

MIRACLE Academy

قال تعالى (يَرْفَعُ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أَوْثَوا الْعِلْمَ دَرَجَاتٍ)

تَفْرِيغُ الْبَيْوُتَكُو
زَمِيلُكُمْ نَهْيَ حَسَن

لِجَانِ الدُّفَعَاتِ

Created with
Notewise

DNA SEQUENCING CHEMICAL METHOD AND ENZYMATIC METHOD

معناه باختصار determine the order nucleotide in the DNA

في عنا DNA bases على bup med وهاد
لو دخلت اي sequence لجين معين رح
يطلع النا كل المتشابهات بينه وبين الجينات
الأخرى! مثلا هاد الجين فيه تشابه بين
الإنسان وال mice بنسبة 80% مع بكتيريا
مثلا 90%. وهكذا.....

لنفرض عندي هاد الي sequence AGGCATAA طيب شو
رح يعرفني اذا تسلسله صح او لا وحتمى لشو اصلا
ف بال 2005 كنا قادرين نعمل لكل human sequence genome
يعني لكل 46 كروموسوم وعارفين كل جين وين
موجود وحتمى صار في عنا خريطة للجينات

DNA SEQUENCING

ما هو الجينوم؟

*الجينوم (Genome) هو كامل المادة الوراثية لأي كائن حي، سواء كان إنسانًا، حيوانًا، نباتًا، أو حتى فيروسًا.

* يتم ترتيبه في 23 زوجًا من الكروموسومات (باجمالي 46 كروموسومًا) داخل نواة كل خلية جسدية. نسخة واحدة من كل زوج تأتي من الأب والأخرى من الأم.

- The process of determining the order of bases adenine (A), thymine (T), cytosine (C), and guanine (G) along a DNA strand.
- All the information required for the growth and development of an organism is encoded in the DNA of its genome.
- So, DNA sequencing is fundamental to genome analysis and understanding the biological processes in general.

جينات
مشفرة

TECHNICAL BREAKTHROUGH FOR DNA SEQUENCING

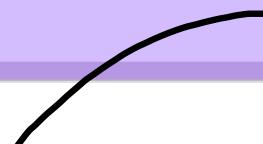
- In 1977, two separate methods for the large-scale sequencing of DNA were included:
 - 1- Chemical cleavage method by Maxam and Gilbert
 - 2- Enzymatic chain termination method by Sanger
- Of these two methods, Sanger method is more popular. Without changing the underlying concept of both methods, some improvements have been done over the years by applying different strategies, by developing various modifications and by automation.
- As a result, a very large scale sequencing has become feasible, e.g. *E. coli*, *Saccharomyces cerevisiae*, Human Genome Project etc.

مشكلتها تستخدم

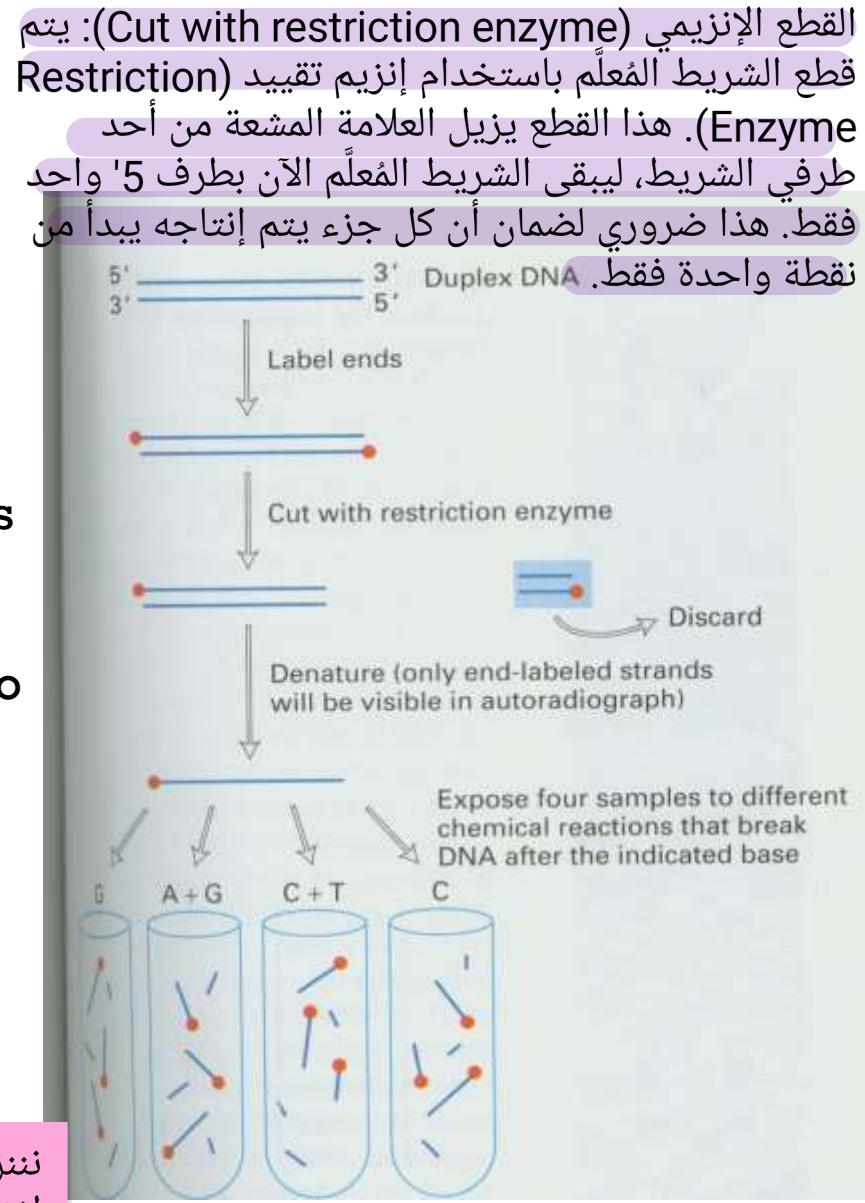
radio active substances

دول کلام عرفت
تبعهم sequence

Created with
Notewise


1. CHEMICAL CLEAVAGE METHOD

- This method uses double-stranded DNA samples.
- Involves modification of the bases in DNA followed by chemical base-specific cleavage.
- Sequences DNA fragments containing up to ~500 nucleotides in length.



بدي modification ويعمله double strand DNA وبضيف عليه prime على 5 phosphate وبعدها بقصصه عن طريق chemical cleavage وشرط يكون DNA بكميات معينة. يساوي 500Nu حتى يقص مره وحده مثـ أكثر من مره ببساطة: الفوسفات المشع يعمل ك "منارة" تسمح للباحث برؤيه وتحديد الأجزاء المتسلسلة على الهلام بعد أن يتم فصلها حسب الحجم، ويضمن أن الأجزاء التي يتم رصدها هي تلك التي تبدأ من الطرف الا 5' الأصلي.

