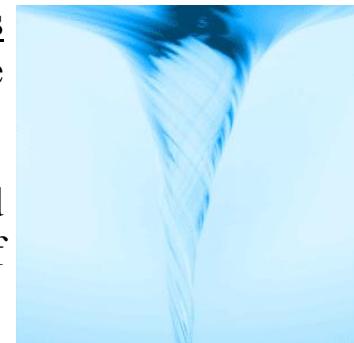

الـ diameter لـ impeller الـ بـدـيـ اـحـطـهاـ بـالـ containier الـ يـصـيرـ فـيـ الـ لـ اـلـ لـ اـنـ
 يكون 1:10 او 1:20 من الـ diameter لـ vessel (vessel)
 مـثـلـ الـ diameter container dimeter يـكـونـ 10cm
 الـ diameter impeller يستـخدمـهاـ بـتـكـونـ الـ low viscosity لـ انهـ لـوـ طـيـتـ عـسـلـ الـ اـلـ الـ عـالـيـ مـارـ يـصـيرـ
 68 غـيرـ لـمـنـطـقـةـ الـ قـرـيـبـةـ لـ blad اـمـاـ الـ يـعـنـ الجـدـرـانـ ماـ رـجـ بـصـيرـ الـ hـem mixing

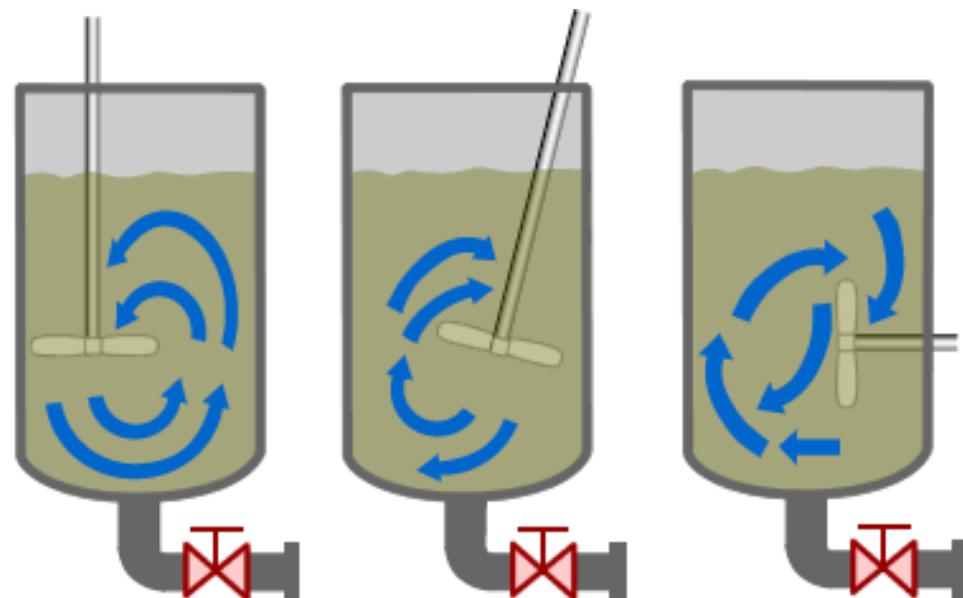
FIG. 1-2. A and B, Diagrammatic representation of cylindrical tanks in which tangential and radial flow occur, respectively. C, Side view of a similar tank in which axial flow occurs. These diagrams represent systems in which only one type of flow occurs, in contrast to the usual situation in which two or more of these flow patterns occur simultaneously.

