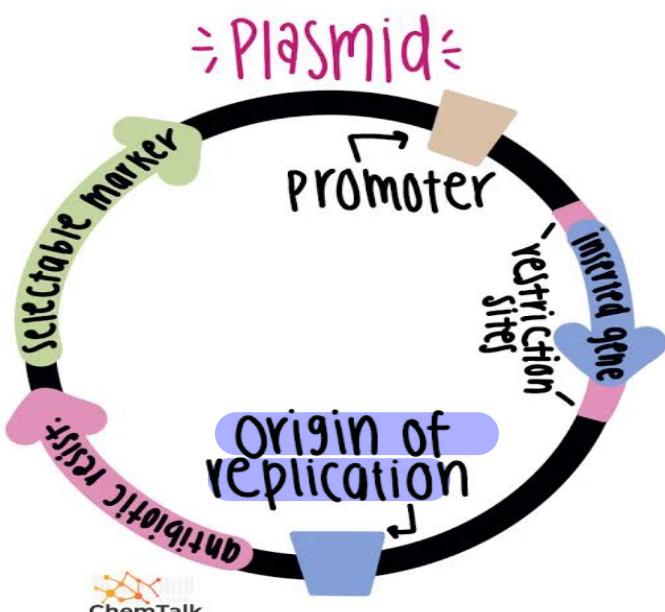


MIRACLE Academy

قال تعالى (يَرْزُقُ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أَوْثَوْا الْعِلْمَ ذَرَجَاتٍ)

تَفْرِيغُ الْبَيْوْتَكِنُو
زَمِيلَتُكُمْ نَهْيَ حَسَن

لْجَانُ الْفَعَّاتُ


VECTORS AND THEIR TRANSFORMATION

ال vector هو نفسه plasmed طيب هل بزبط اختار اي واحد منهم؟؟ الجواب لا انما نختار هم حسب 1 characteristic

2 size

في عنا كثير أحجام لـ plasmed ولكن احنا هون رح نحكي عن plasmed الي داخل الخليه البكتيريا وبحكي عن سعته الي هي تقريبا 10 الاف جين اما أكبر صعب وهو دور على اشي أكبر

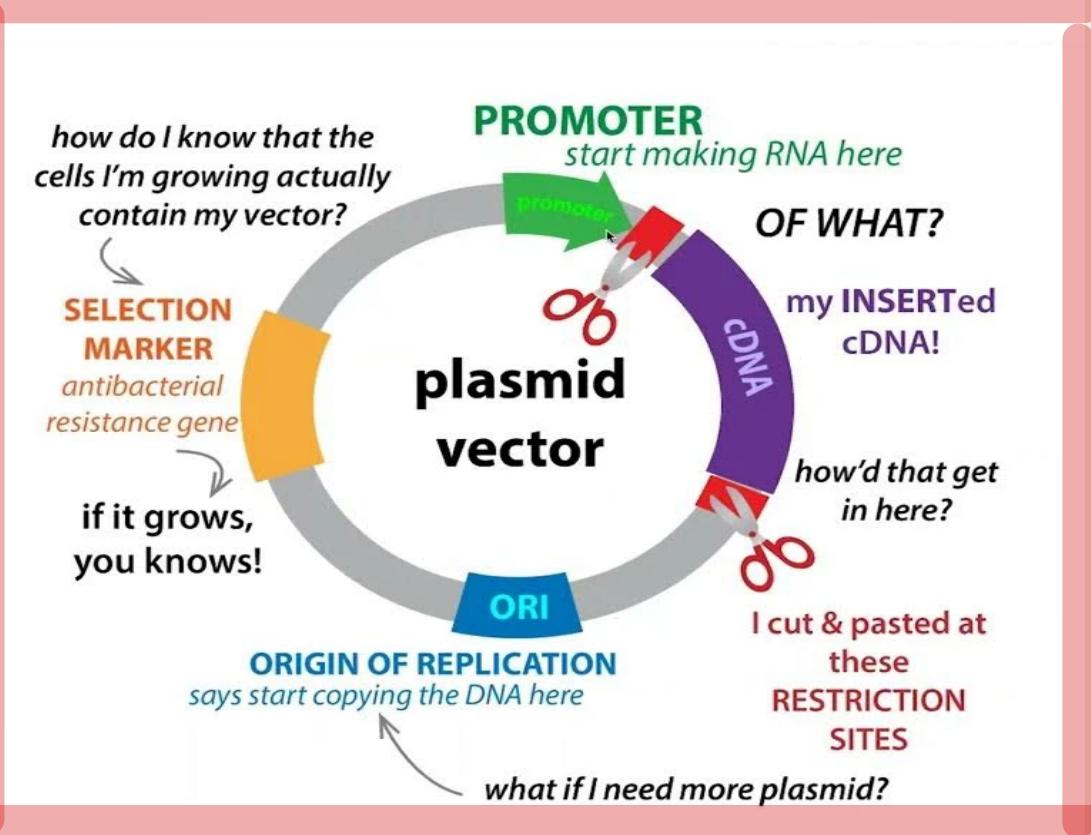
ههسا مبدأ شغل ال vector كالاتي والي رح اكتبه لحتى نوخذ فكره عامله عنه وبعدين بنبلش نحلله
 انا عندي DNA الي بدي ايه وهاد يحتوي على جين انا بدي ايه بروح عن طريق restrictions enzymes بقص
 الجين المطلوب وبنفس هاد restrictions enzymes بقص vector الي هو نفسه plasmed وهيك صرنا
 جاهزين لنشبكهم مع بعض عن طريق عملية ligation وهون صار عنا plasmed يحتوي على الجينات المطلوبه
 وهاد بدخله لجوا خليه بكتيريا ليبلش عملية الانقسامات