STAGES: ✓

1. The double-stranded fragment to be sequenced is isolated and radioactively labeled at the 5'-ends with ^{32}P .
2. The fragment is then cut with restriction enzyme and thus the label is removed from one end.
3. The fragment of DNA with one end labeled is denatured.
4. Four identical samples of these end-labeled DNA restriction fragments are subjected to chemical cleavage at different chemical nucleotides.
5. There are four specific sets of chemical reactions that selectively cut the DNA backbone at G, A+G, C+T, or C residues.
 - G only: Dimethyl sulphate(DMS) and piperidine
 - A+G : DMS, and formamide piperidine
 - C+T : Hydrazine, piperidine
 - C only : Hydrazine, alkali or NaCl piperidine

	الكافش الكيميائي الأساسي	المادة الفضافة للتعميق	الوظيفة
G	DMS (Dimethyl Sulfate)	لا شيء (فقط Piperidine للتكسير)	تكسير انتقائي لا G
G+A	DMS (Dimethyl Sulfate)	Formamide	تكسير الـ A والـ G معاً
T+C	Hydrazine	لا شيء (فقط Piperidine للتكسير)	تكسير انتقائي لا C والـ T معاً
C	Hydrazine	Alkali NaCl مثل	تكسير انتقائي لا C فقط (عن طريق تثبيط التفاعل مع T)

ملاحظه عشان نحفظ انه كلام piperidine معهم كلهم

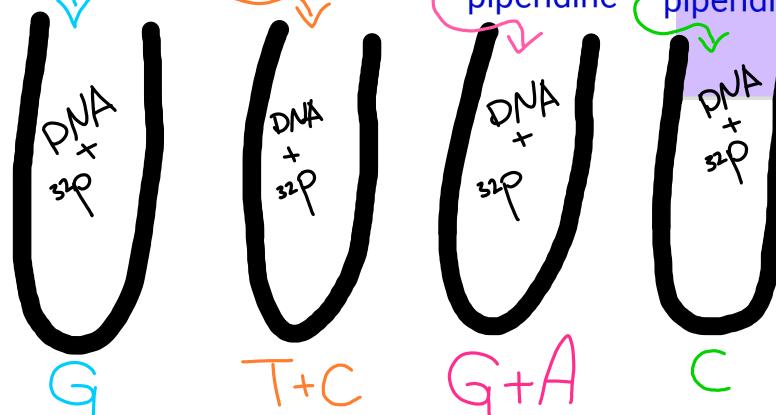
المجموعة	القواعد	الكافش الأساسي
البيورينات	A & G	DMS
البيريميديات	C & T	Hydrazine

عندى بكل تيوب phosphateas radio active مع DNA وبعدها بالتيوب الأول بحط Dimethyl sulphate(DMS) and piperidine

والثاني Hydrazine, piperidine
والثالث DMS, and formamide

والرابع Hydrazine, alkali or NaCl

وبعدها بحطهم على الجل وبشوفلهم X-ray *

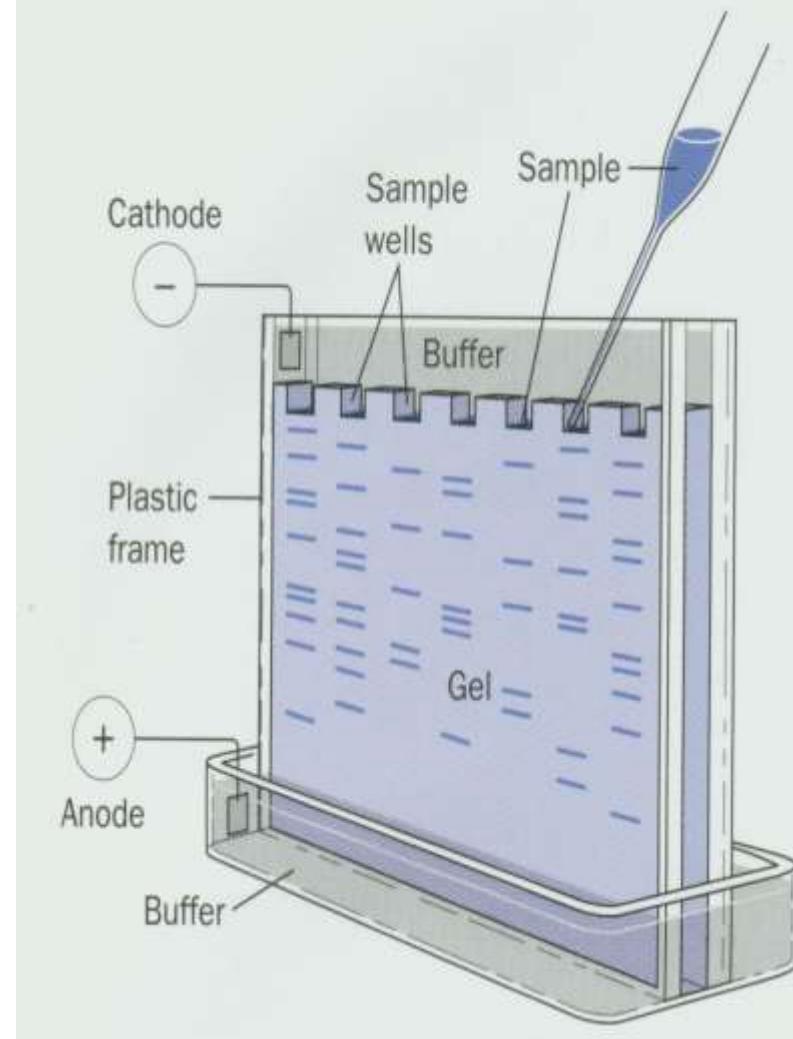

وأصغر اشي رح تكون لتحت لذك القراءه من تحت لفوق

Dimethyl sulphate(DMS)
and piperidine

Hydrazine,
piperidine

DMS, and
formamide
piperidine

Hydrazine,
alkali or NaCl
piperidine

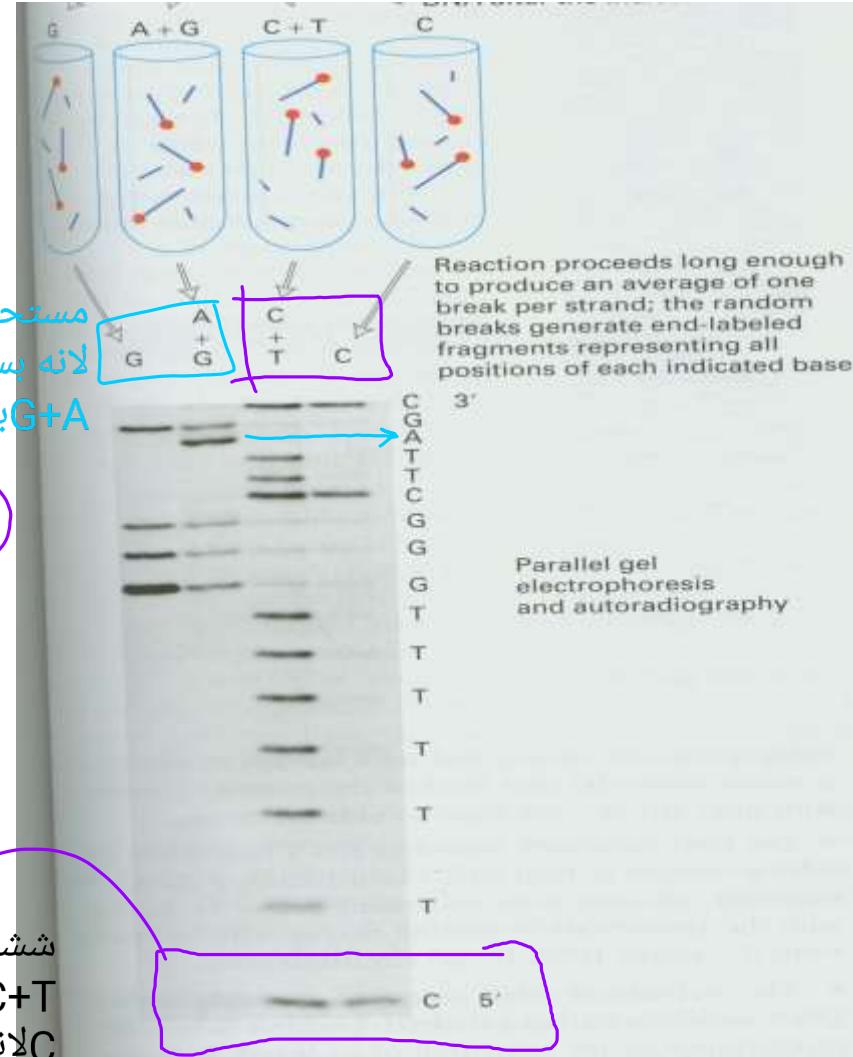


6. For each labeled chain to be broken only once, the reactions are controlled.

7. The labeled subfragments created by the four reactions have

- the ^{32}P label at one end and
- the chemical cleavage point at the other end.