69

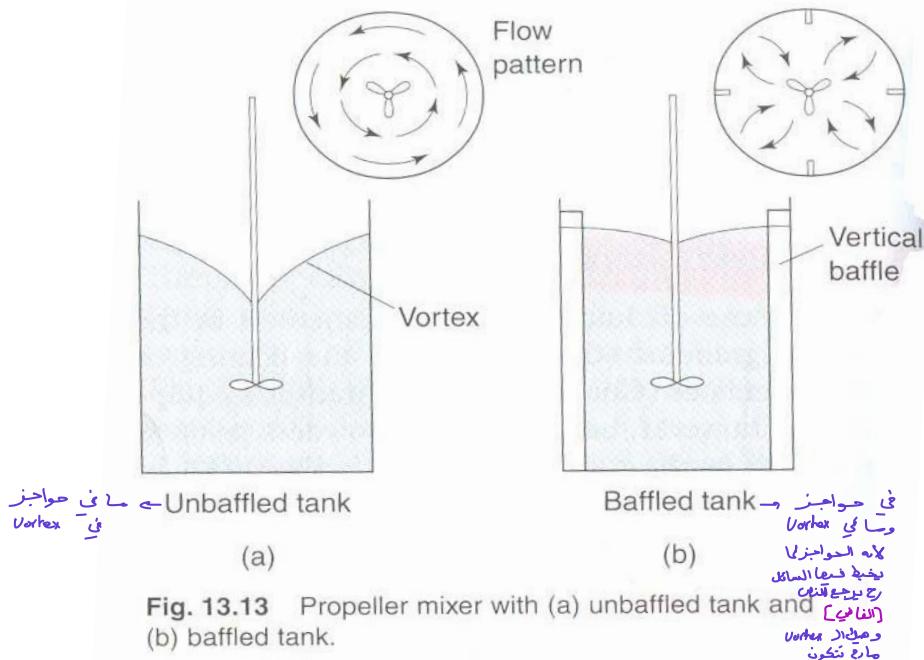
FIG. 1-3. Impeller blade types (only one blade shown), top and side views. A and B, Radial flow design; C and D, mixed radial-axial flow design. For axial pumping, the blade must be set at an incline to the axis of the shaft.


70

لما السائل يلـف رح يروح للإطراف والنصـ
بكون في هو زـي كانـي بتـقـرـج عـلـى دـوـامـة
vortex
هـاي الـvortex تـعـمـل رـغـوة وـمـمـكـن تـخـرـبـ
الـدوـاـشـانـ هـيـكـ ماـ بـفـضـلـ انـهـاـ تـصـيـرـ
طـيـبـ شـوـ الـحـلـ؟
ماـ بـخـلـيـ الـbladـ موجودـ بـالـنـصـ وـبـشـكـلـ
عـامـودـيـ
يـاـ بـخـلـيـهاـ مـائـلـةـ بـزاـوـيـةـ اوـ بـخـلـيـهاـ تـلـفـ منـ
الـجـنـبـ بـشـكـلـ اـفـقـيـ اوـ بـخـلـيـهاـ قـرـبـةـ منـ
الـاـطـرـفـ وـهـايـ الطـرـيـقـ اـسـمـهـاـ


Types of mixers used for liquids and suspensions

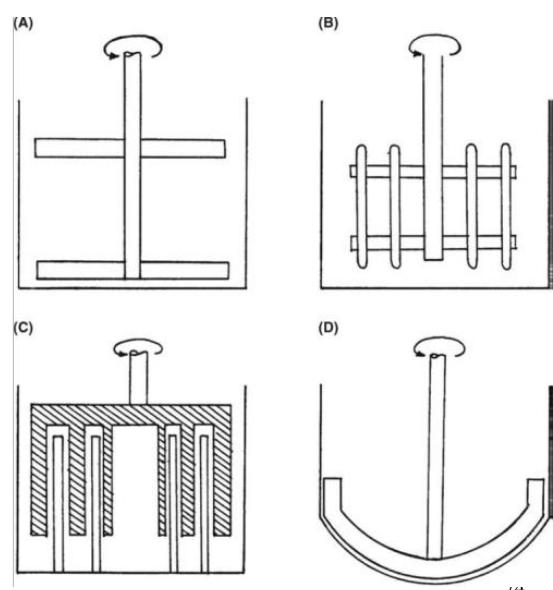
Propeller (Impeller) mixers


- A vortex forms when the centrifugal force imparted to the liquid by the propeller blades causes it to back up around the sides of vessel and create a depression at the shaft.
- An off-center mounting of propeller and vertical baffles discourage the formation of vortex.
- Propellers are more efficient when they run at high speed in liquids with low viscosity.