لما دخلته لداخل الخليه هو رح ينقسم. قصدي البلازميد معها ولكن ما رح يكون رابط
 معها (انقسم لحاله لانه اله oreginal of replication الي بدونها البلازميد ما رح
 يقدر يعمل نسخ لنفسه ولا يتکاثر وهي صوته

Vector types

- Small DNA molecule capable of self replication that are used as cloning vehicle or carrier of DNA fragment.
- Selection of the vector type depends on host used in the cloning and size of insert
 - *Plasmids*
 - *Phages*
 - *Hybrid vectors*
 - *Artificial chromosomes*

للي بي استخدمو لجامعة cloning


ماد للذئبانيات الكبيرة

من خلال marker وهاد الماركر هو antibiotics resistant هو رح اشرح فكرتها هسا لأنها رح تنذكر لقدام
الآتي مش انا بختار الجينات المطلوبه من DNA لنقول مثلا اخترت الجينات المسؤوله عن growth مش بدبي ادخلها مع البلازميد لداخل الخلية البكتيريه وبضيف للي بلازميد هاد مثلا جين Hermosa ampicillin resestans وبجيب petri dish ويكون فيه مضاد حيوي امبيسلين مخلوط مع agar ف البكتيريا الي ماتت هي الي ما أخذت البلازميد والي أخذته عاشت ورح تصنع GH

Note

Vector Characteristics

- Self replication, multiple copies.
- Replication origin site.
- Cloning site.
- Selectable marker gene.
- Small size.
- Easily isolated & purified.
- Easily transformed into host cell.
- Control elements – promoter, operator, ribosome binding site.

Types

- There are two types of vectors:

- **Cloning vectors:** DNA molecules that are used to "transport" cloned sequences between biological hosts and the test tube. Examples: Plasmids, Phage or Virus to get millions of copies.

هاد الجينات المخفيّة

ماد للجينات الكثيرة

- **Expression vectors:** a plasmid or virus used to introduce a specific gene into a target cell, and can commandeer the cell's mechanism for protein synthesis to produce the protein encoded by the gene

هون لازم تكون عندي عمليه expression

Cloning vectors

- **Cloning vectors** are used in genomic library, preparing probes and Genetic engineering experiments.
- Selection of cloning vector depends on :-
 - *Objective of cloning experiment*
 - *Ease of working.*
 - *Knowledge existing about the vector.*
 - *Suitability.*
 - *Reliability*

