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Powder flow i poles ek
Powders are generally considered to be composed of solid particles of Adlhe 5\ Coher
the same or different chemical compositions having equivalent g{‘LlM “Lul
. . mu 5@ P8
diameters less than 1000 pm. 4,
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semom e e+ B. Uneven powder flow can result in excess entrapped air within

Preoriely

& o b oy cigbi-e=> powders, which may promote problems (capping and lamination).
Due ) s grer™ it (5 b: C. Many industrial processes that require powder movement from one -
i location to another (such as mixing, feeding, transfer, and
fluidization) are affected by powder flow properties. @
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Particle properties
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Adhesion and cohesion
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» Cohesive and adhesive forces are composed
mainly from: o & adh

— Short range non specific van der Waals forces: e @l> ¢ ditbnce sl wen > Sy
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* Increase as particle size decreases and is
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— Electrostatic forces arising from contact or
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evenly distributed over particle)
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TION OF FINE PARTICLES (electrical
charges inducted by one particle on
another van der Waals forces)
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Powder properties affecting bulk flow .
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* Fine particles have high surface to mass ratios and are () ge ansin
more cohesive (bad flowability). == ¥ » Speced W oszusLys
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Particle shape (SN ) oherg 1
* Spherical particles have minimum interparticle contact
and therefore optimal flow properties.
Particle density (True density)

* Dense particles are generally less cohesive than less
dense particles of the same size and shape.

Shape Nosfee NGB Gsle o)

Q :Q — Wms a2 sl oas Cén
b= 1

mMass o0 g adlecsh )@Y R R
N 7
_ velp sy
Jo! other paridste Ch -\ 815, 3, Qecdn S

D - me8S

Powder properties affecting bulk flow

Surface roughness of particles
* Rough surface of particles lead to bad flowability of
powders. A TEIAnsSiBbdS S (1
Moisture content
L‘A‘f Foes warer Dl High moisture content causes increase surface-
Graswe ¢ 42 559 5 tensional cohesive forces and reduced flowability. 2 o\ 2w\ oo )
N - Electrostatic 'charge | mvm.? N e S e 45, s dmuj
1nbel) - yrsengy Electrostatic charge increases cohesion and adhesion
“oand reduces flowability.



siidoved 3 2= Vass-Volume relationship for powders

@
» A powder bed is composed of particles and
voids.® Solid

» Voids are:

— Interparticulate voids: The air space between
individual particles

— Intraparticulate voids: Those within a single
particle

* Open to the external environmentQ—s ortresphenit.: O mainly

J?JMA,'( Saolven 3\9'9ev\\/1'm£11)( Mmq‘ 15 ) >
* Closed to the external environment - ,PJ &
N \a\\kt

4

9\ Pb anle

benker L2pla2 J%fr%d& 2 o5 (I
L"(sf}‘) \b\'ké 1 S{)L‘f’\- J|d,ag'>)"[f; o:-ﬂ-e valwrme )o o 2

= LG T

Inter- S %} N

particulate X PSS RN
voids 7 NI//

SPaCc Lel'\-oun th‘c.l«-s

) ’&/ " £

/// — M -4l PP Intra-

%Y, y— -ﬂ‘fﬂ’\ S pedide Sl Lparticulate

W" % o x voids
% : =% prrhiche 3 b ots

closed la o s
N\

FIG. 4-4. Diagram of various intraparticulate and inter-
particulate air spaces in a bed of powder.
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1o persty 02y Mass-Volume relationship for powders
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Three interpretation of powder volume may be
proposed:

e The true volume (V,): The total volume of the
solid particles, which excludes all space greater
than molecular dimension.

* The granular volume (particle volume) (V,): The
volume occupied by particles and all
intraparticular voids.

Jolw- 3 &= The bulk volume (V,): The total volume occupied
by the entire powder mass (i.e. particles and
intraparticulate and interparticulate voids)
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Mass-Volume relationship for powders

* True density = mass / true volume
: H
» Granular density = mass / mvwe

* Bulk density = mass / bulk volume
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Packing geometry

Nas o=l The apparent volume (or density) of a powder can be
o P#ele s changed by rearrangement of the packing geometry of
orerd O particles (by vibration for example).
Veides ) 6B N b0+ (o0

o space e Packing geometry can be characterized by: —> = o
——— —___—

Bulk density
» It is the mass of powder occupying a known volume.

* A powder can have many different bulk densities

depending on the way in which the particles are packed. - w@ G5, UG\ S
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e Aoz o Jle—e However, a high bulk density value does not necessarily e
i e imply a close-packed low-porosity bed, as bulk density

1s directly proportional to true density.
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Packing geometry
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)1 Packing fraction (Fractional solid conten@

« It is the bulk density divided by true density of the
solid.
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True VO]U.ITI;_ Bulk density ..o (1,

_ True density QZ“\‘J .
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Porosity (¢) =1 -K K- 16 porwsily
 Porosity represents the fractional void content of a
powder bed.