8. The reaction products are separated by polyacrylamide gel electrophoresis which is based on size. Smallest fragment goes fastest.



9. The labeled fragments in the gel are visualized by autoradiography (x-ray)

مستحيل تكون G
لانه بس قاطع عند G+AT
بس بدون G+A

10. The sequence is read from bottom to top of the gel.

شوفو هون في Band عن C+T
و عند C الحالها يعني شو
لانو مستحيل يكون T
و قاطع عند الاثنين

EXAMPLE OF DNA SEQUENCING BY CHEMICAL METHOD

CHEMICAL CLEAVAGE OF A DNA SAMPLE AT C BASES

End-labelled DNA sample

^{32}P -A-p-T-p-T-p-G-p-C-p-G-p-C-p-T-p-G-p-C-p-A-p-C-p-G-p-C-p-T

^{32}P _____

^{32}P _____

^{32}P _____

^{32}P _____

^{32}P _____

End-labelled DNA fragments

AUTORADIOGRAM OF SAMPLE MAXAM-GILBERT SEQUENCING GEL

G	A+G	C+T	C	SEQUENCE (END)
—	—	—	—	C (3')
—	—	—	—	G
—	—	—	—	A
—	—	—	—	T
—	—	—	—	T
—	—	—	—	T
—	—	—	—	C
—	—	—	—	G
—	—	—	—	G
—	—	—	—	A
—	—	—	—	T
—	—	—	—	C
—	—	—	—	A
—	—	—	—	A (5')

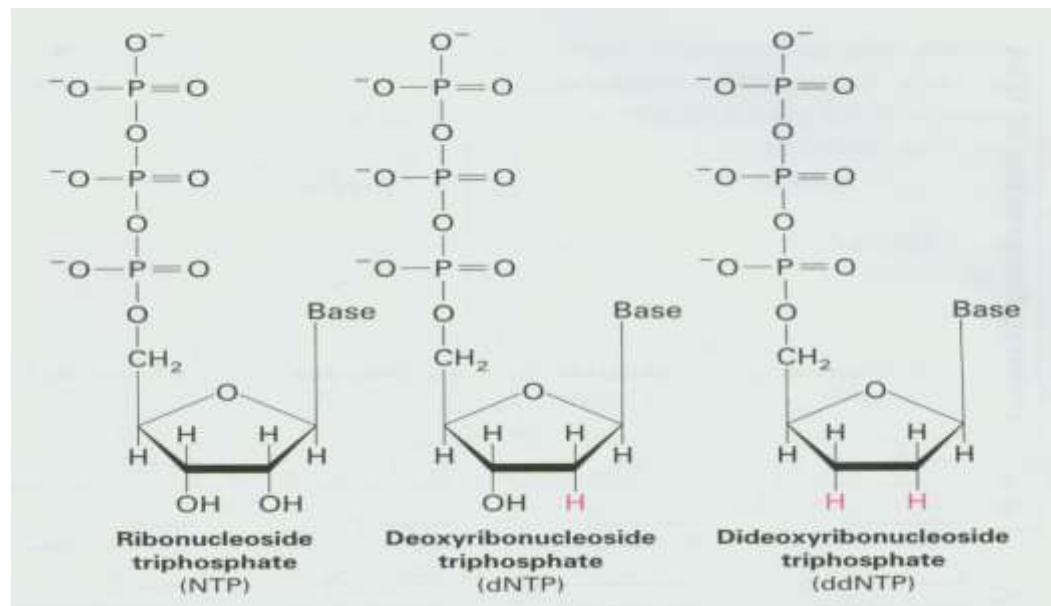
ADVANTAGES AND DISADVANTAGES

- No premature termination due to DNA sequencing. So, no problem with polymerase to synthesize DNA.
- Stretches of DNA can be sequenced which can not be done with enzymatic method.

- Not widely used.
- Use of radioactivity and toxic chemicals.

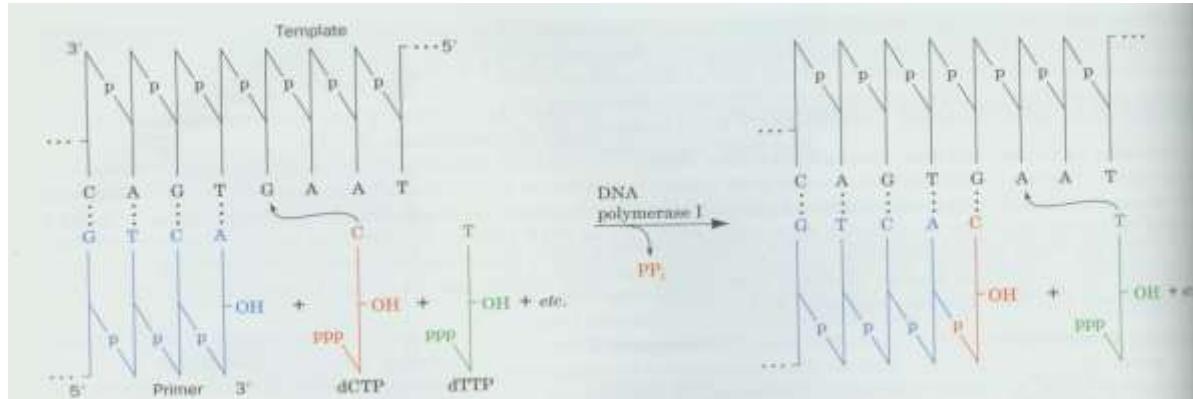
2. ميزات وعيوب طريقة التكسير الكيميائي (Maxam-Gilbert)	
العيوب (Disadvantages)	المزايا (Advantages)
غير مستخدمة على نطاق واسع.	لا يوجد إنهاء سابق لأوانه.
استخدام النشاط الإشعاعي.	لا توجد مشكلة مع إنزيم البوليميراز لتحليل DNA.
استخدام المواد الكيميائية السامة.	يمكن تسلسل سلاسل DNA الطويلة (Stretches).

ملخص مبسط
للحكي الى تحت


كل القصه عندي ب الوضع العادي عندي (dNTP) deoxy nucleotide triphosphate يحتوي على OH-3' (هيدروكسيل) الضروري لإضافة النيوكليوتيد التالي واستمرار نمو السلسلة وهاد يكون بكميات كبيرة. وفي عندي كمان نيوكليلوتيد الإنهاe (ddNTP): يفتقر إلى مجموعة OH-3'. عند دمج هذا النيوكليوتيد في شريط DNA النامي، فإنه يوقف (Terminates) استطالة السلسلة بشكل فوري، لأنه لا يوجد شيء للنيوكليوتيد القادر ليرتبط به. وهاد يكون بكميه جدا قليله

مكونات التفاعل: يتم تجهيز أربعة خلطات تفاعل منفصلة:
إنزيم DNA Polymerase: لبدء عملية بناء الشريط الجديد.
نيوكليوتيدات العادية (dNTPs): النيوكليوتيدات الأربع (dATP, dCTP, dGTP, dTTP) بتركيز عالٍ.
نيوكليوتيدات الإنهاe (ddNTPs): يتم إضافة نوع واحد فقط من ddNTP (مثل ddGTP أو ddATP أو ddCTP) لكل أنبوب، ويكون بتركيز منخفض.