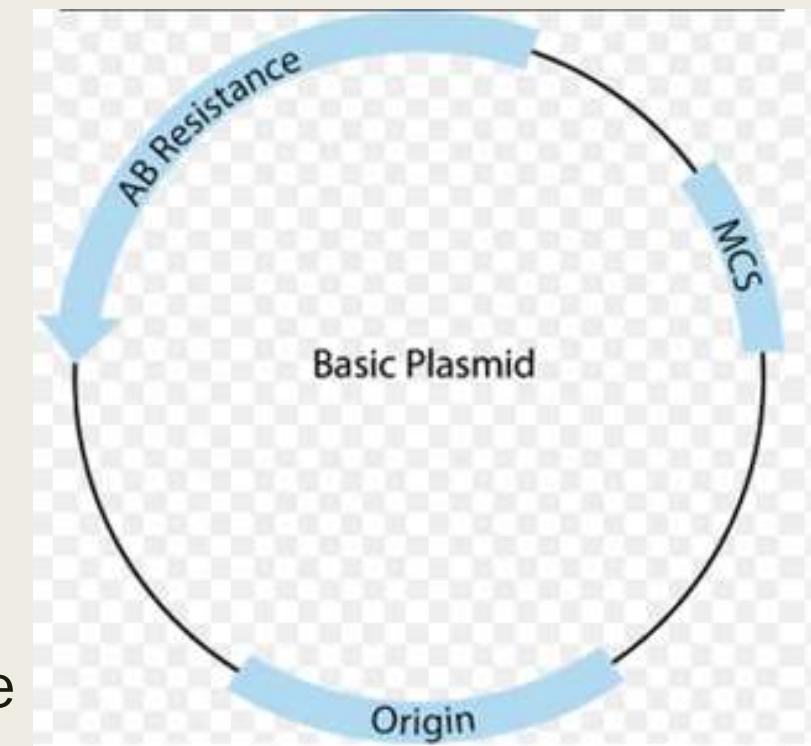
اجزاء Cloning vectors

- Self replication, multiple copies.
- Replication origin site.
- Cloning site.
- Selectable marker gene.

كل ما كان أصغر كان احسن، ولكن مش دائمًا تكون Gen صغير لو عندي 2000 segments ما بقدر اعمل cloning مره وحده إلهم انما كل الف وبعمل إلهم هدول من الجهاتين وبحط restrictions enzymes وبربطهم مع بعض يعني cloning vector شغال زي السياره ينقله من نقطه لثانيه (بستخدم لنقل plasmid الي حطيت معه Gen المرغوب لداخل الخلية البكتيريه)

ولازم لازم ال ribosomes يتعرف على plasmid حتى يعمل expression للبروتين ويصنعه ولكن انا ما بدبي يكون عندي بعمليه cloning expression عشان ما يعمل expression للخلية تكون toxic للبكتيريا human

Cloning vectors


- Cloning vectors share four common properties
- 1. Ability to promote autonomous replication.
- 2. Contain a genetic marker (usually dominant) for selection.
- 3. Unique restriction sites to facilitate cloning of insert DNA.
- 4. Minimum amount of nonessential DNA to optimize cloning.

antibiotic
القابض

Plasmids

يقدر ينقل من خلية لأخرى من خلاله *resistans*

- Bacterial cells may contain extra-chromosomal DNA called **plasmids**.
- Plasmids are usually represented by **small, circular** double stranded DNA.
- Some **plasmids are present in multiple copies in the cell**
- In addition to bacteria, it may **exist in the nuclei of some eukaryotic cells**.
- They can replicate independently of the host cell. The **size of plasmids ranges from a few kb to near 100 kb**
- Can **hold up to 10 kb fragments**