71

72

Fig. 13.13 Propeller mixer with (a) unbaffled tank and (b) baffled tank.


وهي ترجع للذئب
[الفاطمي]

73

Types of mixers used for liquids and suspensions

مزيجهات العيارات بالسلاسل ← Paddle mixers

- The mixing element is large in relation to the vessel and rotates at low speeds (10–100 rpm).

متوجهین اند او Packlet مانند حزب‌گیر در

توصیه لایه میانی با Vessel میان صلنی تبریز استفاده نماید.

كتاب ١٥ **الباب** كورة السرعة و تكعف نطبيه

Types of mixers used for liquids and suspensions

Turbine mixers

السوائل (ب) إلها Viscosity عاليه

- Turbine mixers may be used for more viscous liquids than those mixed by propeller.
- The impeller has four flat blades surrounded by perforated inner and outer diffuser ring.
- The rotating impeller draws the liquid into the mixer head and forces the liquids through the perforations
- They can produce stable emulsions.

لـ ΔH او chapterlet لـ ΔH مدخل بالفتحات
ويمكن لها mixing جواً ديناميكية متراجعة
نقطة W_{10} / W_{10}

الـ `impl` ﷺ الفتحات

75

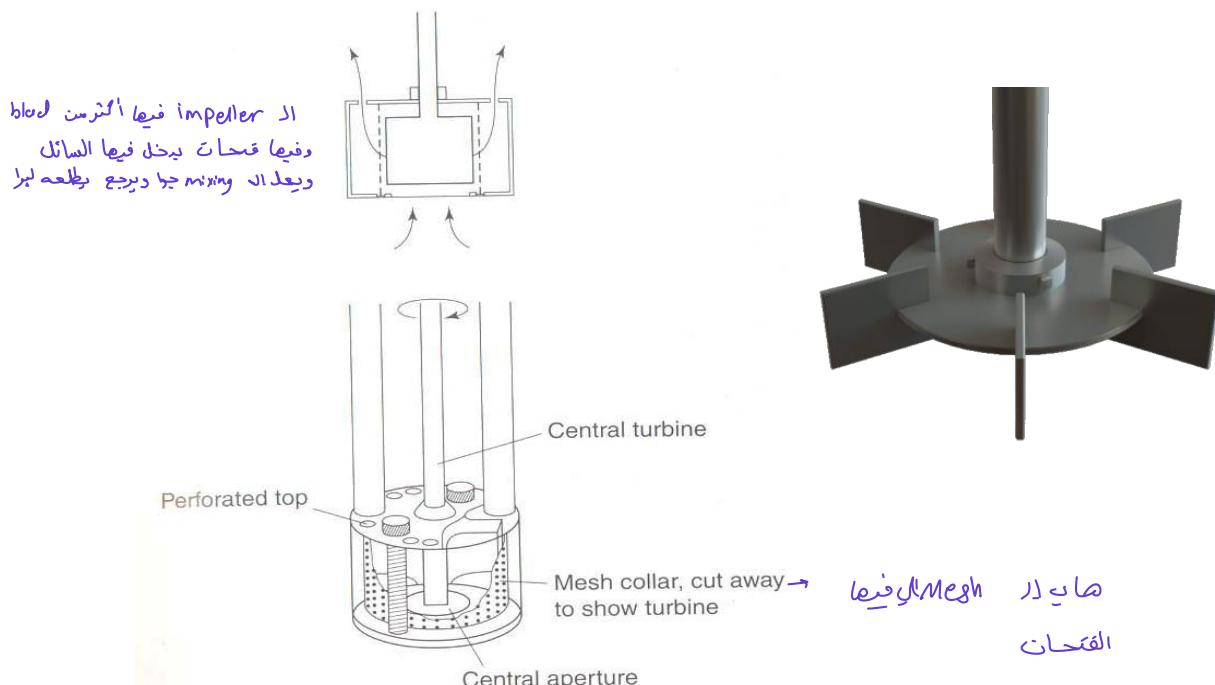
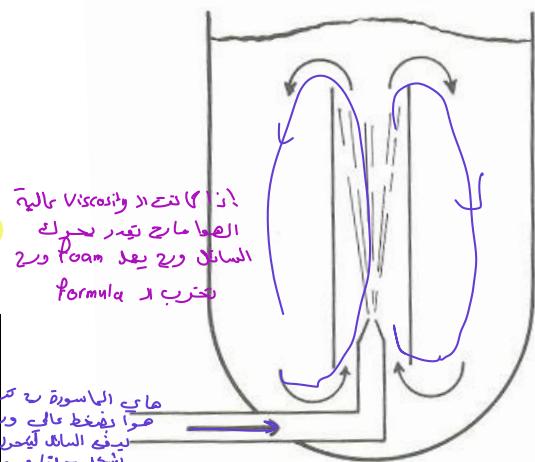