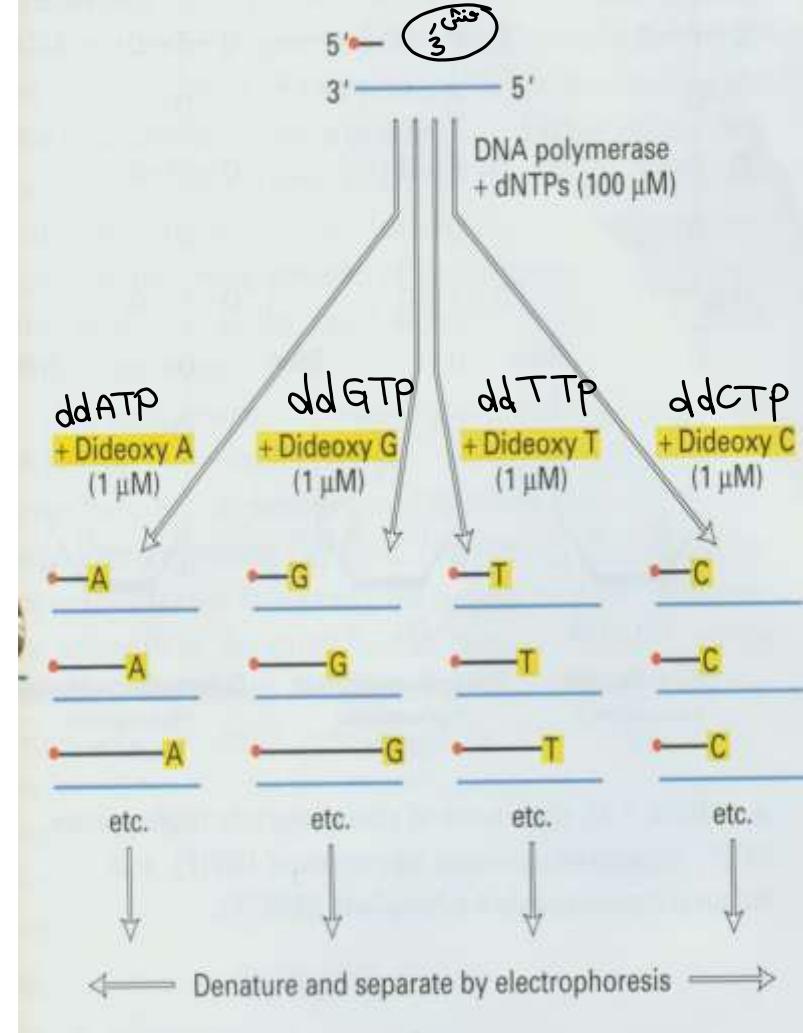
CHAIN TERMINATION METHOD


- This method uses single-stranded DNA.
- Also known as **dideoxy sequencing** method because it involves the use of analogue of normal nucleotide 2',3'-dideoxynucleoside triphosphates (ddNTPs). These are chain terminating nucleotides lacking 3'-OH ends.
- This method is based upon the incorporation of ddNTPs into a growing DNA strand to stop chain elongation.

Structure of NTP, dNTP, and ddNTP

STAGES:

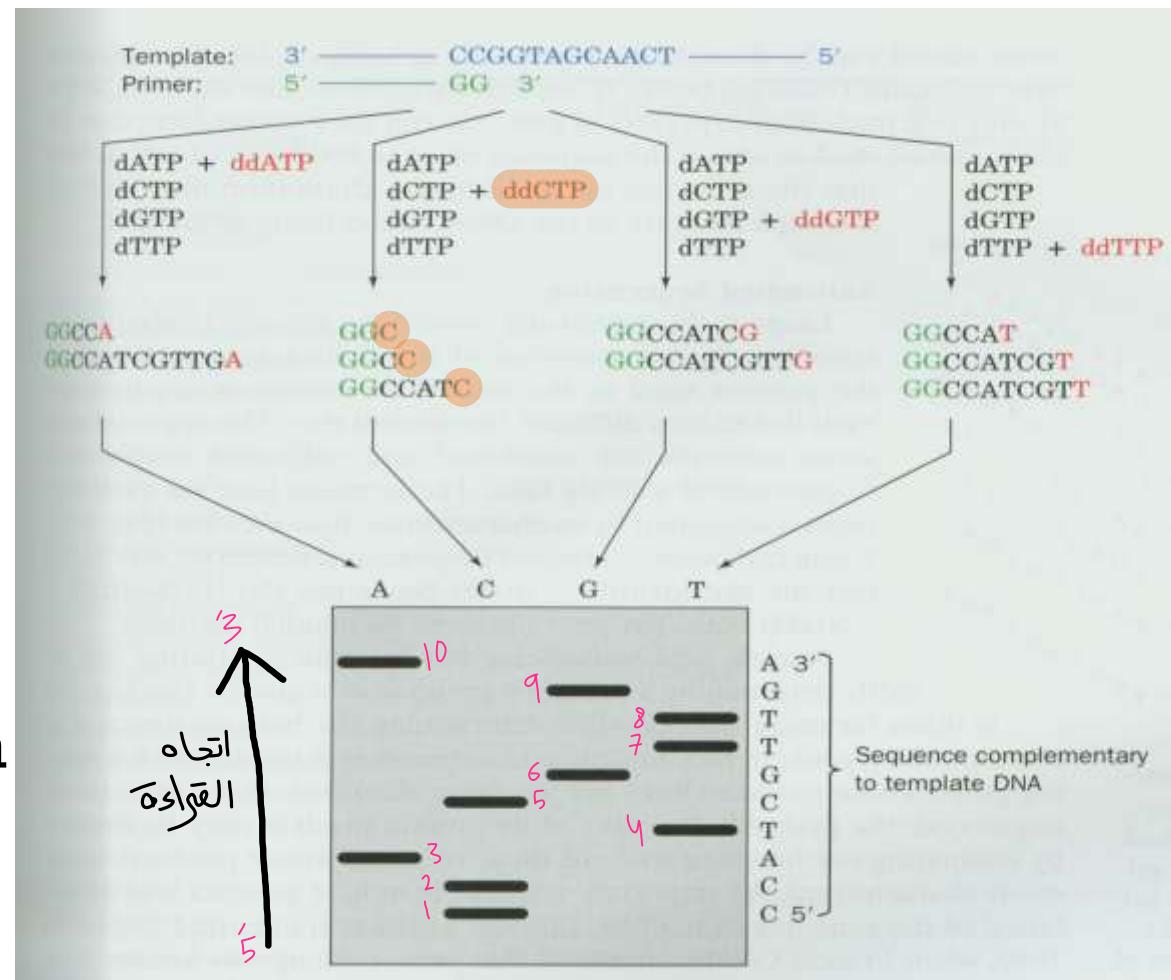
1. The DNA to be sequenced is extracted from phage or E. coli for sequencing purpose.
2. A synthetic 5'-end-labeled oligodeoxynucleotide is used as the primer.
3. The template DNA is hybridized to the primer.
4. The primer elongation is performed in four separate polymerization reaction mixtures. Each mixture contains
 - 4 normal deoxynucleotides (dNTPs) in higher concentration and
 - a low concentration of the each of the 4 ddNTPs.
5. There is initiation of DNA synthesis by adding enzyme DNA polymerase since the enzyme cannot distinguish between the normal nucleotides and their analogues.


Action of DNA polymerase I

6. The strand synthesis continues until a ddNTP is added. The chain elongation ceases on the incorporation of a ddNTP because it lacks a 3'-OH group which prevents addition of the next nucleotide.

7. There is a result of mixture of terminated fragments, all of different lengths.

8. Denature DNA fragments.


9. Each of the four mixtures are run together on a polyacrylamide gel for electrophoresis.

Sanger method

10. The separated fragments are then visualized by autoradiography.

11. From the position of the bands of the resulting autoradiogram, the sequence of the original DNA template strand can be read directly.

Chain termination method

ADVANTAGES AND DISADVANTAGES

- Most popular method.
- Simpler and quicker allowing large output. Within an hour the primer-annealing and sequencing reactions can be completed.