ولكن فعلياً احنا نستخدم لحد 3000 مش 10000

Plasmid vectors

Origin of replication

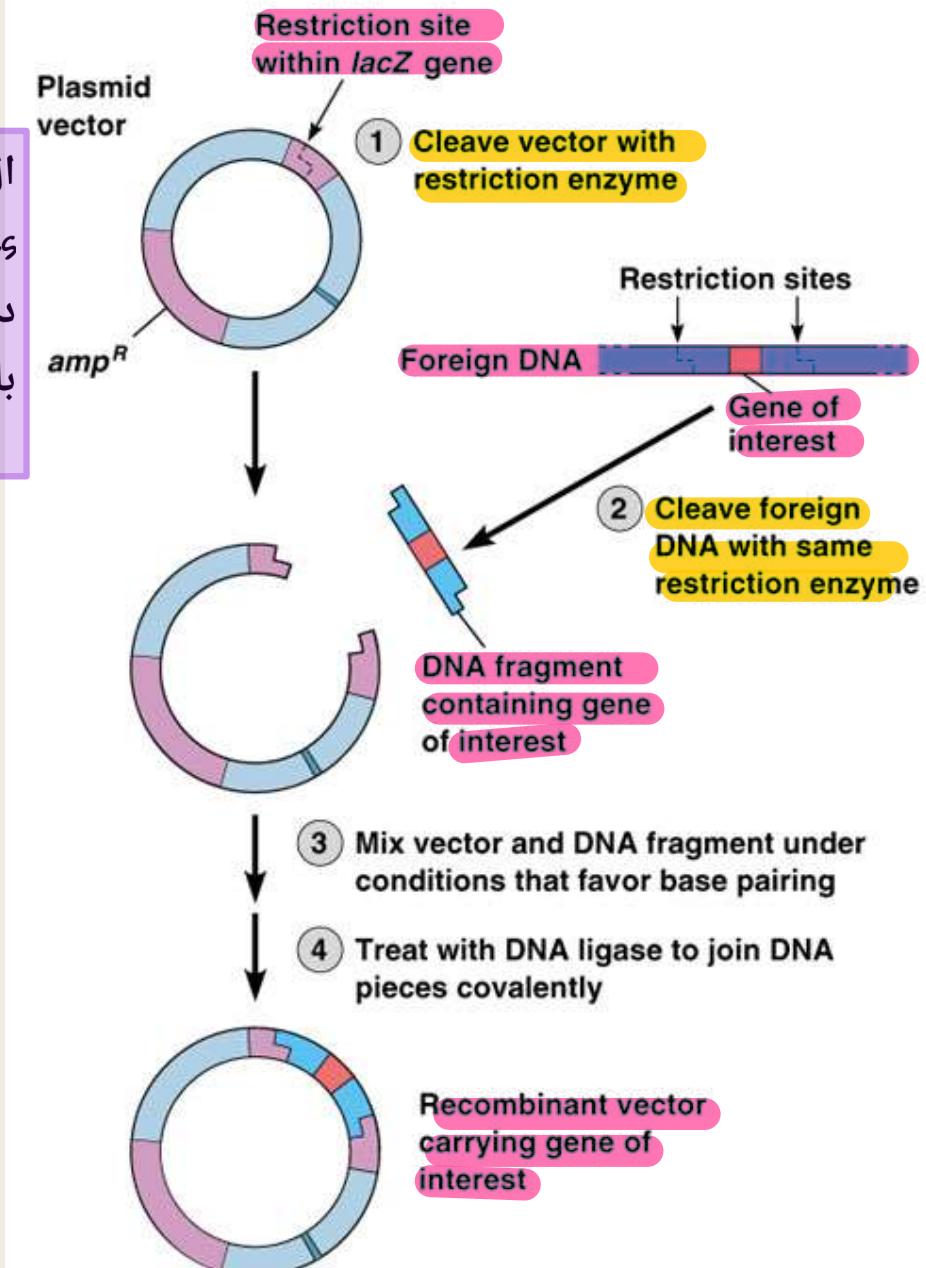
- Plasmid vectors contain:
- **Origin of replication** (Ori) is a DNA segment recognized by the cellular DNA-replication enzymes.
- Without replication origin, DNA cannot be replicated in the cell
- a gene that permits selection,
- Here the selective gene is **ampr**; it encodes the **β -lactamase**, which inactivates **ampicillin**.
- Exogenous DNA can be inserted into the bracketed region .

Selective marker

- **Selective marker** is required for maintenance of plasmid in the cell.
- Because of the presence of the selective marker the plasmid becomes useful for the cell.
- Under the selective conditions, **only cells that contain plasmids with selectable marker can survive** شرحت الفكرة سلайд 8
- **Genes that confer resistance to various antibiotics are used.**
- **Genes that make cells resistant to ampicillin, neomycin, tetracycline or chloramphenicol are used**

Multiple cloning site

حکینا هاد مکان ما یصیر فيه تکرار ل restrictions enzymes


- Many cloning vectors contain a **multiple cloning site** or **polylinker**: a DNA segment with several **unique sites** for restriction endonucleases located next to each other
- **Restriction sites of the polylinker are not present anywhere else in the plasmid.**
- **Cutting plasmids with one of the restriction enzymes that recognize a site in the polylinker does not disrupt any of the essential features of the vector**

هاد endo فش غير واحد منه وما اله تکرار ف restrictions enzymes مش موجود باي مکان ثانی البلازمید غير ب MCS کمان بقدر اقطع بانزیم او اکثر. مثلا بقطع bam-bam وبعده اربطهم او bam - EXO اربطهم

Multiple cloning site

الـ *LacZ* حكينا حتى اقدر ادخل الـ *gen* عاده بقص بـ restriction enzymes ويكون من *uniq sites* من ضمن *MCS* بدخله وبربطهم وهيك تكون حصلت *fragments* وبقدر اخزنه داخل *bacteria* في *freezer* على درجه حراره - 70 (لو بحط *DNA* الثلاجه رح يخرب. بالكثير بالكثير يصمد سنه)
نحطه على - 70 حكينا ونضيف معه *غليسيرول* 30%

