

Pharmaceutical Organic Chemistry-1

Chapter-4: Alcohols, Phenols and Ethers

Alcohols, Phenols and Ethers

الكحولات والإيثرات والفينولات لها مجموعة وظيفية مشتركة، وهي مجموعة الهيدروكسيل، -OH.

- Alcohols, ethers and phenols have a common functional group, the hydroxyl group, -OH.

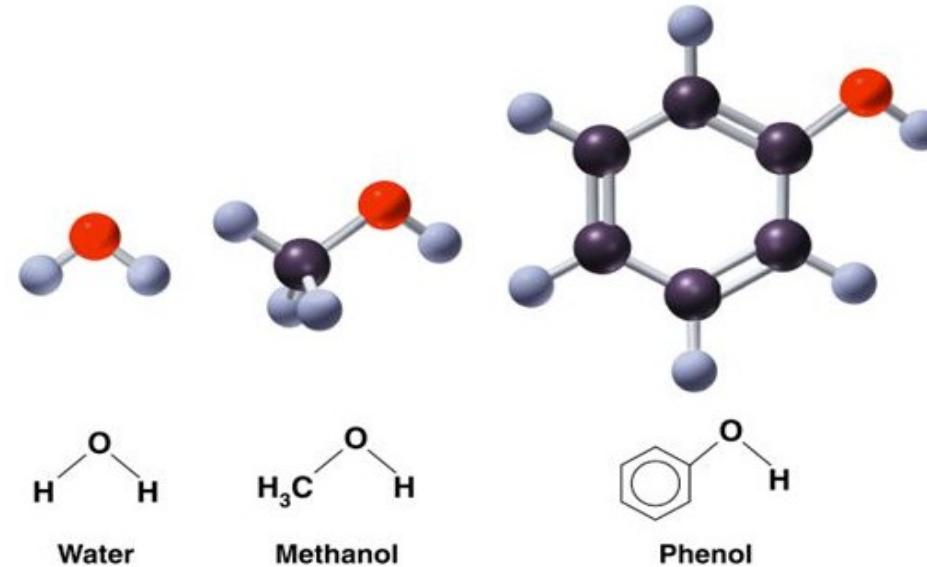
H-O-H	R-OH	R-O-R	Ph-O-H
Water	Alcohol	Ethers	Phenol

الكحولات هي مركبات تحتوي جزيئاتها على مجموعة هيدروكسيل مرتبطة بذرة كربون مشبعة.

- Alcohols are compounds whose molecules have a hydroxyl group attached to a saturated carbon atom.

الفينولات هي مركبات تحتوي على مجموعة هيدروكسيل مرتبطة مباشرة بحلقة البنزين

- Phenols are compounds that have a hydroxyl group attached directly to a benzene ring.

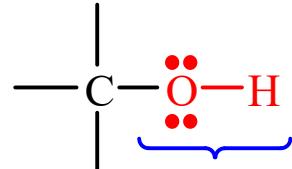

- Ethers are compounds whose molecules have an oxygen atom bonded to two carbon atom.

الإيثرات هي مركبات تحتوي جزيئاتها على ذرة أكسجين مرتبطة بذرتين كربون.

Alcohols and Phenols

يمكن اعتبار الكحولات والفينولات مشتقات عضوية للماء.

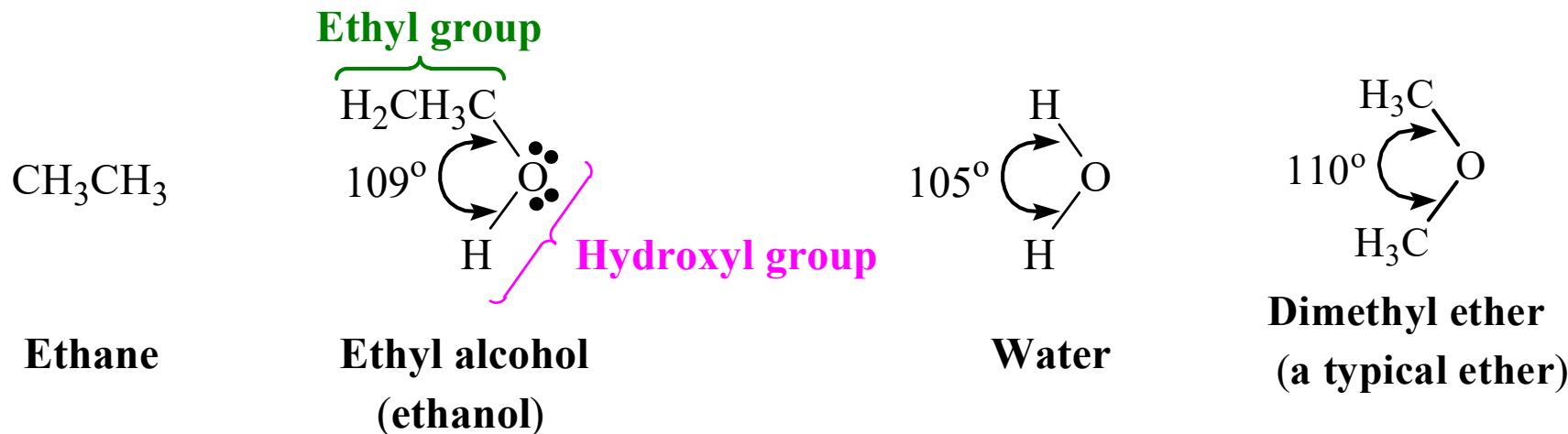
- **Alcohols and phenols** may be viewed as organic derivatives of water.



الكحولات لها الصيغة العامة R-OH، وهي مشابهة هيكلياً للماء، ولكن مع استبدال إحدى ذرات الهيدروجين بمجموعة ألكيل.

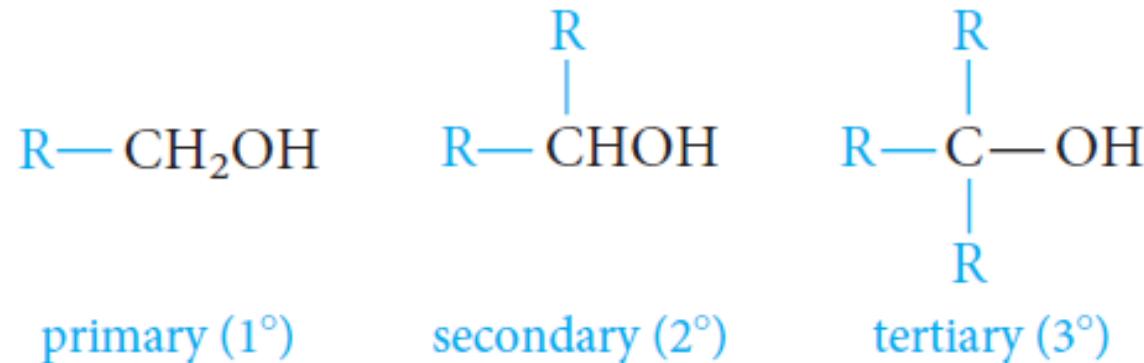
- **Alcohols** have the general formula R-OH, and structurally similar to water, but with one of the hydrogens replaced by an alkyl group.
- **Phenols** have a hydroxyl group attached directly to an aromatic ring.

تحتوي الفينولات على مجموعة هيدروكسيل مترتبطة مباشرة بحلقة عطرية.


Alcohols

This is the functional group of an alcohol

- Alcohols can be viewed in two ways structurally:
(1) as **hydroxyl derivatives** of alkanes
and (2) as **alkyl derivatives** of water.


يمكن النظر إلى الكحولات بطريقتين هيكلياً:
(1) كمشتقات هيدروكسيل للألكانات و (2)
كمشتقات ألكيل للماء.

Classification of Alcohols

تصنف الكحولات الأليولية على أنها أولية (1°)، أو ثانوية (2°)، أو ثالثية (3°)، وذلك بناءً على ما إذا كانت مجموعة عضوية واحدة أو اثنان أو ثلاث مجموعات مرتبطة بذرة الكربون الحاملة للهيدروكسيل.

- Alcohols are classified as primary (1°), secondary (2°), or tertiary (3°), depending on whether one, two, or three organic groups are connected to the hydroxyl-bearing carbon atom.