Factors affecting packing geometry

Size), L ol® midig o 1) Particle size and size distribution

pepbon S polec e o Void spaces between coarse particles may be filled with fine =% ('
Ueides 3 e/ particles in a powder with a wide size range, resulting in closer

packing. (-~ --% aaﬁry/y Gvtes Pagped aiv § o e | )
Clrows 2) Particle shape and textures
s el s endinidn) within the powder bed will be formed more readily
{mff “vi% o e through the interlocking of non-isometric, highly textured
e particles Sprertal 5o |
3) Surface properties NI

* The presence of electrostatic forces can promote clg/s_\e/r_gg_rggl
packing

4) Handling and processing conditions ¥y JUmixing J o apek ) ploosy CibiGole I

61;5]4{? e les H”“Jivj £\e The way in which a powder has been handled prior to flow or

ied packing affects the type of packing geometry
preteied O\ #0 —_—
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Generalparticle shapes and their effect on power flow.
erical particles normally flows easily, ™ J; zie) b o= Spreril J cspes-

nb _ Smedh CV\kf‘\m\\zah >\ Aowdedbs |

sokee 0L sslew (b oblong shapes with smooth edges normally flows easily
S L\ sy bl suil ,(€) equidimensionally shaped sharp eglggs such as cubes does
not flow as readily as (a) or
BIANVERN (d) Irregularly shaped 1nte_T‘ ng particles normally shows
poor flow and easily bridges —a“*’ﬁ Seed
2dinetions GBS s) 22y o (e) irregularly shaped two-dimensional particles such as flakes
== normally shows[fair flowland may cause bridges, 2oy s
() Fibrous partlclesvery@ and bridges easily. Bridging
refers to the stoppage of powder flow as a result of particles
which have formed a semirigid or rigid structure within the
powder bulk.
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Flow rate through an orifice

 There are many manufacturing processes of
pharmaceutical solid dosage forms that require the oo Pem

powder flow through the opening in W da 6o gladt o=
corteinec «~bin used to feed powder to tableting machine, cogsico F=bety =

capsule- filling machine, sachet-filling machines -
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Development of flow through an orifice
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Flow rate through an orifice

 This flow through orifices is affected by:
1. Orifice diameter T 15\

a>—r 9

* ( Flow rate is proportional to orifice diameter

X2 [ve) 5

3. Adhesion to the walls of hopper—s i |5 oo qiba 20\ 01z S 1) 51, 200 s
4. Head size/ha.(jwr

pouder 30735 510 1 -5 Mopper ) 23 3 \ibiahor ()

This 1s the height of powder bed above the orifice posber M5\
5. Hopper wall angle =+~
* As the angle decreases, flow rate increases ¢
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Fig. 13.11 |Influence of hopper wall angle and particle-wall

friction on powder flow.
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-—'~== Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive

properties)

It represents the balance between frictional/cohesive
forces and gravitational force

e &) Tt NHC 2255
- )\‘\)5—
\

P2y Alas \'s\ ¢ Coved

» Therefore, it describes interparticle cohesion and it is
an indirect method for estimating powder flowability.

e There are different methods for determination of
angle of repose which may produce different values.

 The high values indicate bad flow properties.

J‘f: Coesy 3t Tty D

MASS MOVEMENT DEPENDS ON THE NATURE OF MATERIAL, WATER CONTENT, AND
SLOPE STEEPNESS

[ 1]
A 4 Angle of
repose
Fine sand Coarse sand

100% 0%

Cohesive powder poured in a heap

Percentage cohesive maternal
Determination of angle of repose
for very cohesive powders. Y
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Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive
Shonr o prall Srtec properties)
Gp om0 s

2) Shear strength determination

* Cohesion can be defined as stress (force per unit area)

necessary to shear the powder bed under conditions of
Gt stee o Jed 2o zero normal load — Normalload

L l l ') jEe covtmiver s poader N L2
. ZFoe JLEw L s g L) L0
Shearing Movable _uJLpAI\)ér half m"wﬁf\;w‘f 2 e Al
force fromisd
Fixed lower half \ b e cpperpet Jlvp SR
Powder jyah D Gmtwiner I | £ lod [Nty 5""“3
Shear plane  “zzo¥esios

Diagrammatic representation of Jenike shear cell.
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Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive
properties)

Terthg Jla e . .
v 3) Tensile strength determination

7ol $02s o The powder bed is caused to fail in tension by splitting.

e G168 N 53¢ Y guh —

g,:,:d Powder ) pie Powder bed failed .
L in tension Static mevss o
OY’Q‘IIJ
" half-plate
J_r.’ N / .