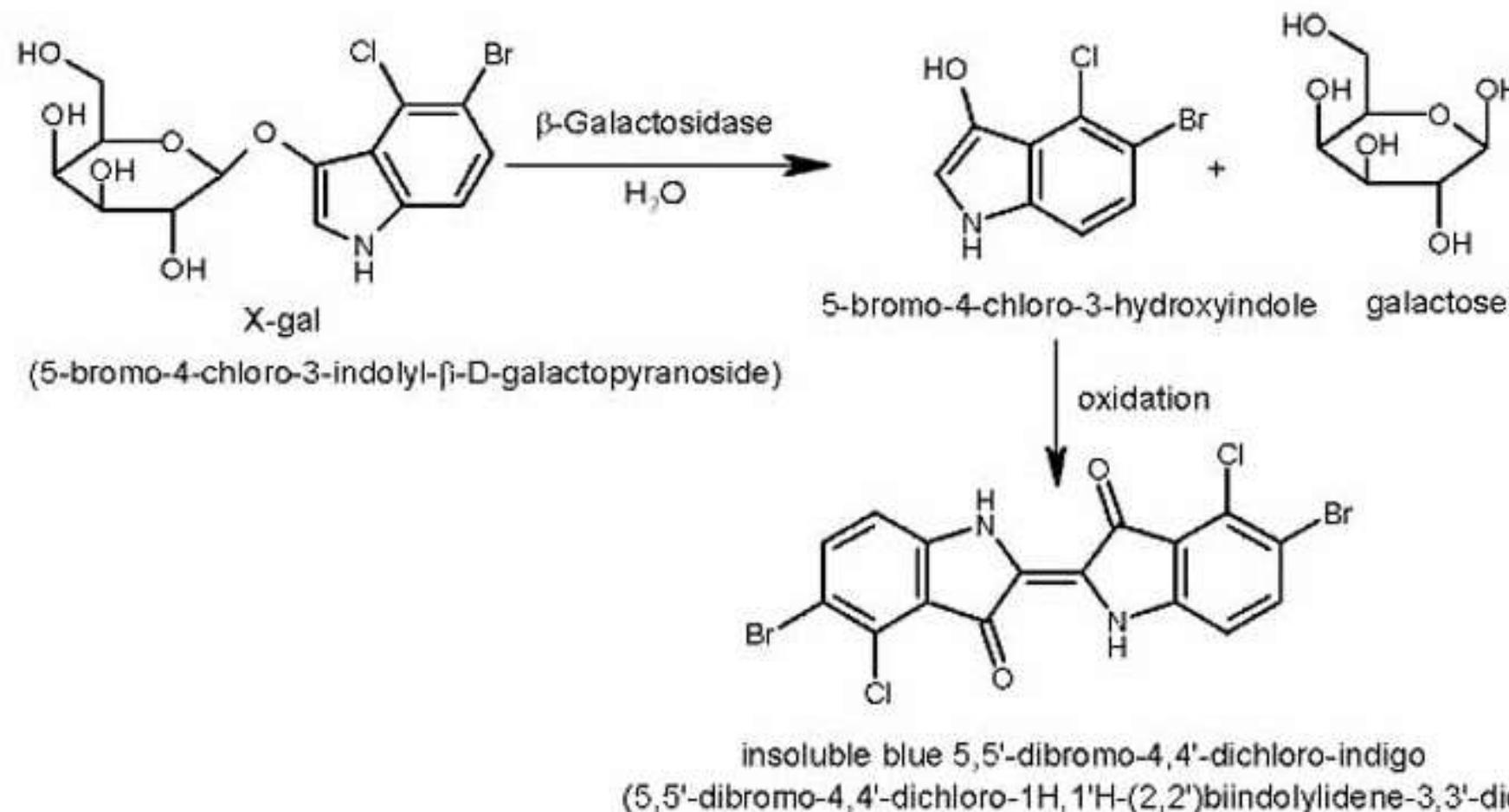

- Gene to be cloned can be introduced into the cloning vector at one of the restriction sites present in the polylinker, transformed into bacteria
- After culture growth, the clone fragment can be recovered easily. The cells are lysed and the DNA is isolated and purified.
- A DNA fragment can be kept indefinitely in bacterial culture if mixed with glycerol in a - 70 degrees C freezer.