- Yielding of poor results owing to secondary structure in the DNA as sometimes DNA polymerases terminate chain elongation prematurely.
- The sequence is obtained not from the original DNA molecule but from an enzymatic copy. So, there is a chance of incorporation of wrong bases.

مميزات وعيوب طريقة إنهاء السلسلة الإنزيمية (Sanger)

المزايا (Advantages)

الطريقة الأكثر شيوعاً.

أبسط وأسرع.

تسمح باتساع كبير.

يمكن إكمال تفاعلات تثبيت البادئ والتسلسل في غضون ساعة.

العيوب (Disadvantages)

قد تعطي نتائج ضعيفة بسبب التركيب الثانوي في DNA.

قد يهوي إنزيمات DNA Polymerase استطالة السلسلة قبل الأوان.

يتم الحصول على التسلسل من نسخة إنزيمية، وليس من جزء DNA الأصلي.

هناك فرصة لدمج قواعد خاطئة (wrong bases) في النسخة الإنزيمية.

الميزة	طريقة التكسير الكيميائي (Chemical Cleavage Method)	طريقة إنتهاء السلسلة الإنزيمية (Enzymatic Chain Termination Method)
الاسم الآخر	طريقة ماكسام وجيلبرت (Maxam and Gilbert)	طريقة سانغر (Sanger) / طريقة تسلسل الديديوكسي (Dideoxy Sequencing)
عام الاكتشاف	1977	1977
شعبية الاستخدام	غير مستخدمة على نطاق واسع	الأكثر شيوعاً
نوع العينة	عينة DNA مزدوجة الشريط	عينة DNA أحادية الشريط
المبدأ الأساسي	تعديل القواعد في DNA متبعاً بتكسير كيميائي خاص بكل قاعدة	إيقاف استطالة السلسلة عن طريق دمج نيوكليلوتيدات إنتهاء السلسلة (ddNTPs)
أدوات الإنتهاء	مواد كيميائية تتسبب في تكسير عمود DNA الفقري عند قواعد محددة (مثل, G, A+G, C+T, C)	نظائر النيوكليلوتيدات العادية (ddNTPs) التي تفتقر إلى مجموعة 3'-OH-
طول التسلسل	حتى حوالي 500 نيوكليلوتيدة	غير محدد
المخاطر	استخدام النشاط الإشعاعي والمواد الكيميائية السامة	قد تعطي نتائج ضعيفة بسبب الإنتهاء المبكر للسلسلة بواسطة DNA Polymerase
الخطوة الحاسمة	الفصل بالرحلان الكهربائي على هلام بولي أكريلاميد ثم التصوير الإشعاعي الذاتي (autoradiography)	الفصل بالرحلان الكهربائي على هلام بولي أكريلاميد ثم التصوير الإشعاعي الذاتي (autography)
قراءة التسلسل	تقرأ من أسفل إلى أعلى الهلام	تقرأ مباشرة من موقع الأشرطة في التصوير الإشعاعي الذاتي



IMPROVED APPROACHES AND AUTOMATED DNA SEQUENCING

- Updated version of Sanger method
- Fluorescence detection with lasers
- Cycle sequencing
- Shotgun sequencing

التسلسل الآلي هو نسخة محدثة من طريقة سانغر، استبدلت فيها الأدوات اليدوية (مثل فصل النواتج على هلام طويل) بالتقنيات الحديثة، خاصة في خطوتين الفصل والكشف.

Automated procedure for DNA sequencing

A computer read-out of the gel generates a “false color” image where each color corresponds to a base. Then the intensities are translated into peaks that represent the sequence.

النيوكليوتيدات بخط معهم بدلاً fluorescence detect من وضع علامة مشعة على primer، يتم تعليم كل نوع من نيوكلويوتيدات الإنهاء (ddNTPs) بصبغة فلورية مختلفة.

واحد احمر وواحد اخضر وواحد ازرق واخيراً واحد اصفر

هاد يحدد sequence اذا شفت غلط فيه او اشي مش واضح برجع للجل وبشوфе على الجهاز نفسه

CYCLE SEQUENCING

- There are two basic differences between cycle sequencing and PCR amplification:
 - The presence of only one primer in the cycle-sequencing reaction used to prime synthesis of one strand of the DNA
 - The presence of dideoxynucleotide triphosphates in the sequencing reactions that create the base-specific terminations required.
- The result of the temperature cycling is linear amplification of the sequencing product leading to an increase in the signal generated during the sequencing reaction when compared with standard sequencing protocols.

CYCLE SEQUENCING

- Cycling the sequencing reactions results in several advantages
 - (1) The amount of template necessary for the sequencing reaction is greatly reduced
 - (2) because smaller amounts of template are added, fewer impurities are introduced, meaning less template preparation is required; and
 - (3) The high temperature at which the sequencing reactions are run and the multiple heat-denaturation steps allow double- stranded templates such as plasmids, cosmids, X DNA, and PCR products to be sequenced reliably without a separate denaturation step

تسلاسل الدورة (Cycle Sequencing)

يحتوي على بادئ واحد فقط.

تفاعل البوليميراز المتسلسل (PCR)

يحتوي على زوج من البارادات (عادةً اثنين).

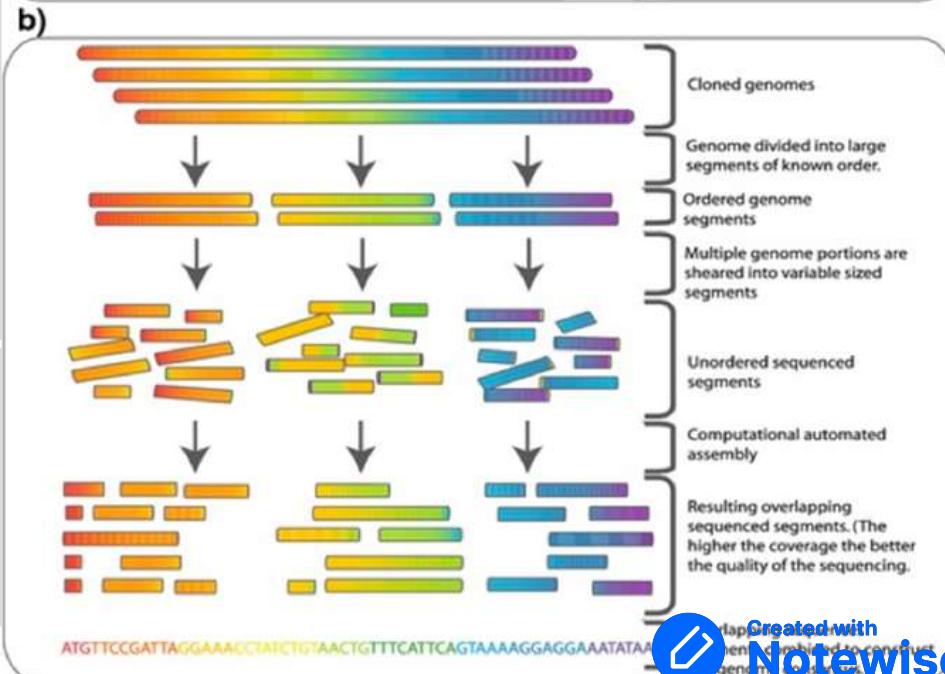
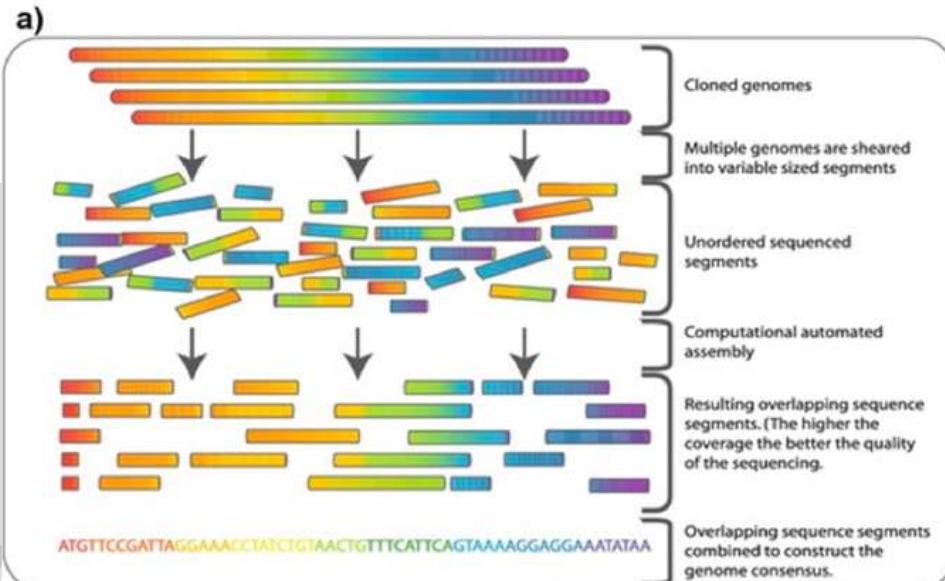
يحتوي على نيوكلويوتيدات ديدنوكسي ٣-لائحة الفوسفات (ddNTPs) لإنشاء إنهاءات خاصة بالقاعدة.