Fig. 13.14 Turbine mixer.

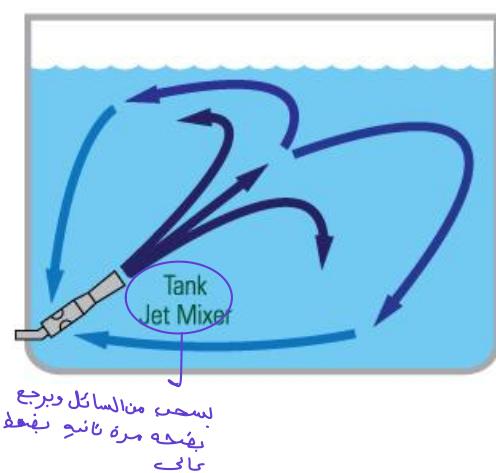

76

Types of mixers used for liquids and suspensions

Air jet mixers → Low viscosity all جگہ کھلنا

- These mixers utilize jets of air or some other gases. الخفايا تُركب بالجet لـ air لـ تأثير موجبة بالسائل هناك. أقدر استخدم حالي بهذه الطريقة
- The liquid must be of **low viscosity**, **non-foaming**, **unreactive** with the gas employed and **reasonably nonvolatile**.

لـ ممکن اقبال بنسیب بسیطه
Volatile من الـ


FIG. 1-4. Vertical tank with centrally located air jet and draft tube. Bubbles confined within the draft tube rise, inducing an upward fluid flow in the tube. This flow tends to circulate fluid in the tank, bringing it into the turbulent region in the vicinity of the jet.