- Methyl alcohol**, which is not strictly covered by this classification, is usually grouped with the **primary** alcohols.

الكحول الميتشيلي، الذي لا يغطيه هذا التصنيف بشكل صارم، عادة ما يتم تجميعه مع الكحولات الأولية.

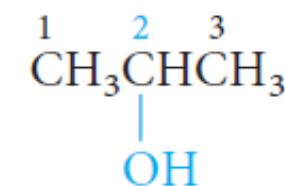
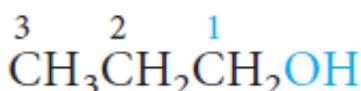
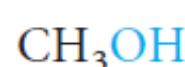
Nomenclature of Alcohols

ت تكون الأسماء الشائعة لأبسط الكحولات من مجموعة ألكيل مرتبطة بدالة الهيدروكسيل متبقعة بكلمة كحول: كحول ألكيل.

- The **common names** for the simplest alcohols consist of alkyl group attached to the hydroxyl function followed by the word alcohol: **Alkyl alcohol**.
- In the **IUPAC system**, alcohols are named according to the following rules.

في نظام IUPAC، تسمى الكحولات وفقاً للقواعد التالية.

1. Select the longest continuous carbon chain that contains the -OH group.

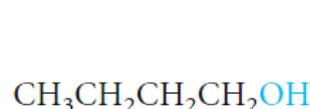



1. حدد أطول سلسلة كربون متصلة تحتوي على المجموعة -OH.

Drop the **-e** ending of the parent alkane and replace it by the suffix **-ol**: **Alkanol**

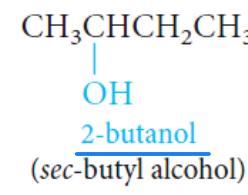
احذف النهاية -e للألكان الأصلي واستبدلها باللاحقة -ol: Alkanol

2. When isomers are possible, the chain is numbered so as to give the functional group (-OH) the lowest possible number.

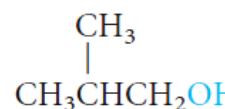
2. عندما تكون المتزامرات ممكنة، يتم ترقيم السلسلة لإعطاء المجموعة الوظيفية (-OH) أقل رقم ممكن.

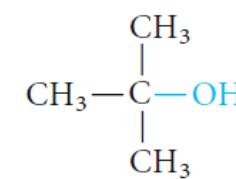

methanol
(methyl alcohol)

ethanol
(ethyl alcohol)

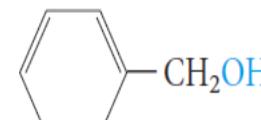

1-propanol
(n-propyl alcohol)

2-propanol
(isopropyl alcohol)


Nomenclature of Alcohols

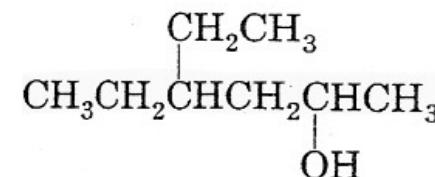

1-butanol
(*n*-butyl alcohol)


2-butanol
(*sec*-butyl alcohol)


2-methyl-1-propanol
(isobutyl alcohol)

2-methyl-2-propanol
(*tert*-butyl alcohol)

cyclohexanol
(cyclohexyl alcohol)

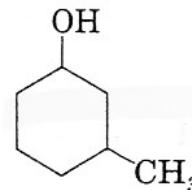

phenylmethanol
(benzyl alcohol)

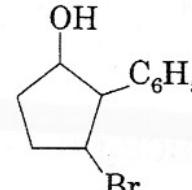
3. When alkyl side chains or other groups are present, they are named alphabetically and their positions are indicated by a number.

. عند وجود سلاسل جانبية أكيل أو مجموعات أخرى، يتم تسميتها أبجدياً ويتم الإشارة إلى موقعيها برقم.

The position of the functional group (*-OH*) is always given the lowest possible number at the end of the name.

يُعطى موقع المجموعة الوظيفية (-OH) دائمًا بأقل رقم ممكن في نهاية السلسلة.

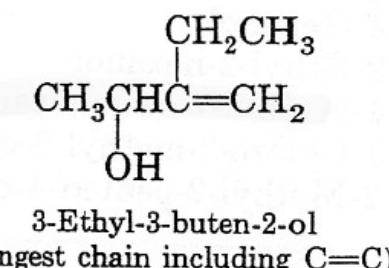
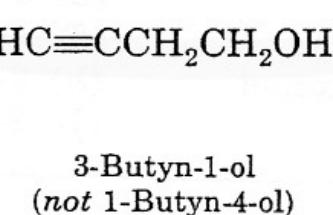
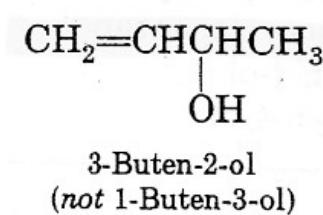
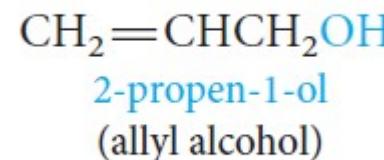

4-Ethyl-2-hexanol
(*not* 3-Ethyl-5-hexanol)


5-Chloro-2-methyl-1-heptanol
(*not* 3-Chloro-6-methyl-7-heptanol)

بالنسبة للكحولات الحلقة، يبدأ الترقيم دائمًا من الكربون الذي يحمل المجموعة -OH.

For cyclic alcohols, numbering always starts from the carbon bearing the -OH group.

3-Methylcyclohexanol
(not 1-Methyl-3-cyclohexanol)





3-Bromo-2-phenylcyclopentanol
(not 1-Bromo-2-phenyl-3-cyclopentanol)

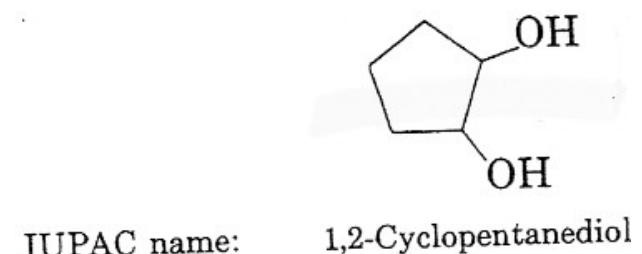
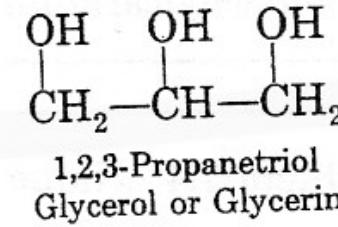
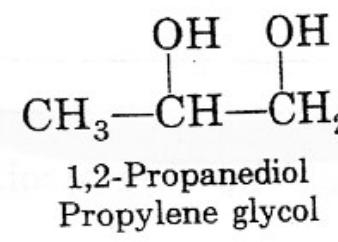
4. مع الكحولات غير المشبعة، إذا احتوى الجزيء على كل من المجموعة -OH ورابطة ثلاثة C=C أو C=C، فإن المجموعة -OH لها الأفضلية قبل الروابط المزدوجة أو الثلاثية في الحصول على الرقم الأقل.

4. With Unsaturated Alcohols; If a molecule contains both an -OH group and a C=C or C-C triple bond, the -OH group takes preference before the double or triple bonds in getting the lower number.

The name should include (if possible) both the hydroxyl and the unsaturated groups, even if this does not make the longest chain the parent hydrocarbon.

يجب أن يتضمن الاسم (إن أمكن) كل من مجموعات الهيدروكسيل والمجموعات غير المشبعة، حتى لو لم يجعل هذا أطول سلسلة الهيدروكربون الأم.

الكحولات التي تحتوي على أكثر من مجموعة هيدروكسيل واحدة

تسمى المركبات التي تحتوي على مجموعة هيدروكسيل متعددة بالجيوكولات. وأهم مثال على ذلك هو الإيثيلين جليوكول.