لا يحتوي على ddNTPs (يستخدم dNTPs فقط لإنشاء نسخ كاملة).

النقطة	الميزة	الشرح
١	يتم تقليل كمية القالب (Template) اللازمة لتفاعل بشكل كبير.	بما أن كميات أقل من القالب تضاف، يتم إدخال عدد أقل من الشوائب، مما يعني أن تحضير القالب المطلوب أقل.
٢	تسلاسل القوالب المزدوجة	درجة الحرارة العالية التي تُجرى عندها التفاعلات وخطوات الدنيرة المتعددة تسمح بتسلاسل القوالب مزدوجة الشريط (مثلاً البلازميدات، الكوزميدات، ومنتجات PCR) بشكل موثوق دون الحاجة لخطوة دنيرة منفصلة قبل التفاعل.

SHOTGUN SEQUENCING

- is a method used for sequencing long DNA strands
- DNA is broken up randomly into numerous small segments, which are sequenced using the chain termination method to obtain reads.
- Multiple overlapping reads for the target DNA are obtained by performing several rounds of this fragmentation and sequencing.
- Computer programs then use the overlapping ends of different reads to assemble them into a continuous sequence



SHOTGUN SEQUENCING

اللي فيها تكون: قطعة DNA طويلة (التي نريد تسلسلها).
الإجراء: يتم تكسير (Shear) هذا الشريط الطويل
عشوائياً إلى عدد هائل من الأجزاء الصغيرة. تُسمى هذه
العملية "شوتغُن" لأنها تقطع الهدف بعشوائة.
النتيجة: نحصل على آلاف القطع الصغيرة ذات الأطوال
المختلفة.

التسلسل: تُستخدم طريقة إنهاء السلسلة (Sanger Method) لتسلسل كل جزء صغير للحصول على قراءة Read)

الداخل (Overlap): تكرر عملية التكسير والتسلسل عدة مرات (عدة جولات) للحصول على قراءات متعددة وممتدة. هذا التداخل ضروري للمرحلة التالية

تستخدم البرامج الحاسوبية الأطراف الممتدة (Overlapping ends) للأجزاء القصيرة التي تم تسلسلها لتجميعها في تسلسل جينومي كامل ومستمر.

التفاصيل	الميزة
تسليسل أشرطة DNA الطويلة أو الجينومات الكاملة.	الهدف الأساسي
تكسير DNA عشوائياً إلى أجزاء صغيرة متعددة، ثم تجميعها حاسوبياً.	المبدأ
تستخدم طريقة إنهاء السلسلة (Chain Termination) لتسليسل الأجزاء الصغيرة. (Method/Sanger)	طريقة التسلسل المستخدمة
يتم تكسير DNA عشوائياً إلى أجزاء صغيرة عديدة.	الخطوة 1: التجزئة (Fragmentation)
يتم إجراء عدة جولات من التكسير والتسلسل للحصول على قراءات متعددة ومترادفة (Multiple overlapping reads) لـ DNA المستهدف.	الخطوة 2: الحصول على القراءات (Reads)
تستخدم برامج الحاسوب الأطراف المترادفة للقراءات المختلفة لتجمعها في تسلسل مستمر (Continuous sequence).	الخطوة 3: التجميع (Assembly)
التغطية (Coverage): كلما كانت التغطية أعلى، كانت جودة التسلسل أفضل.	مقياس الجودة
أجزاء التسلسل المترادفة تُدمج لبناء التوافق الجينومي .(Genome Consensus)	النتيجة النهائية

الهلام المسطح التقليدي (Slab Gel)	الرحلان الكهربائي الشعري (CE)	الميزة
أبطأ	أسرع	السرعة
دقة أقل	فائق على انتاج دقة أكبر	دقة الفصل (Resolution)
انتاجية أقل بكثير (مسارات محدودة).	يمكن استخدام عشرات وحتى مئات من المسارات.	الانتاجية (Throughput)

High-throughput sequencing

Capillary electrophoresis

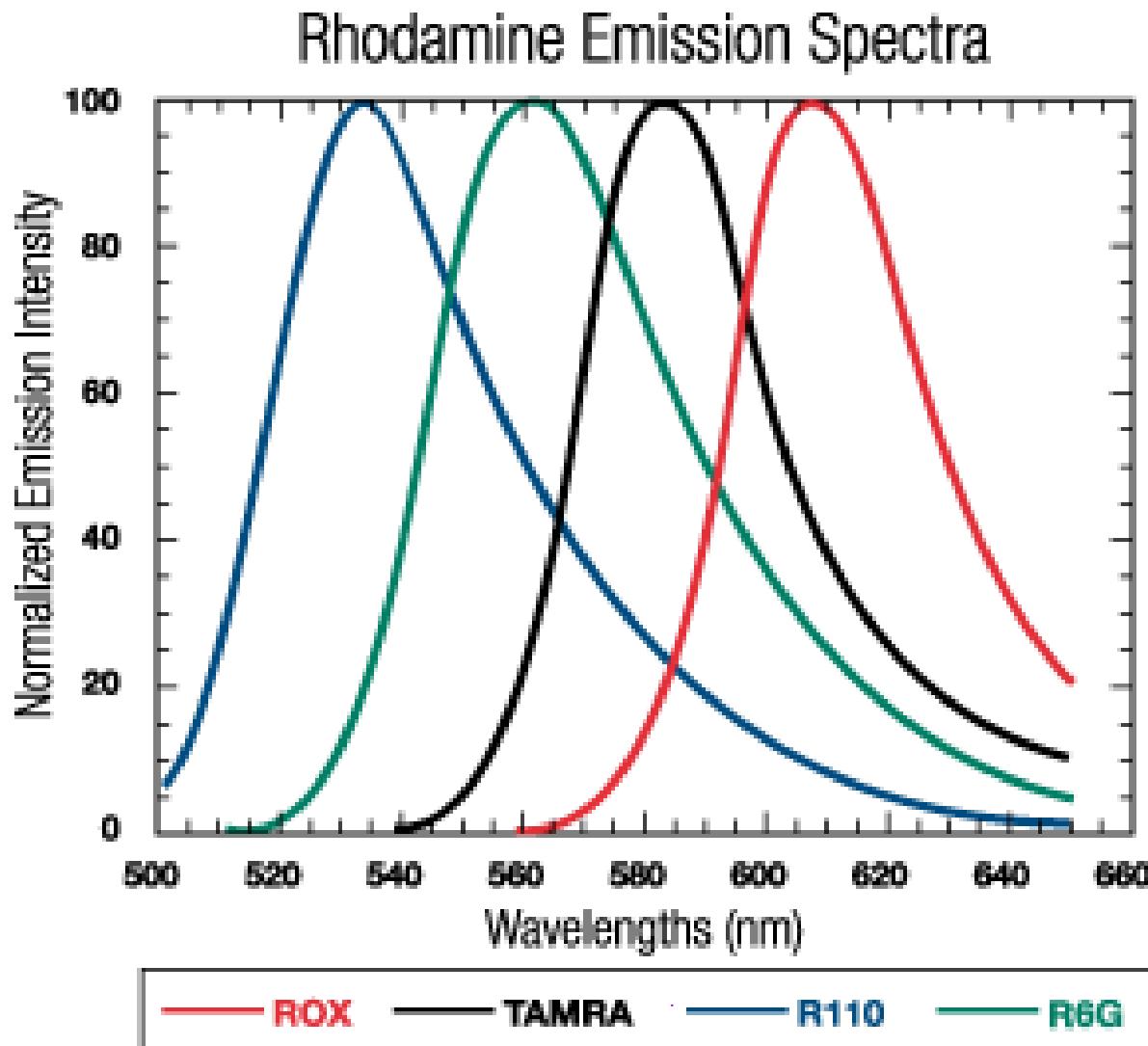
The human genome project has spurred an effort to develop faster, higher throughput, and less expensive technologies for DNA sequencing.