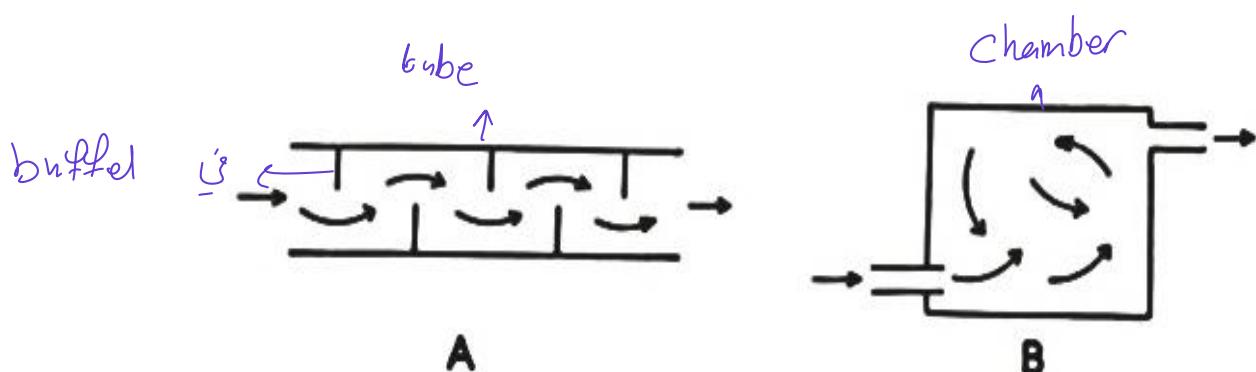
77

Types of mixers used for liquids and suspensions

ما في جهاز يعدل بـ mixing سو بخد السائل يفقط فالـ \rightarrow Fluid jet mixers

- When liquids are to be pumped into a tank for mixing, the power required for pumping is often used to accomplish the mixing.
- The fluids are pumped through a nozzle arranged to permit good circulation of the material through the tank.
- It is also possible to pump the liquid from the tank through the jet into the tank.

78


Types of mixers used for liquids and suspensions

Green Mining Standards

لاین میکسرز میکسینگ (Continuous mixing)

- In this case, mobile, miscible components are fed through an inline mixer designed to create **turbulence** in a flowing fluid stream. المحبب إلى رح يرخ مه الساند موللي
mixing
- It can be accomplished essentially in two ways: in **a tube (pipe)** through which the fluids flow, or in **a chamber** in which a considerable amount of hold up and recirculation occur.
- Controlling the feeding rate of raw materials is necessary to ensure uniform mixtures.

لارزم افضل اناكدر من اول $20\% \text{ API}$ ليرجع ليخل بفضل في نفس نسبة ملار 79 فبنتيج بقوعه القحط بيكور 20% تخل بقوعه غاليه و 20% بقوعه اعل

FIG. 1-5. Continuous fluids mixing devices. A, Baffled pipe mixer; B, mixing chamber with flow induced recirculation.

Types of mixers used for liquids and suspensions

- On an industrial scale, solutions are prepared in large mixing vessels with ports for mechanical stirrers.
- When heat is desired, thermostatically controlled mixing tanks may be used.

FIGURE 13.1 Large-scale pharmaceutical mixing vessels.
(Courtesy of Schering Laboratories.)

بالتأكيد، توضح هذه النقاط المقاطفة كيفية تحضير المحاليل على نطاق صناعي:

- يتم تحضير المحاليل في أوعية خلط كبيرة تحتوي على فتحات (منافذ) لتركيب مكبات ميكانيكية لضمان الخلط الفعال.
- 🔥 عند الحاجة إلى تسخين المحلول أثناء التحضير، يتم استخدام خزانات خلط مضبوطة حرارياً (ترموستاتية) للتحكم الدقيق في درجة الحرارة.

81

كل مازدادت الحرارة زادت اد سولوبility
فال وعند Mixing تحسن احسن

اد سلام! الهم صعب → Mixing of semisolids

- Semisolids, unlike liquids and powders, do not flow easily.
- The suitable mixers must have rotating elements with narrow clearances between them selves and the mixing vessel to avoid dead spots

لازم يكون الجزء الذي يلف قریب كثیر للجدران narrow
mixing وهیک رح يقسم الماده لطبقات ويسهل ال clearance

82

Types of mixers for semisolids

1) Planetary mixers \rightarrow زناد العجائن

2) Sigma blade mixer \rightarrow فرشاة لبلد نسكلها صلبة

3) Vessels (tanks) with counter-rotating mixing bars

- It is very difficult using primary mixers to completely disperse powder particles in a semisolid base so that they are invisible to the eye.
- The mix is usually subjected to the further action of a roller mill or colloid mill, so as to 'rub out' these particles by the intense shear generated by rollers or cones set with a very small clearance between them.