اذا بدي ابلش عمليه expression تبع كل البروتينات لازم عليه اشي اسمه IPTG وطبعا هاد اختصار ل وهاد بديل اللاكتوز لاني ما بدي اشي تتغدى عليه البكتيريا ويشتغل نفس شغل اللاكتوز وهون تبلش عمليه تصنيع البروتينات

قبل ما نعمل اي اشي بحط تقريبا 1Mm من IPTG مع gal x على ال agar وبفردهم وبعدها بحط البكتيريا وبركها لثاني يوم ليصير الها growth طيب السؤال المهم شو قصه اللون الأزرق والأبيض على ال agar

انا لما بحط insert في عندي اشي اسمه β galactosidase هاي تنكسر بسبب اضافه insert يعني خربت promoter و اذا ما كان عندي insert رح يضل شغال وانا حطيت IPTG حتى احفز عمليه β galactosidase الي صنعت insert ما فيها والي ما صنعت β galactosidase فيها β galactosidase ويظهر اللون الأزرق ويعمله عمليه gal x يروح على β galactosidase

Plasmid Polylinkers and Marker Genes for Blue-White screening



- Colonies with recombinant plasmids are white, and colonies with nonrecombinant plasmids are blue.
- Example: pUC19
- Resistant to ampicillin, has (amp^r gene)
- Contains portion of the lac operon which codes for beta-galactosidase.
- X-gal is a substrate of beta-galactosidase and turns blue in the presence of functional beta-galactosidase if added to the medium.

اللي لونها ابيض يعني اخذت insert خربت Beta galactosidase يعني فش عندي يعني فش اشي يكسر X gal يعني فش لون ازرق

X-Gal reaction

ما نختار هم كل الي اخذه ازرق انما بس 7-6
وبوخذهم بنكاشه أنسان معقمه وبحط كل وحدة
لحالها ب وعمل growth tube وهاي تكون فيها
plasmed + insert

الهدف: نريد إدخال جين جديد في البكتيريا (مثل جين الأنسولين)

٢. تصميم البلازميد: البلازميد لازم يحتوي على:

أ. جين المقاومة للمضاد الحيوي . مثل مقاومة الأمبیسلین . وظيفته: يساعدنا نعرف البكتيريا التي أخذت البلازميد

ب. موقع إدخال الجين الجديد . مكان ندخل فيه الجين المطلوب (مثل الأنسولين)

ج. نظام التحكم (Promoter + Lac Operator) .

promoter: مكان بداية القراءة

· **lac operator:** مكان ارتباط البروتين المغلق

٣. البروتين المغلق (Repressor): وظيفته: يرتبط على ال lac operator . يمنع

RNA polymerase من القراءة . يغلق الجين → لا إنتاج للإنزيم

٤. دور ال IPTG: ال IPTG يعمل كـ: مفتاح فتح للجين . يرتبط بال repressor

يسحب انصاف repressor عن ال DNA . يفتح الجين → يبدأ إنتاج الإنزيم

٥. الكشف باستخدام X-gal: عندما: الجين مفتوح (بوجود IPTG) . الإنزيم

β -galactosidase ينتج . الإنزيم يحل ال X-gal . ينتج لون أزرق !

٦. الخطوات العملية في المختبر:

الخطوة ١: إدخال البلازميد في البكتيريا . بعض البكتيريا تأخذه والبعض لا

الخطوة ٢: الانتخاب بالمضاد الحيوي . نضع البكتيريا على طبق به مضاد حيوي . التي أخذت البلازميد تعيش (لديها مقاومة) . التي لم تأخذ تموت

الخطوة ٣: الكشف باللون الأزرق . نضيف IPTG + X-gal . البكتيريا التي أخذت البلازميد تصبح زرقاء . البكتيريا التي لم تأخذ تموت أساساً

٧. النتيجة النهائية: . البكتيريا الزرقاء = أخذت البلازميد وانتجت الإنزيم ✅ . البكتيريا الميتة = لم تأخذ البلازميد وبهذا نستطيع عزل البكتيريا الناجحة واستخدامها لانتاج البروتين المطلوب!