Capillary electrophoresis (CE) separation has many advantages over slab gel separations. CE separations

are faster and are capable of producing greater resolution. CE instruments can use tens and even hundreds of capillaries simultaneously. The figure show a simple CE setup where the fluorescently-labeled DNA is detected as it exits the capillary.

Sieving matrix for CE

- To separate DNA fragments of different sizes the capillary needs to be filled with sieving matrix, such as **linear polyacrylamide** (acrylamide polymerized without bis-acrylamide).
- This material is not rigid like a cross-linked gel but looks much like glycerol. With a little bit of effort it can be pumped in and out of the capillaries.
- To simulate the separation characteristics of an agarose gel one can use **hydroxyethylcellulose**. It is not much more viscous than water and can easily be pumped into the capillaries.


البولي أكريلاميد الخطبي: هو الخيار القياسي لغربلة وفصل أجزاء DNA حسب الحجم.

الهيدروكسي إيثيل سيليلوز: هو الخيار إذا كان الهدف هو الحصول على نمط فصل يشبه فصل هلام الأغاروز

Fluorescent end labeling of DNA

جدول فبسط: الرحلان الكهربائي الشعري (Capillary Electrophoresis)

Automated

الشرح المبسط	الأهمية في تسلسل DNA
استبدال لوح اللام المسطح (Slab Gel) بأنبوب زجاجي دقيق جداً (Capillary).	يسمح بتشغيل آلاف العينات بسرعة فائقة (High-throughput).
يُدفع أجزاء DNA الفعلمة بالألوان الفلورية خلال الأنابيب بواسطة مجال كهربائي قوي.	يفصل الأجزاء بدقة عالية حسب الحجم: الأقصر يتحرك أسرع.
يتم وضع ليزر وكاشف ضوئي عند نهاية الأنابيب.	الليزر يشير الصبغة الفلورية الموجودة في نهاية كل جزء، والكاشف يسجل لون الضوء (الذي يمثل القاعدة: A, T, C, G أو A, T, C, G).
يُرسّل الحاسوب منحيات قمم (Peaks) تحدد التسلسل (A, T, C, G) مباشرة دون تدخل يدوي.	ينتشرن الحاسوب منحيات قمم (Peaks) تحدد التسلسل (A, T, C, G) في الوقت الحقيقي إلى الحاسوب.
أتمتة كاملة لخطوئي الفصل والكشف في طريقة سانفر.	جعل طريقة سانفر سريعة وفعالة ومؤتمتة، وهي الأساس لجميع أجهزة التسلسل الآلي الحالية.

المكون	الوظيفة
① (Capillaries)	أنابيب زجاجية دقيقة تستخدم لمزور عينات DNA.
② (Sieving Matrix)	مادة لملء الأنابيب الشعرية لفصل أجزاء DNA حسب الحجم.
③ (Fluorescent Labels)	تعلم نيكليوتيدات الإنهاء (ddNTPs) بصبغات فلورية مختلفة (ROX, TAMRA, R110, R6G) مثل
④ (Laser & Detector)	الليزر يُفْعِل الصبغات (Laser activates dyes)، والكاشف يرصد لون الضوء المبعث.

What is the function of the sequenced gene?

اذا كان
مش معلوم برجع لل
المدخل data base

Classical methods:

- ①- mutate gene, characterize phenotype for clues to function (genetics)
- ②- purify protein product, characterize *in vitro* (biochemistry)

Comparison to previously characterized genes:

- genes sequences that have high sequence similarity usually have similar functions
- if your gene has been previously characterized (using classical methods) by someone else, you want to know right away! (avoid duplication of labor)

NCBI

NCBI home page -Go to www.ncbi.nlm.nih.gov for the following pages

Pubmed: search tool for literature--search by author, subject, title words, etc.

All databases: “a retrieval system for searching several linked databases”

BLAST: Basic Local Alignment Sequence Tool

OMIM: Online Mendelian Inheritance in Man

Books: many online textbooks available

Tax Browser: A taxonomic organization of organisms and their genomes

Structure: Clearinghouse for solved molecular structures

هي أداة حاسوبية
أساسية و مهمة
للمقارنة،

البحث في قاعدة بيانات مختارة من التسلسلات وتحدد التسلسلات التي تتشابه مع تسلسل التجربة (Test sequence).

ترتيب التسلسلات (Homology) ترتب التسلسلات المتشابهة حسب درجة التجانس (Homology) باستخدام قيمة E value.

توضيح المحاذة (Alignment) توضيح المحاذة (Alignment) بين التسلسل التجربة والسلسلات المتشابهة التي تم العثور عليها.

What does BLAST do?

- 1) Searches chosen sequence database and identifies sequences with similarity to test sequence
- 2) Ranks similar sequences by degree of homology (E value)
- 3) Illustrates alignment between test sequence and similar sequences

تتخليني اعرف نسبة التشابه بين الجينات

Alignment of sequences:

نقدر ندخل sequence يحكيلى شو نسبة التشابه مثلا يحكيلى 90٪ مع البروتين الفلامي او ممكن العكس انا بدخل الجين تبع الأنسولين وهو يحكيلى شو ال sequence تبعه

The principle: two homologous sequences derived from the same ancestral sequence will have at least some identical (similar) amino acid residues

Fraction of identical amino acids is called “percent identity”

Similar amino acids: some amino acids have similar physical/chemical properties, and more likely to substitute for each other-these give specific similarity scores in alignments

Gaps in similar/homologous sequences are rare, and are given penalty scores

ليش مش دايما متطابق لأنه ممكن يصير mutation عند الشخص بس ما يكون مبين وبسميه هاد silent mutation يكون نفس a. a ولكن كشفل لا Gen

Homology of proteins

Homology: similarity of biological structure, physiology, and development based on genetic inheritance

Homologous proteins: statistically similar sequence, therefore similar functions (often, but not always)

انواعها

PhoTFB1	1	-----	MTKQK	VCPVCGST	EF	IYDPERGEIVCARCGY
PabTFB	1	-----	MTKQR	VCPVCGST	EF	IYDPERGEIVCARCGY
PfuTFB1	1	-----	MNKQK	VCPACESA	ELIYDPERGEIVCAKCGY	
TkoTFB1	1	-----	MSGKR	VCPVCGST	EF	IYDPSRGEIVCKVCGY
TkoTFB2	1	-----	MRG	ISPKRVCPICGST	EF	IYDPRRGEIVCAKCGY
PfuTFB2	1	-----	MSSTE	PGGGWL	DLVYD	RQHGEVFCKKCGS
PhoTFB2_de	1	-----	YGG	SKIRCPVCGSS	KI	IYDPEHGEYYCAECGH
SsoTFB1	1	-----	MLYLSEENKS	VSTPCPPD	KI	IFDAERGEYICSETGE
SsoTFB2	1	-----	MK	CPYCKTDN	AITYDVEKG	MYVCTNCAS
SceTFIIB	1	MMTRESIDK	RAGRRGPNLNIVLT	CPECKVYPPK	KIVERFSE	GDVVVCALCGL
consensus	1	m	kvpvCgst	eliydperGeivCar	cg	gy

Alignment of TFB and TFIIB sequences

TFB stands for archaeal transcription factor

Translating the DNA sequence

The order of amino acids in any protein is specified by the order of nucleotide bases in the DNA.