أي "المسحوق" \rightarrow

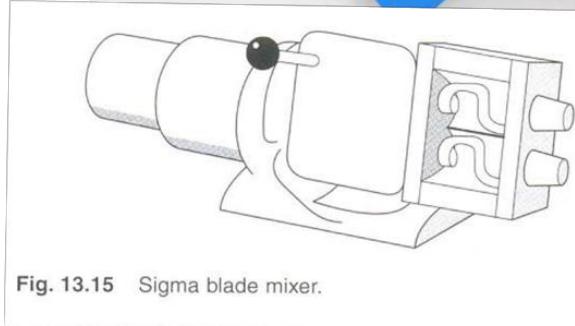
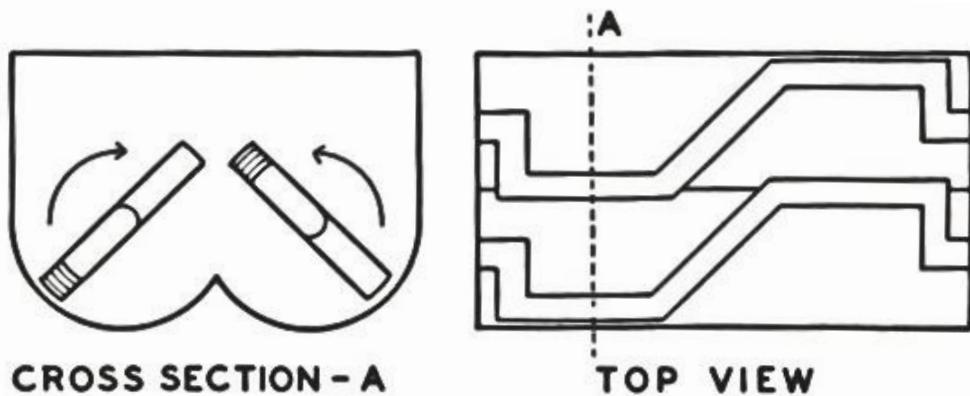
التحدي في الخلط الأولي

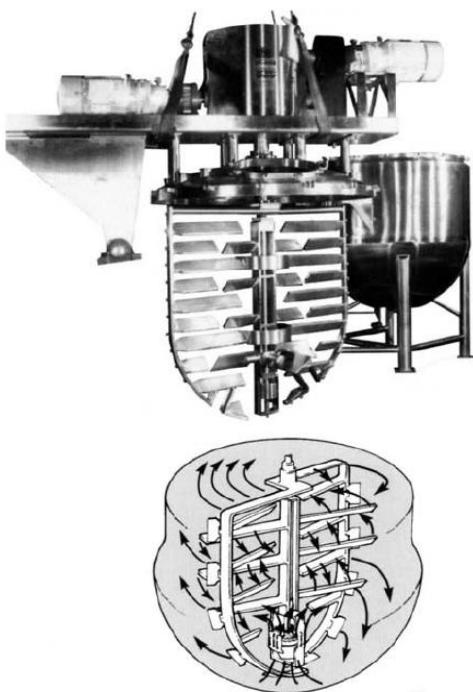
- من الصعب جداً استخدام الخلطات الأولية (Primary Mixers) لتشتيت جزيئات المسحوق بالكامل ضمن قاعدة شبه صلبة (مثل الكريم أو الجل).
- يجب أن يكون الهدف هو جعل هذه الجزيئات غير مرئية للعين، مما يتطلب تفتيت المسحوق إلى جزيئات دقيقة جداً وموزعة بالتساوي.