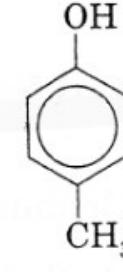
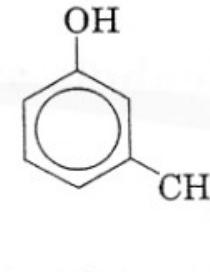
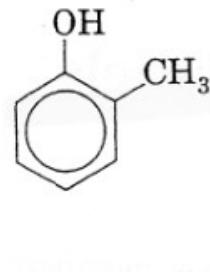
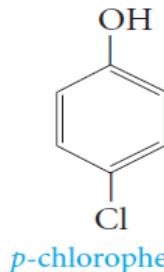
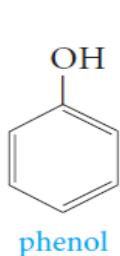
○ Alcohols with More Than One Hydroxyl Group

➤ Compounds with two adjacent alcohol groups are called glycols.

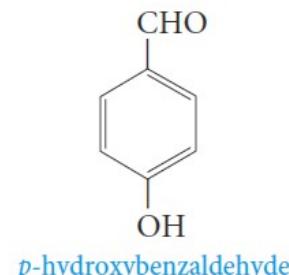
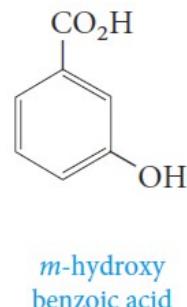
The most important example is ethylene glycol.

➤ Compounds with more than two hydroxyl groups are also known, and several, such as glycerol and sorbitol, are important commercial chemicals.

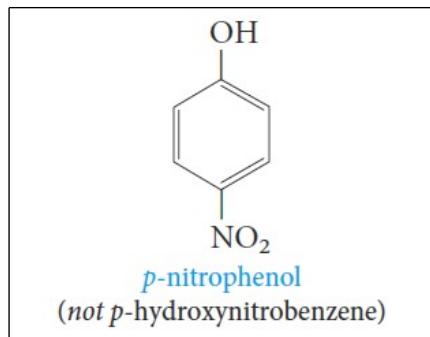
يستخدم الإيثيلين جليوكول كمضاد تجمد "دائم" في مشعات السيارات وكمواد خام في تصنيع الداكرون.






- Ethylene glycol is used as the "permanent" antifreeze in automobile radiators and as a raw material in the manufacture of Dacron.
- Ethylene glycol is completely miscible with water.
- Glycerol is a syrupy, colorless, water-soluble, high-boiling liquid with a distinctly sweet taste. Its soothing qualities make it useful in shaving and toilet soaps and in cough drops and syrups.

الجلسرين سائل شرابي، عديم اللون، قابل للذوبان في الماء، ذو درجة غليان عالية، ذو طعم حلو مميز. خصائصه المهدئة تجعله مفيداً في الحلاقة ومنظفات المرحاض، وفي حلوي السعال والشراب.



Nomenclature of Phenols

عادةً ما يتم تسمية الفينولات كمشتقات للمركبات الأم.


- **Phenols** are usually named as derivatives of the parent compounds.

- The hydroxyl group is named as a substituent when it occurs in the same molecule with carboxylic acid, aldehyde, or ketone functionalities, which have **priority in naming**.

but

تسمى مجموعة الهيدروكسيل كمستبدل عندما توجد في نفس الجزيء مع وظائف حمض الكربوكسيل أو الألدهيد أو الكيتون، والتي لها الأولوية في التسمية.

Physical Properties of Alcohols

Physical State

- The simplest alcohol, methanol, is a liquid at room temperature. In contrast, alkanes from methane to butane (C1-C4) are gases.

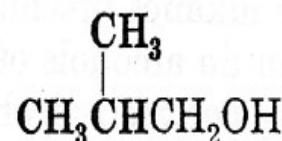
Solubility

الكحولات السفلية قابلة للامتزاج تماماً بالماء.

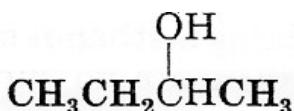
مع زيادة عدد ذرات الكربون في الكحول، تقل الذوبان في الماء.

- The lower alcohols are completely miscible with water.
- As the number of carbons in the alcohol increases, the solubility in water decreases.

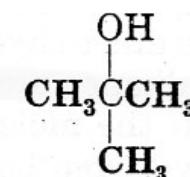
Boiling Points


سلسلة من الكحولات العادي، تزداد نقاط الغليان مع زيادة الأوزان الجزيئية.

- Series of normal alcohols; The boiling points increase with increase in molecular weights.
- A comparison of boiling points among isomeric alcohols; The boiling points decrease as the number of alkyl branches from the carbinol group increases.


1-Butanol

(mol wt = 74; bp = 118°C)


2-Methyl-1-propanol

(mol wt = 74; bp = 108°C)

2-Butanol

(mol wt = 74; bp = 99.5°C)

2-Methyl-2-propanol

(mol wt = 74; bp = 83°C)

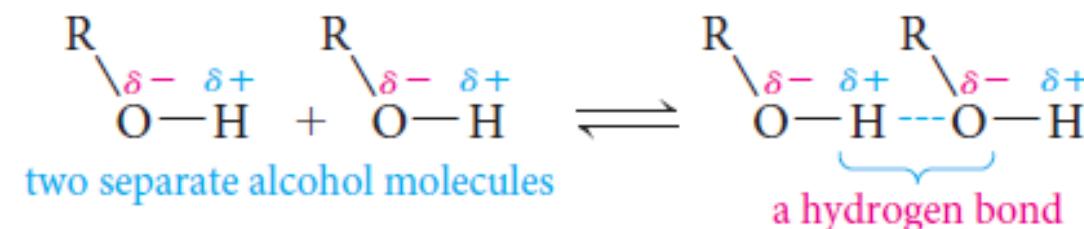
مقارنة درجات الغليان بين الكحولات المتزامنة، تنخفض درجات الغليان مع زيادة عدد فروع الألكيل من مجموعة الكاربينول.

أبسط الكحولات، الميثانول، هو سائل في درجة حرارة الغرفة. وعلى النقيض من ذلك، فإن الألكانات من الميثان إلى البيوتان (C1-C4) هي غازات.

تكون نقاط غليان الكحولات (bps) أعلى بكثير من نقاط غليان الإيثرات أو الهيدروكربونات ذات الأوزان الجزيئية المماثلة.

Hydrogen Bonding in Alcohols

- The boiling points (bp's) of alcohols are much higher than those of ethers or hydrocarbons with similar molecular weights.


لأن الكحولات تكون روابط هيدروجينية مع بعضها البعض.

	CH ₃ CH ₂ OH	CH ₃ OCH ₃	CH ₃ CH ₂ CH ₃
mol wt	46	46	44
bp	+78.5°C	-24°C	-42°C

يتم استقطاب الرابطة O-H بواسطة السالبية الكهربية العالية لذرة الأكسجين وتضع شحنة موجبة جزئية على ذرة الهيدروجين وشحنة سالبة جزئية على ذرة الأكسجين.

Why? Because alcohols form hydrogen bonds with one another.

The O-H bond is polarized by the high electronegativity of the oxygen atom and places a partial positive charge on the hydrogen atom and a partial negative charge on the oxygen atom.

Two or more alcohol molecules thus become loosely bonded to one another through hydrogen bonds.

وبالتالي، تصبح جزيئين أو أكثر من الكحول مرتبطين بشكل فضفاض ببعضهما البعض من خلال روابط هيدروجينية.

Hydrogen Bonding in Alcohols

وبالتالي، فإن الكحولات لها نقاط غليان عالية نسبياً لأنها يجب أن توفر حرارة كافية لكسر الروابط الهيدروجينية قبل كل جزء.

- Consequently, alcohols have relatively high boiling points because they must supply enough heat to break the hydrogen bonds before each molecule.
- Hydrogen bonds are weaker than ordinary covalent bonds.
الروابط الهيدروجينية أضعف من الروابط التساهمية العادية
- Water, of course, is also a hydrogen-bonded liquid.
الماء، بالطبع، هو أيضاً سائل مرتبط بالهيدروجين.
- The lower molecular-weight alcohols can readily replace water molecules in the hydrogen bonded network.
يمكن للكحولات ذات الوزن الجزيئي المنخفض أن تحل محل جزيئات الماء بسهولة في شبكة الروابط الهيدروجينية.
- This accounts for the complete miscibility of the lower alcohols with water.
وهذا يفسر قابلية الامتزاج الكامل للكحولات المنخفضة مع الماء.
- However, as the organic chain lengthens and the alcohol becomes relatively more hydrocarbon like, its water solubility decreases.
ومع ذلك، مع إطالة السلسلة العضوية ويصبح الكحول أكثر شبهاً بالهيدروكربون نسبياً، تقل ذوبانيته في الماء.