TYPES OF CLONING VECTORS

1. PLASMID VECTORS

- Plasmid vectors are used to clone DNA ranging in size from several base pairs to several thousands of base pairs (100bp -10kb).
- ColE1 based, pUC vehicles
commercially available ones, eg pGEM3, pBlueScript, pET16

Plasmids advantages and disadvantages

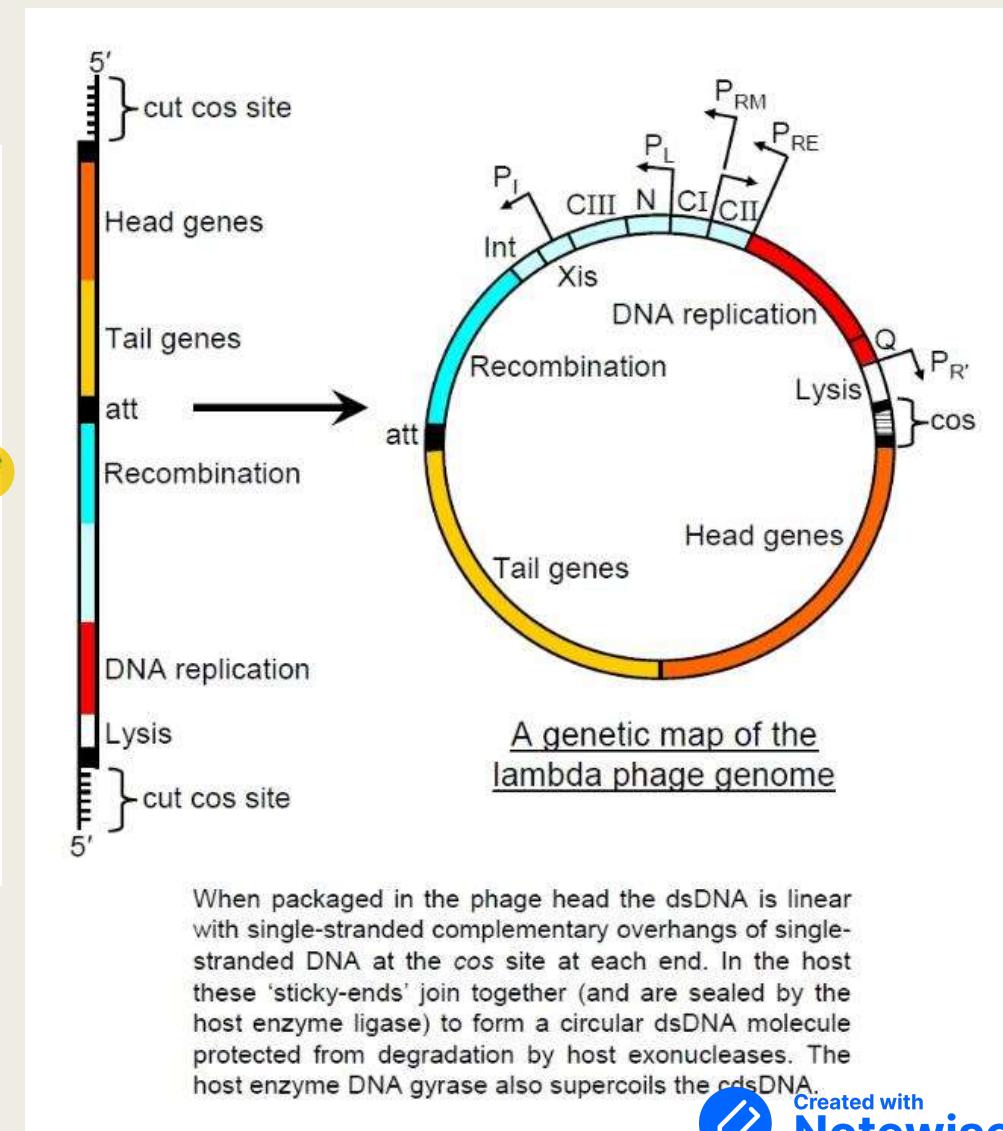
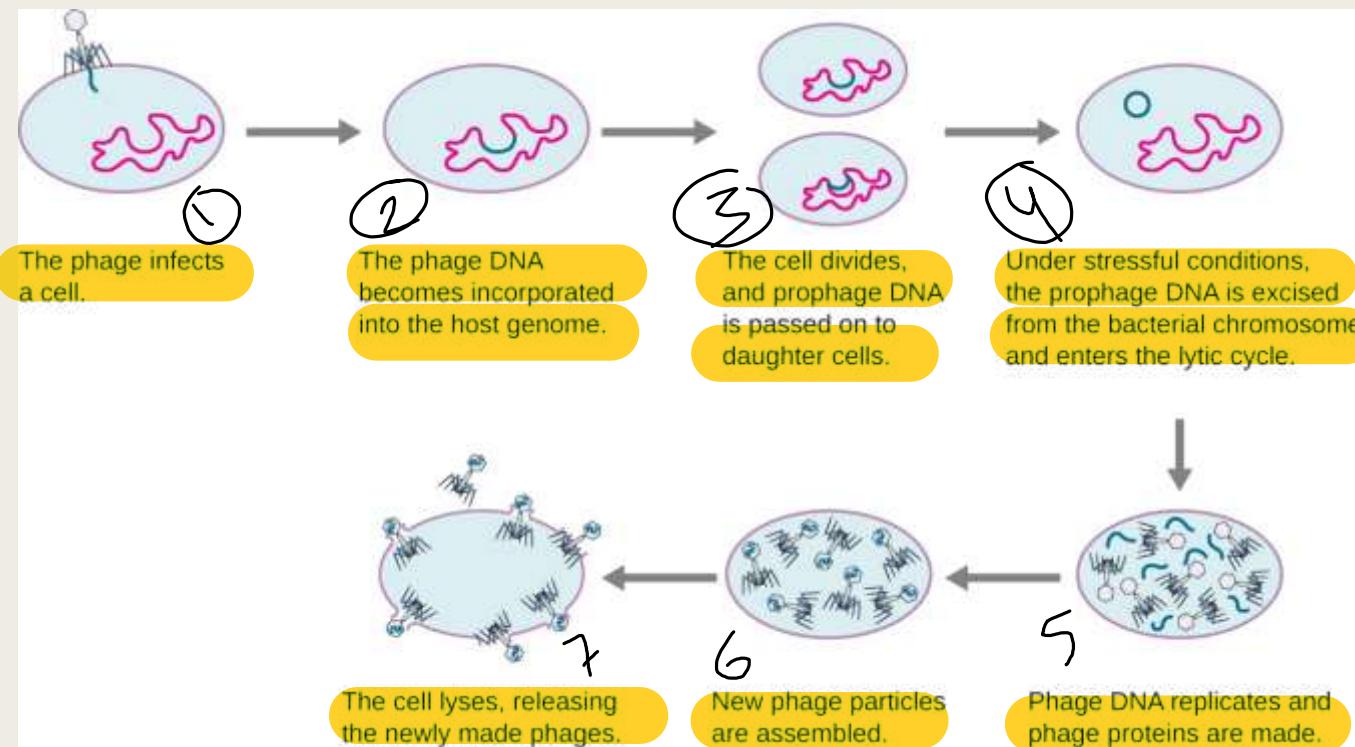
■ Advantages:

- Small size (easy to manipulate and isolate)
- Circular (more stable)
- Replication independent of host cell
- Several copies may be present (facilitates replication)
- Frequently have antibiotic resistance (detection easy)

■ Disadvantages:

- Cannot accept large fragments
- Sizes range from 0- 10 kb
- Standard methods of transformation are inefficient

2. Phage Cloning Vectors



- Fragments up to 23 kb can be accommodated by a phage vector
- Lambda and M13 are the most common phages
- 60% of the genome is needed for lytic pathway.
- Segments of the Lambda DNA are removed and a stuffer fragment is put in.
- The stuffer fragment keeps the vector at a correct size and carries marker genes that are removed when foreign DNA is inserted into the vector.
- Example: Charon 4A Lambda
- When Charon 4A Lambda is intact, beta-galactosidase reacts with X-gal and the colonies turn blue.
- When the DNA segment replaces the stuffer region, the lacZ gene is missing, no beta-galactosidase is formed, and the colonies are white.

Bacteriophage lambda

البكتيريا ممكّن تتعرّض لهجوم من virus. وهاد يربط على السطح ويدخل DNA الي بروح يرتبط مع DNA تبع البكتيريا ويعمل virus جديد وبعده virus 15-10 يفجرها للخلية البكتيريا ويطلع 15-10 ولكن بحاله page انا بدي ايه يعمل replication بدون ما يفجر الخلية معناها لازم اقصص اي اشي مضر للخلية من DNA الفيروس

- Phage lambda is a bacteriophage or phage, i.e. bacterial virus, that uses *E. coli* as host.
- Its structure is that of a typical phage: head, tail, tail fibres.
- Lambda viral genome: 48.5 kb linear DNA with a 12 base ssDNA "sticky end" at both ends; these ends are complementary in sequence and can hybridize to each other (this is the cos site: cohesive ends).
- Infection: lambda tail fibres adsorb to a cell surface receptor, the tail contracts, and the DNA is injected.
- The DNA circularizes at the cos site, and lambda begins its life cycle in the *E. coli* host.

Bacteriophage lambda