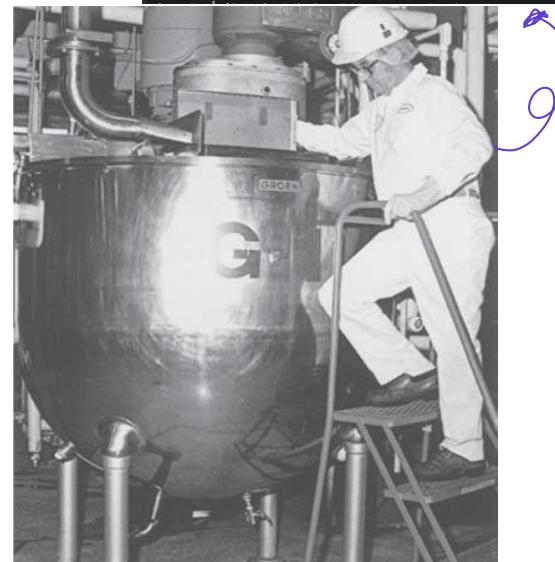
الحل باستخدام المطاحن المتخصصة

- عادةً ما يُخضع المسحوق لعملية إضافية باستخدام مطحنة دحرجات (Roller Mill) أو مطحنة غروانية (Colloid Mill). * تُستخدم هذه المطاحن لـ "فرك" أو تكسير هذه الجزيئات الصلبة عن طريق قص شديد ومكثف (Shear).
- يتم توليد هذا القص بواسطة دحرجات (Rollers) أو مخاريط (Cones) مُثبطة مع خلوص صغير جداً بينها، مما يضمن تفتيت وتجانس الخليط بدرجة عالية.

باختصار، المطاحن المتخصصة هي خطوة ضرورية لضمان الجودة والتجانس النهائي للمنتجات شبه الصلبة، خاصة في الصناعات الدوائية ومستحضرات التجميل.


Fig. 13.15 Sigma blade mixer.


FIG. 1-8. Schematic drawing of a top-loading sigma-blade mixer with overlapping blades. The top view shows the relationship of the counter rotating blades to the overall geometry of the mixer.

- خزان من الفولاذ المقاوم للصدأ (Stainless Steel Tank): * يظهر الصورة خزانًا صناعيًا كبيرًا يتميز بـ تحرير كاسح عكسي (counter sweep agitation) للمساعدة في إزالة المواد من جدرانوعاء.
- يحتوي هذا الخزان أيضًا على محرك مدمج (built-in homogenizer)، والذي يستخدم قوى قص عالية جدًا لتقليل حجم الجسيمات أو قطرات الزيت إلى الحد الأدنى لضمان اسقاط المنتج النهائي.
- ٤. تحدى تشتيت المساحيق في القواعد شبه الصلبة (Dispersing Powders in Semisolids): من الصعب جدًا استخدام الخلطات الأولية (Primary Mixers) لتتشتت جزيئات المسحوقة بالكامل ضمن قاعدة شبه صلبة بحيث تصبح غير مزبنة للعين.
- الحل غير الفضفاض: يخضع المزيج عادةً لعملية إضافية باستخدام مطحنة دخارات (Roller Mill) أو مطحنة فروانية (Colloid Mill).
- آلية العمل: تعلم هذه المطاحن على تفتيت هذه الجزيئات الصلبة عن طريق "ركوك" (rub out) من خلال قص شديد ومتكرر، يتم توليد هذا القص بواسطة دخارات أو محاريب مضبوطة مع خلاص صغير جدًا، بينما،

باختصار، يتم استخدام أفعية خط كبيرة ومتقدمة (مثل Tri-mix في المرحلة الأولى، ثم يتم استخدام مطاحن الفضفاض (مثل Roller Mill أو Colloid Mill) في مرحلة لاحقة لضمان التجانس والجودة النهائية للمنتج شبه الصلب.

Fig. 5 Large-scale manufacturing unit (Tri-mix Turboshear) with counter-rotating mixing bars. (Courtesy of Lee Industries, Inc., Philipsburg, Pennsylvania.)

Stainless steel tank, which has counter sweep agitation and a built-in homogenizer.

- ١. معدات الخلط والتجبيس الصناعية (Industrial Mixing & Homogenization)
 - يُظهر الصور تنوين من معدات الخلط المتقدمة في المصانع:
 - وحدة تصنيع كبيرة متعددة الخلط (Tri-mix Turboshear): * يُظهر الشكل جهازًا للخلط على نطاق كبير يتميز بـ قضبان خلط تدور عكسيًا (counter-rotating mixing bars).
 - هذا النوع من التصميم يوفر حركةً لخلط قوية ومتعددة داخل الوعاء، وهو ضروري لتحضير المستabilizers والمحاليل عالية النزرة.