Each amino acid is coded by the particular sequence of three bases.

Code → GAT → ٤ قواعد نسخة جينية

To convert a DNA sequence

First, find the starting codon. The starting codon is always the codon for the amino acid methionine. This codon is AUG in the RNA (or ATG in the DNA):

في RNA يكون بدل T *** U

GCGCGGGUCCGGGCAUGAAGCUGGGCCGGGCCGUGC....

Met

In this particular example the next codon is AAG. The first base (5'end) is A, so that selects the 3rd major row of the table. The second base (middle base) is A, so that selects the 3rd column of the table. The last base of the codon is G, selecting the last line in the block of four.

The codon table

لو بدبي اعرف شو
اسم TAA تبعو على
الاسهم

هاد العاود الاول

5'-Base

U(=T)

C

A

G

هاد العاود الثاني

Middle Base

C

His

Asn

Asp

وهاد الثالث

3'-Base

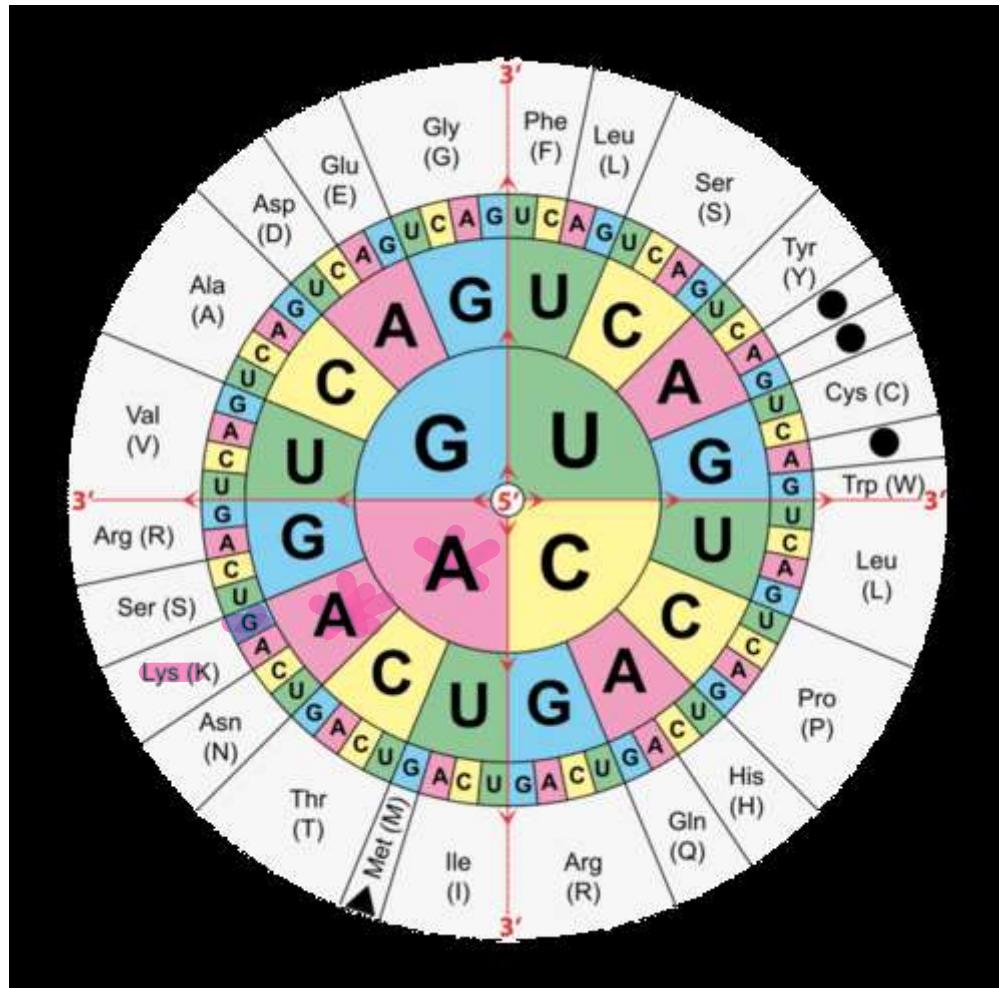
U(=T)

U(=T)

U(=T)

U(=T)

جريبو
CCA على
هل يطلع
معكم ولا لا


5'-Base	Middle	Base		
U(=T)	C	A②	G	U(=T)
Phe	Ser	Tyr	Cys	
Phe	Ser	Tyr	Cys	C
Leu	Ser	Term	Term	③A
Leu	Ser	Term	Trp	G
Leu	Pro	His	Arg	U(=T)
Leu	Pro	His	Arg	C
Leu	Pro	Gln	Arg	A
Leu	Pro	Gln	Arg	G
Ile	Thr	Asn	Ser	U(=T)
Ile	Thr	Asn	Ser	C
Ile	Thr	Lys	Arg	A
Met	Thr	Lys	Arg	G
Val	Ala	Asp	Gly	U(=T)
Val	Ala	Asp	Gly	C
Val	Ala	Glu	Gly	A
Val	Ala	Glu	Gly	G

اول شغله نعملها
لا حل TAA امد
خط من T
الموجوده في 5
بعدها prime
اروح انزل خط من
الموجوده ب
middle
اشي اروح اقاطعها
مع A الموجوده في
prime 3
يطلع معي الجواب

Created with
Notewise

The codon table

Translating the DNA sequence

This entry **AAG** in the table is Lysine (Lys).
Therefore the second amino acid is Lysine.

The first few residues, and their DNA sequence, are as follows (color coded to indicate the correct location in the codon table):

Met Lys Leu Gly Arg
AUG AAG CUG GCC CGG GCC GUG C..

This procedure is exactly what cells do when they **synthesize proteins** based on the mRNA sequence. The **process of translation** in cells occurs in a large complex called the **ribosome**.

لنفترض أن تسلسل DNA يبدأ بعد كودون البدء بكودون **AAG**.

الحمض الأميني	الموقع في جدول الشفرات	الموقع في الكودون	القاعدة
تحتار الصف الرئيسي الثالث في الجدول.	القاعدة الأولى (end-'5')	الموقع في الكودون	A
تحتار العمود الثالث.	القاعدة الثانية (Middle base)	القاعدة الأولى (end-'5')	A
لايسين (Lysine)	تحتار السطر الأخير في المجموعة المكونة من أربعة.	القاعدة الثالثة (3'-Base)	G

HUMAN GENOME PROJECT (HGP)

HGP is a national effort to sequence and analyze the human genome which is a very complex system consisting of 50,000 to 100,000 genes. These genes are located on 23 base pairs of chromosome. The complete sequence was complete in 2005.

Some reasons for studying Human genome:

- Better medical practice
- High-quality diagnosis of diseases
- Understanding of evolution fully
- Improvement in biological research and forensic science
- Improvement in agriculture etc.

The latest research on HGP are

- Pulsed electrophoresis
- Fluorescence microscopy
- 2D gel electrophoresis
- gtc double-stranded subclone inserts