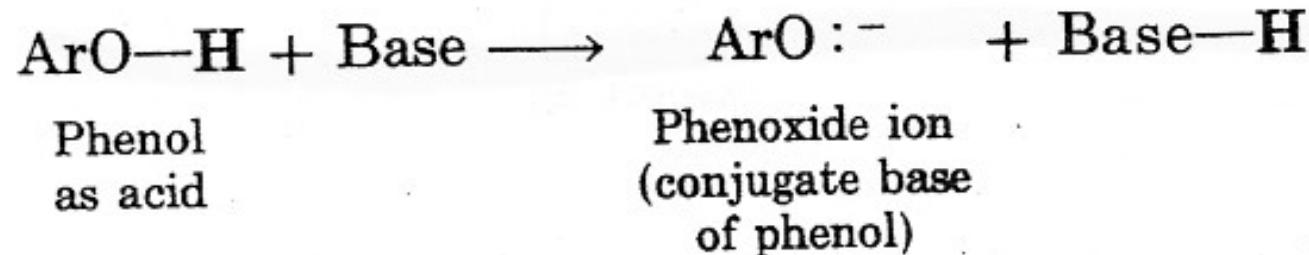
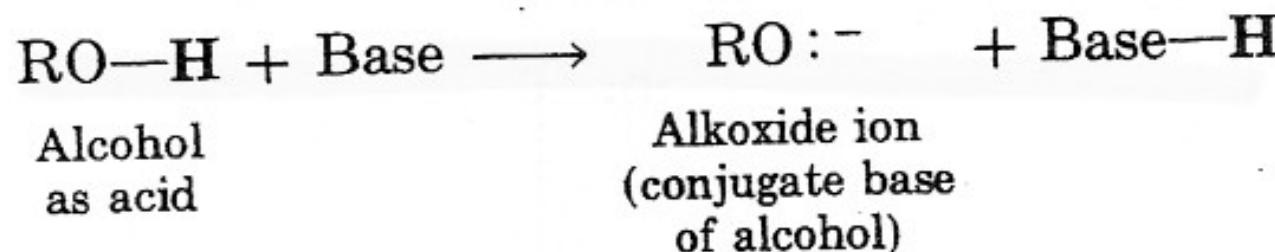
Table 7.1 Boiling Point and Water Solubility of Some Alcohols

Name	Formula	bp, °C	Solubility in H ₂ O g/100 g at 20°C
methanol	CH ₃ OH	65	completely miscible
ethanol	CH ₃ CH ₂ OH	78.5	completely miscible
1-propanol	CH ₃ CH ₂ CH ₂ OH	97	completely miscible
1-butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	117.7	7.9
1-pentanol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	137.9	2.7
1-hexanol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH	155.8	0.59

Physical Properties of Phenols

الفينول مادة صلبة عديمة اللون، بلورية، منخفضة الانصهار، ذات نقطة غليان عالية، وقابلة للذوبان بشكل معتدل في الماء.

- **Phenol** is a colorless, crystalline, low-melting solid, with a high boiling point, that is moderately soluble in water.
- Most other phenols also are solids, with slight solubility in water and high boiling points.
معظم الفينولات الأخرى هي أيضًا مواد صلبة، ذات قابلية طفيفة للذوبان في الماء ونقط غليان عالية.
- The most significant physical property that distinguishes alcohols from phenols is the acidity of phenols.

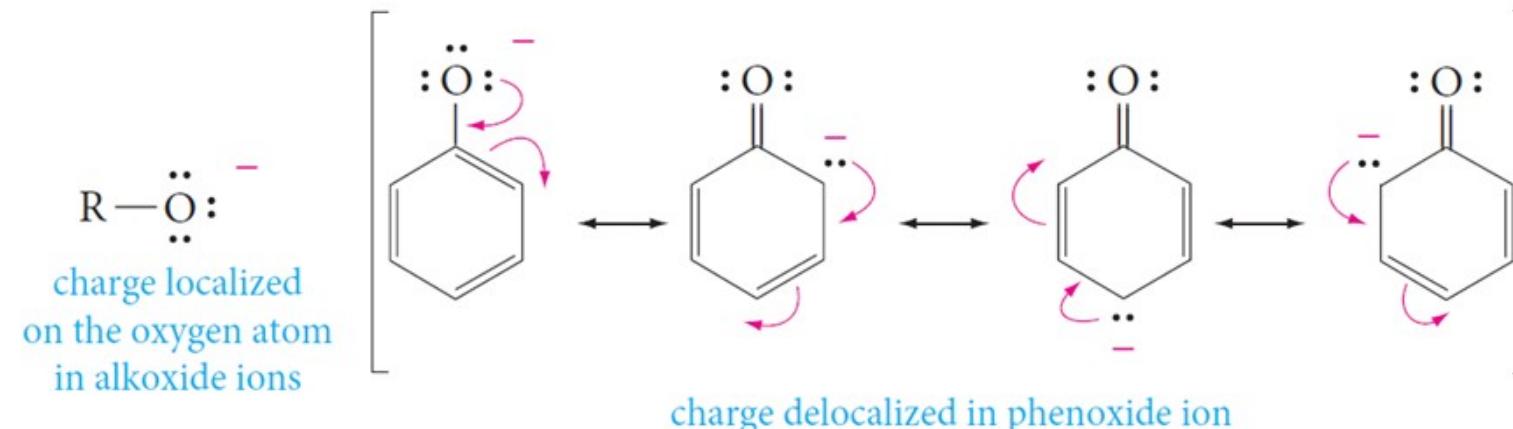


أهم خاصية فيزيائية تميز الكحولات عن الفينولات هي حموضة الفينولات.

The Acidity of Alcohols and Phenols

مثل الماء، الكحولات والفينولات هي أحماض ضعيفة.

- Like water, alcohols and phenols are weak acids.

The hydroxyl group can act as a proton donor, and dissociation occurs in a manner similar to that for water



يمكن لمجموعة الهيدروكسيل أن تعمل
كمانح للبروتون، ويحدث التفكك بطريقة
مائلة لتلك الخاصة بالماء