Z’l‘;"’.-o G Jie~es J‘au‘ﬂj uelel— Mobile _ MgS].n Q_Av'ﬂlt of FeQase

Coke )& V>V qraiy ) coo 3o half-plate g tilt angle O = 4 »
L Yea
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( Grwiy I
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. : : - Equation for calculation
Diagrammatic representation of tilting of tensile strength

table method. .
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Characterization of powder flow

Indirect methods
owke T

P
ity pader st 1) 4) Bulk density measurement (% compressibility and

’ .
L3y2e) skl wwenyy  HAUSDEr’S ratio)

bulkwlet o fog 1 e Df— Dy Vo—-V
= % compressibility = fD— X 100 = L % 100
e o/;})VA\w)rth’ Zastn f 0
A \Jaichlzl
TagpedD 1 0 v ) D v
e 5 Hausner’s ratio = D—f = V—° N
=<° —— Initial level of powder V,
Vuiv,__ 0 f —Finallevelofl.}:owder Vi
Toped = 209 . . .
mesd (g toheme_ D; = Final bulk density (tapped density)

D, = initial bulk density
V; = Final bulk volume (tapped volume)
V, = initial bulk volume

To motor

¥y
Mechanical tapping device

EaiCS g ke G By SO0 D Lol pouder )it 13
bidly st ¢ S (1 gepD G T S N
s s Compressibility  Type of flow Hausner ratio
' s index (%)
(Carr’s index)

op s tbid omz @ Excellent 1.00-1.11
C,o‘ﬂef'd\'bﬂ_"ﬁ Jiems
11-15 Good 1.12-1.18
Pes Teomge ) 16-20 Fair 1.19-1.25
21-25 Passable 1.26-1.34
26-31 Poor 1.35-1.45
32-37 Very poor 1.46—-1.59

@ | Very, very poor| >1.60
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Characterization of powder flow

Indirect methods

‘F"°") ~ bﬂ) D,W«N\ o 0 . .
5)Critical) orifice diameter

poudy ) oy otiftce o,y

o i) pudery o :
ledm2aldo cohesion and arch strength,” <. e

Jr ponde) 20 con 1

* Critical orifice diameter is a measure of powder

» The smallest orifice diameter through which powder

can flow

Yy

Characterization of powder flow

V57 y 254 Direct methods

1) Hopper flow rate S ew 22 o, %y Lol Y,

rate

* Simple and direct > Lba [min) min 3ot r)  309]5min

* The mass of a powder discharged from a hopper is
divided by the time taken for the powder to

discharge.

Contminer ) o= pondey )13~ 2) Recording flowmeter

015 ¢5te ke o The powder is allowed to discharge onto a balance
and the increase of powder mass with time is
recorded.
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Approaches for improvemeht of powder flow

(R Pouder” ) glong ') Alteration of particle size and size distribution

2oty o Coarse particles are less cohesive and therefore are
Mehe Gawpe Gsmwe  flowing better than fine particles. W o R e\ St |
NIV

Vevieye
2 WALREX A

Alteration of particle shape or texture

* Spherical particles have better flowability than
irregular particles.
o2yl
» Particles with smooth surface have better flowability
than particles with rough surface.

ST D >

* Particles with suitable shape can be obtained by spray ff#spus oyt
drying or by controlling crystallization process. i swsesry Jeotes

Sg‘ﬁ)ﬁf ’Cm\'\VB / \r\m\@ /.Sanﬂ )[\,(j;;,rw)_.;_(-vnﬁh\\\lﬁﬁnj s &GSWA\)L Ndedl = v

Approaches for improvement of powder flow

Alteration of surface forces
 Electrostatic charges and high moisture content decrease
the flowability. copraph 7 W 5 L e “;é;,)/g[/ Sﬁic oV
oy 1
Cw@: Ji
Formulation additives (flow promoters)
* Glidants decrease cohesive and adhesive forces.

s Alteration of process conditions
« Use of vibration-assisted or agitated
9 Shetns pes s 3}/2&9 hOppGl‘S L\ 2 Al

» Use of force feeders

YNy |
o grles foudel) 35050 1235 383
Internal agitator -
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Flow activators

. 5\\3&«\’5 .
* Flow activators (enhancers, promoters) improve
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-« They are referred to as glidants.

e Some of them have anti-adherent and lubricant
properties. _—

 Commonly used glidants include talc, maize

roes~= starch, colloidal silicon dioxide and magnesium - D
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Mechanisms of action of flow activators

Glidants improve flowability by one or more of
the following mechanisms:

1. They make the surface of the particles more
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s> <02, They reduce electrostatic charges.

3. They interfere with the cohesion or adhesion
due to adsorbed moisture layer
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