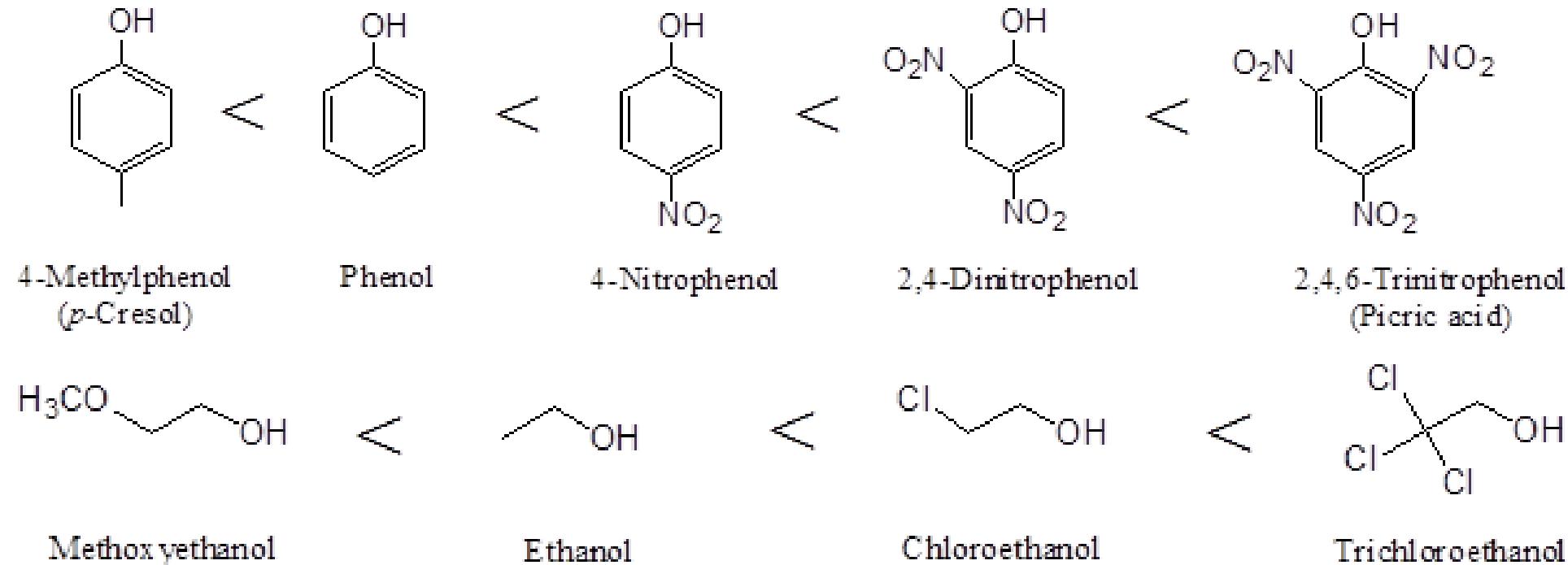
The Acidity of Alcohols and Phenols

الفينولات هي أحماض أقوى من الكحولات بشكل أساسى لأن أيونات الفينوكسید المقابلة يتم ثبیتها بواسطه الرئین.

- **Phenols are stronger acids than alcohols mainly because the corresponding phenoxide ions are stabilized by resonance.**

تتركز الشحنة السالبة في الأيون الألكوكسید على ذرة الأكسجين، ولكن يمكن نقل الشحنة السالبة على أيون الفينوكسید إلى موضعين حلقتي أورثو وبارا من خلال الرئین.

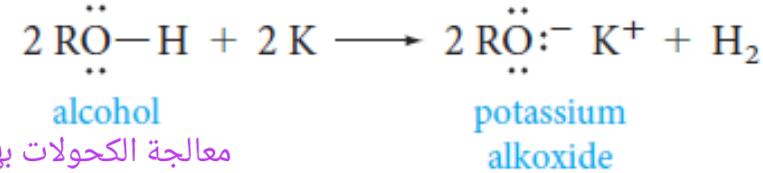
The negative charge of an alkoxide ion is concentrated on the oxygen atom, but the negative charge on a phenoxide ion can be delocalized to the ortho and para ring positions through resonance.


Because phenoxide ions are stabilized in this way, the equilibrium for their formation is more favorable than that for alkoxide ions

لأن أيونات الفينوكسید مستقرة بهذه الطريقة، فإن التوازن لتكوينها يكون أكثر ملاءمة من توازن أيونات الألكوكسید

جميع المجموعات الساحبة للإلكترونات تزيد من الحموضة عن طريق تثبيت القاعدة المترافقه. المجموعات المانحة للإلكترونات تقلل من الحموضة لأنها تزعزع استقرار القاعدة المترافقه.

The Acidity of Alcohols and Phenols


- All electron-withdrawing groups increase acidity by stabilizing the conjugate base. Electron-donating groups decrease acidity because they destabilize the conjugate base.

The Acidity of Alcohols and Phenols

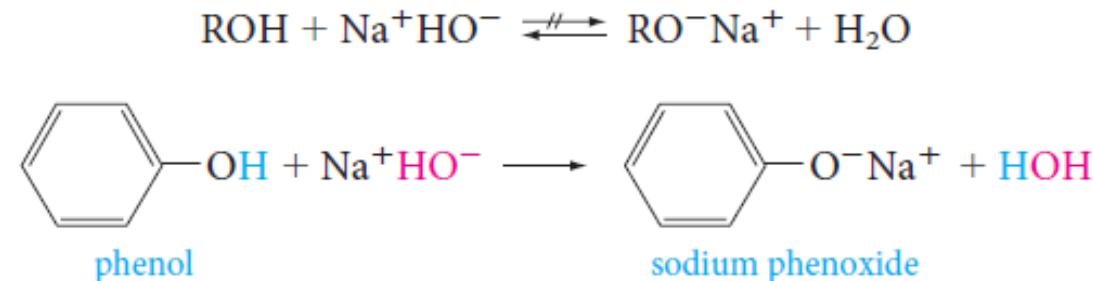
يمكن تحضير الأل蔻زيدات، القواعد المترافقة للكحولات، عن طريق تفاعل الكحول مع فلز الصوديوم أو البوتاسيوم.

- **Alkoxides**, the conjugate bases of alcohols, can be prepared by the reaction of an alcohol with sodium or potassium metal.

- Treatment of alcohols with sodium hydroxide does not convert them to their alkoxides.

This is because alkoxides are stronger bases than hydroxide ion, so the reaction goes in the reverse direction.

لأن الألوكسيدات قواعد أقوى من أيون الهيدروكسيد، وبالتالي فإن التفاعل يسير في الاتجاه المعاكس.

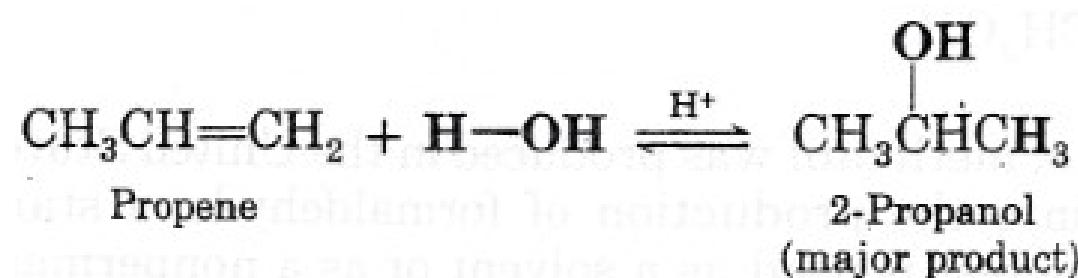
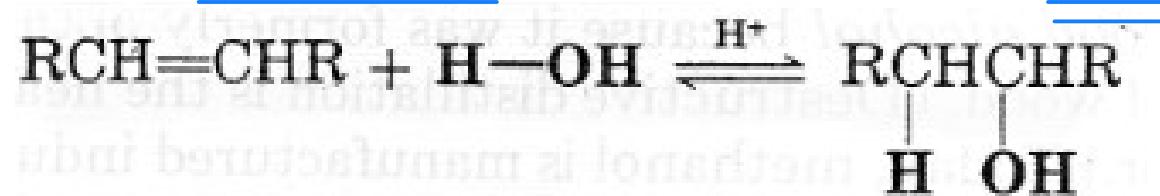

وذلك لأن الألوكسيدات قواعد أقوى من أيون الهيدروكسيد، وبالتالي فإن التفاعل يسير في الاتجاه المعاكس.

Since alcohols are weaker acids than water, it is not possible to form the salt of an alcohol in aqueous alkaline solutions.

ونظراً لأن الكحولات أحماض أضعف من الماء، فإنه من غير الممكن تكوين ملح الكحول في المحاليل القلوية المائية.

- Treatment of phenols with sodium hydroxide **converts** them to phenoxide ions.

الصوديوم تحولها إلى أيونات فينوكسيد.

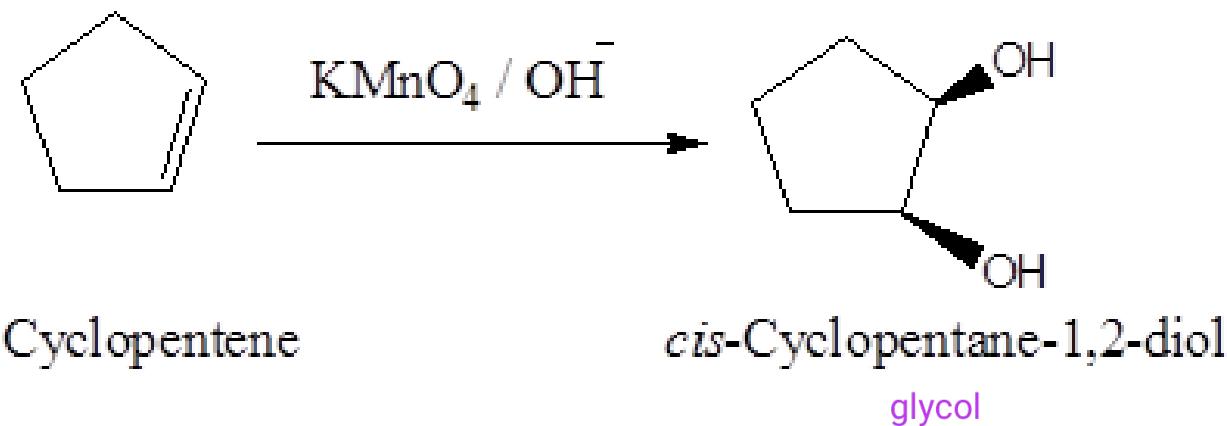



Preparation of Alcohols

○ *From Alkenes*

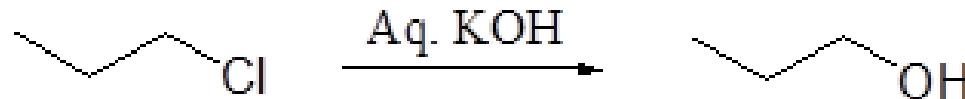
A. Hydration of Alkenes

1. Addition of water to a double bond in the presence of an acid catalyst, H^+ .
2. The addition follows Markovnikov's rule.
3. *It is not possible to prepare primary alcohols* except Ethanol.

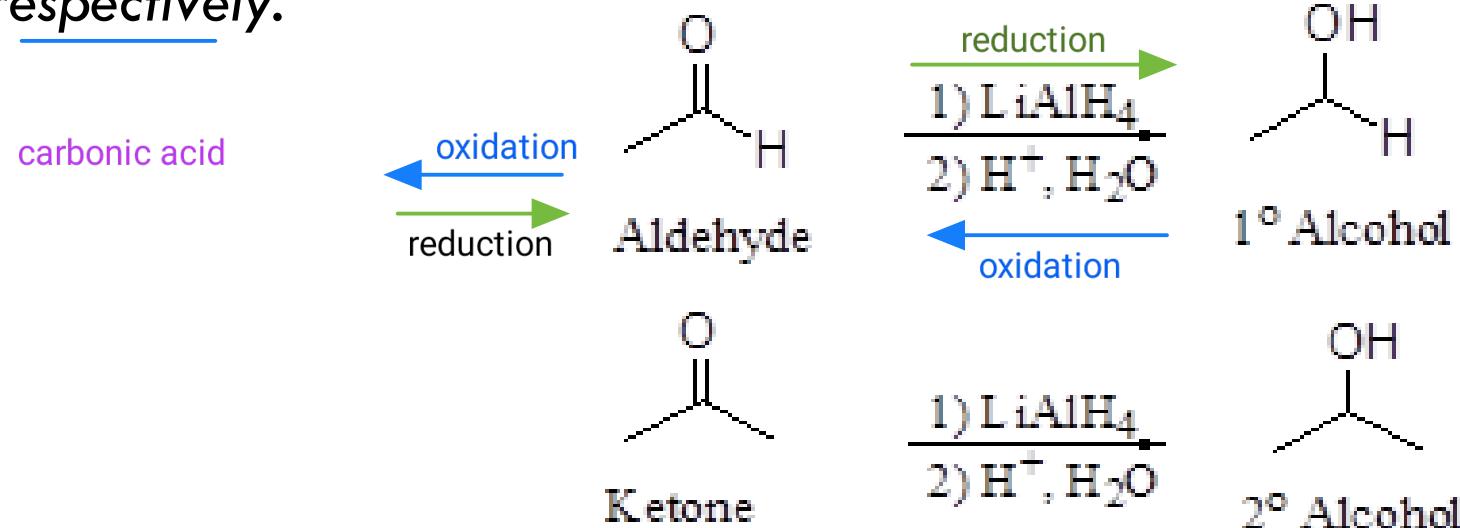


○ From Alkenes

B. Oxidation of Cycloalkenes

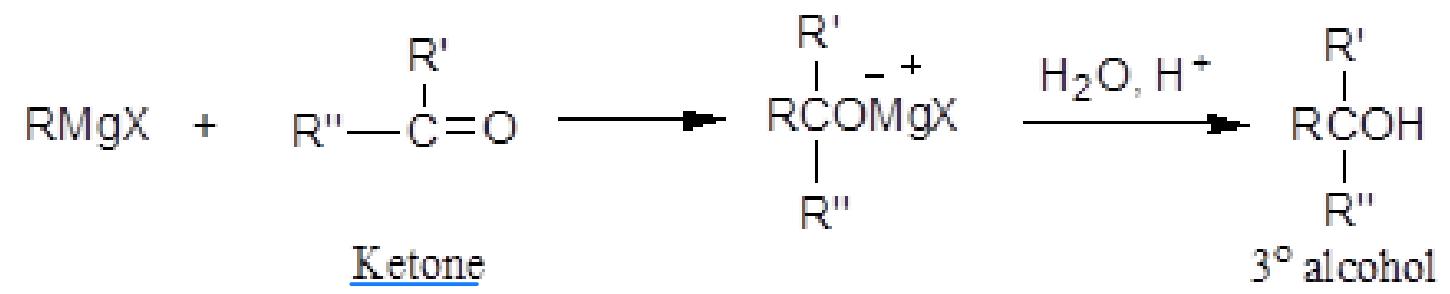
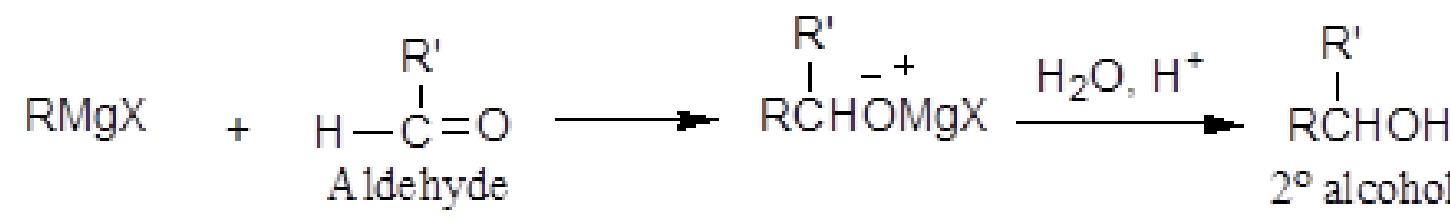
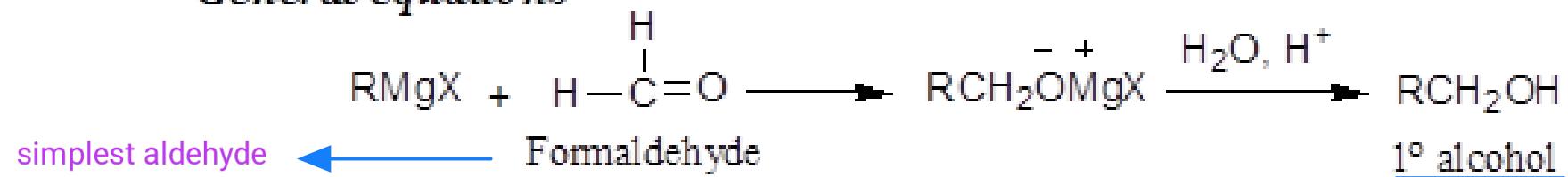

تفاعل الألكينات مع برمجنات البوتاسيوم القلوية لتكوين جليكولات (مركبات ذات مجموعتي هيدروكسيل متجاورتين).

Alkenes react with alkaline potassium permanganate to form glycols (compounds with two adjacent hydroxyl groups).


الاستبدال النيوكليوفيلي لهاليد الألكيل

○ Nucleophilic Substitution of Alkyl Halide

○ Reduction of Ketones, and Aldehydes




Aldehydes and ketones are easily reduced to primary and secondary alcohols, respectively.

يتم اختزال الألدهيدات والكيتونات بسهولة إلى كحولات أولية وثانوية على التوالي.

- **Addition of Grignard's Reagent to Aldehydes and Ketones**

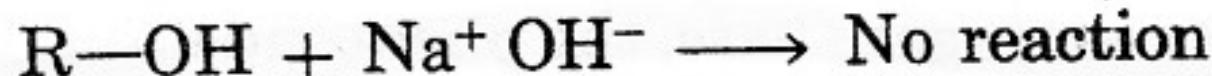
General equations

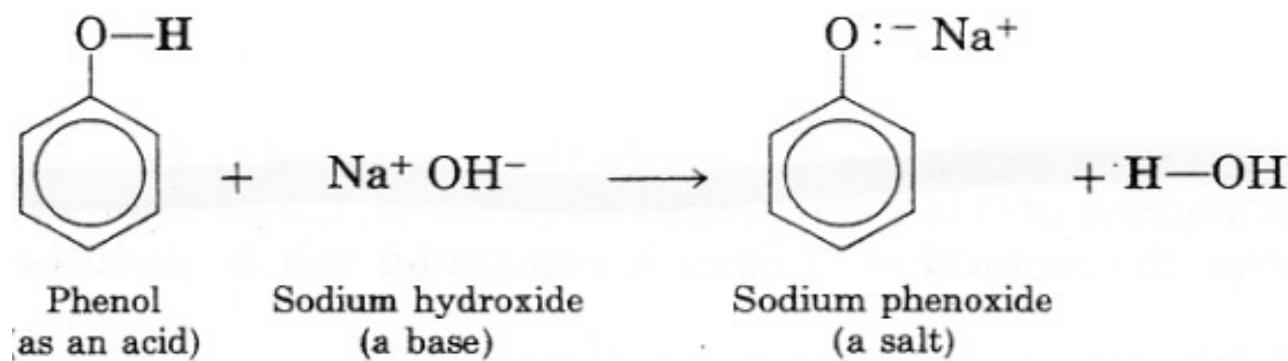
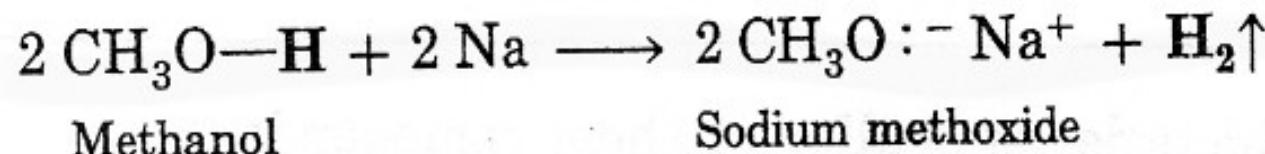
Reactions of Alcohols and Phenols

تُخضع الكحولات لنوعين من التفاعلات ٥:

- **Alcohols** undergo two kinds of reactions:
 - **Those that involve the breaking of the oxygen-hydrogen bond (CO-H).** تلك التي تنطوي على كسر رابطة الأكسجين والهيدروجين (CO-H).
 - **Those that involve the rupture of the carbon-oxygen bond (C-OH).** تلك التي تنطوي على تمزق رابطة الكربون والأكسجين (C-OH).
- **Phenols** do not participate in reactions where the C-OH bond is broken.

لا تشارك الفينولات في التفاعلات التي تنكسر فيها رابطة C-OH.


لأنه مثل ما تعلمنا بشابter البنزين انه الفينول
بحافظ على الرابطه مع مجموعة الهيدروكسي
فبتكون قويه جدا وصعب انها تتفكك



Reactions of Alcohols

A) Those that involve the breaking of the oxygen-hydrogen bond (CO-H).

1) Reactions of Alcohols and Phenols as Acids: Salt Formation.

١) تقاعلات الكحولات
والفينولات كأحماض:
تكوين الأملاح.

Reactions of Alcohols

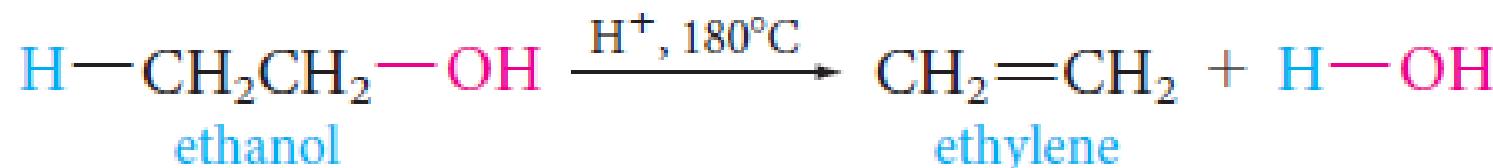
B) Those that involve the rupture of the carbon-oxygen bond (C-OH).

1) The Reaction of Alcohols with Hydrogen Halides: Alkyl Halides

Alcohols react with hydrogen halides (HCl, HBr and HI) to give alkyl halides.

(1) تفاعل الكحولات مع هاليدات
الهيدروجين: هاليدات الألكيل

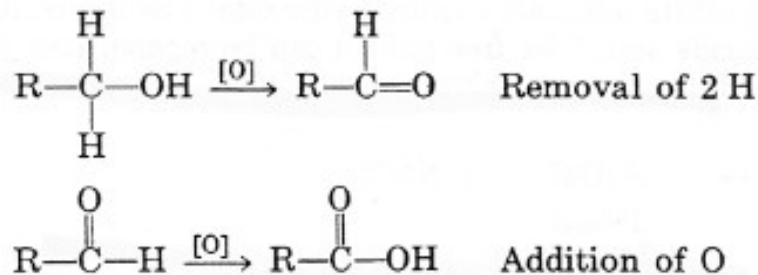
تفاعل الكحولات مع
هاليدات الهيدروجين
(HI و HBr و HCl)
لإعطاء هاليدات الألكيل.


2) Dehydration of Alcohols: Formation of Alkenes

(2) نزع الماء من الكحولات: تكوين الألكينات

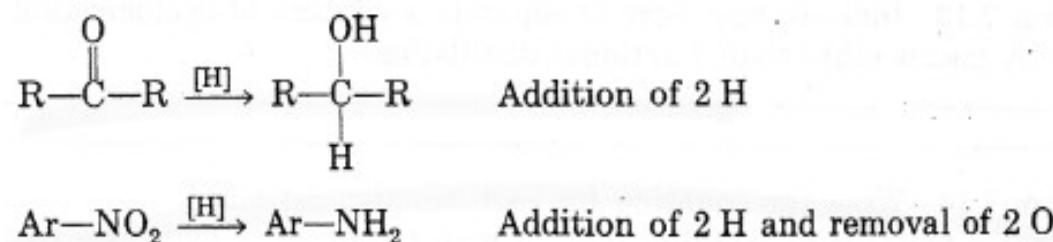
$$3^0 > 2^0 > 1^0$$

Alcohols can be dehydrated by heating them with strong acid.


يمكن تجفيف الكحولات عن
طريق تسخينها بحمض قوي.

Reactions of Alcohols

C) Oxidation Reactions


➤ **Oxidation** is the removal of H from a compound and/or the addition of O to a compound.

An oxidizing agent is the chemical reagent that does the oxidation.

عامل الأكسدة هو الكاشف الكيميائي الذي يقوم بالأكسدة.

➤ **Reduction** is the addition of H to a compound and/or the removal of O from a compound.

A reducing agent is a substance that does the reduction.

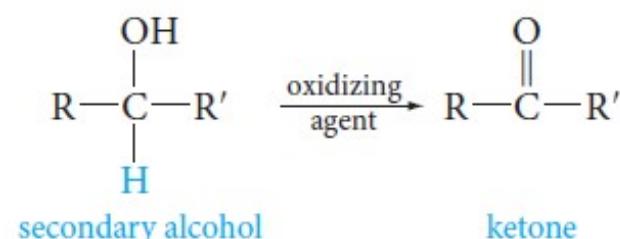
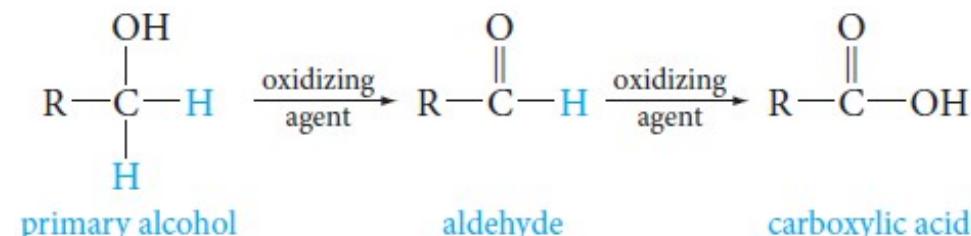
عامل الاختزال هو مادة تقوم بالاختزال.

Reactions of Alcohols

C) Oxidation Reactions

- Alcohols with at least one hydrogen attached to the hydroxyl-bearing carbon can be oxidized to carbonyl compounds.

➤ Primary alcohols give aldehydes, which may be further oxidized to carboxylic acids.

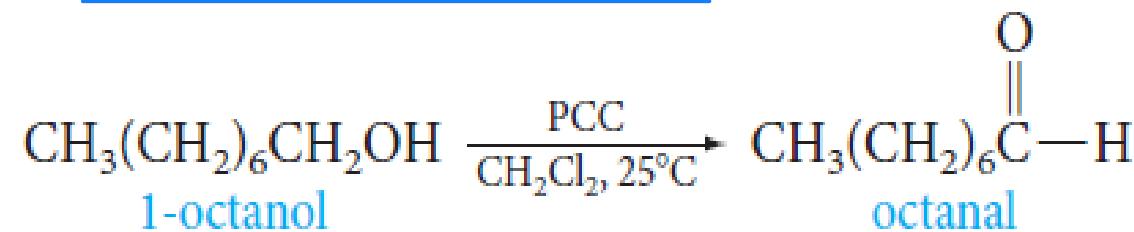


➤ Secondary alcohols give ketones.

➤ Tertiary alcohols, having no hydrogen atom on hydroxyl-bearing carbon, do not undergo oxidation.

يمكن أكسدة الكحولات التي تحتوي على ذرة هيدروجين واحدة على الأقل مرتبطة بذرة الكربون الحاملة للهيدروكسيل إلى مركبات كربونيل.

{ تعطي الكحولات الأولية الألدهيدات، والتي قد تتأكسد إلى أحماض كربوكسيلية. < تعطي الكحولات الثانوية الكيتونات.

< الكحولات الثالثية، التي لا تحتوي على ذرة هيدروجين على الكربون الحامل للهيدروكسيل، لا تخضع للأكسدة.

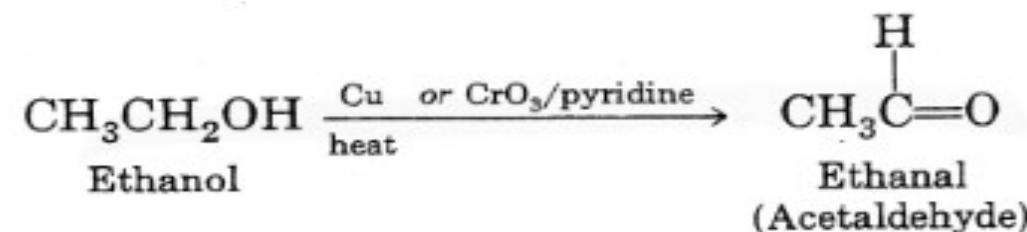
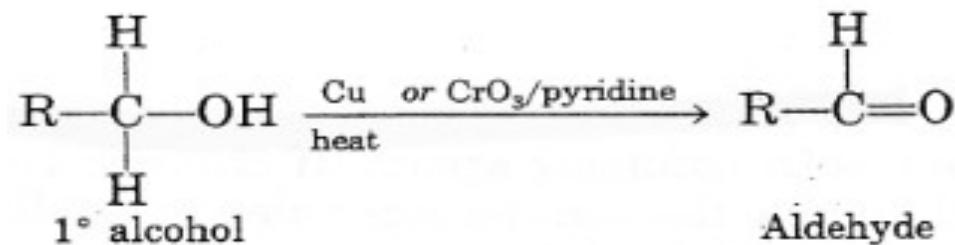


Reactions of Alcohols

الحالات الأولية، يمكن إيقاف الأكسدة في مرحلة الألدهيد بواسطة كواشف خاصة، مثل "كلورو كرومات البيريدينيوم (PCC)".

C) Oxidation Reactions

- **Primary alcohols**, oxidation can be stopped at aldehyde stage by special reagents, such as “**pyridinium chlorochromate (PCC)**”.

Reactions of Alcohols

تنتج الكحولات الأولية الألدهيدات عند معالجتها بعوامل مؤكسدة خفيفة مثل النحاس المعدني الساخن أو CrO_3 في البيريدين.

C) Oxidation Reactions

- Primary alcohols yield aldehydes when treated with mild oxidizing agents such as hot metallic copper or CrO_3 in pyridine.

تنتج الكحولات الأولية الألديهيدات عند معالجتها بعوامل مؤكسدة أقوى، مثل حمض الكروميك، $H_2Cr_2O_7$ ، أو برمجнатات البوتاسيوم المتعادلة، $KMnO_4$. تتأكسد الألديهيدات الوسيطة المتكونة في البداية إلى أحماض كربوكسيلية.

C) Oxidation Reactions

- Primary alcohols yield aldehydes when treated with stronger oxidizing agents, such as chromic acid, $H_2Cr_2O_7$, or neutral potassium permanganate, $KMnO_4$, the intermediate aldehydes formed initially are oxidized further to carboxylic acids.

C) Oxidation Reactions

- Secondary alcohols, when treated with any of the oxidizing agents mentioned previously, yield ketones.

الكحولات الثانوية، عند معالجتها بأي من عوامل الأكسدة المذكورة سابقاً، تنتج كيتونات.

Preparation of Phenols

الاندماج القلوي للسلفونات ٥

○ *The Alkali Fusion of Sulfonates*

يتضمن الاندماج القلوي للسلفونات الخطوات التالية،

The alkali fusion of sulfonates involves the following steps;

1. Sulfonation of an aromatic ring.

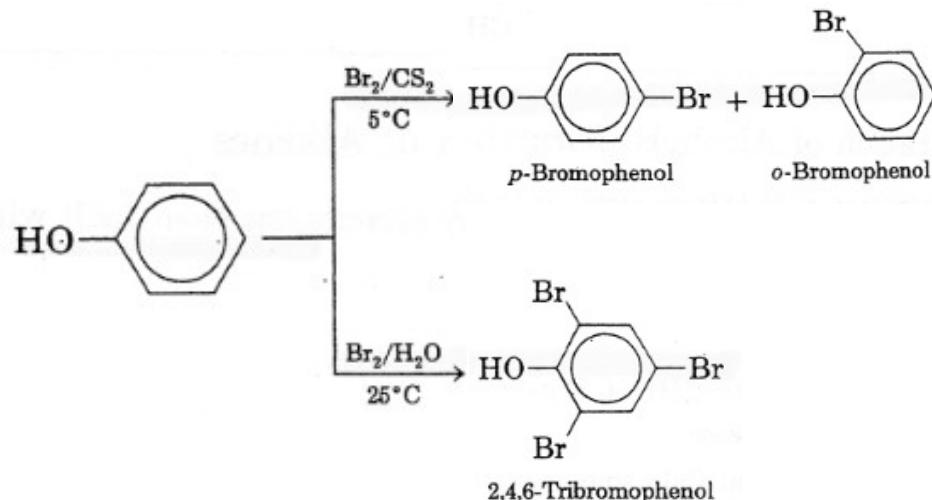
1. سلفنة حلقة عطرية.

2. ذوبان (اندماج) حمض السلفونيك العطري مع هيدروكسيد الصوديوم لإعطاء ملح الفينوكسيد.

2. Melting (fusion) of the aromatic sulfonic acid with sodium hydroxide to give a phenoxide salt.

3. تحميض الفينوكسيد باستخدام HCl لإنتاج الفينول.

3. Acidification of the phenoxide with HCl to produce the phenol.



وفي طريقة ثانية بشابت البنزين يلي بتبدأ بال nitration

Reactions of Phenols

٥. تحدث الهلجة بدون محفز

- **Halogenation takes place without catalyst.**

تعتمد المنتجات على المذيب المستخدم.

في المذيبات غير البروتونية (المذيبات التي لا تطلق بروتونات) (CCl₄, CS) تُعطى البروم خليطاً من بروموفينول-O-p.

➤ The products depend on the solvent used.

- In aprotic solvents (solvents that do not release protons) (CCl_4 , CS_2)-bromination gives a mixture of *o*- and *p*-bromophenol.
- In protic solvents (solvents that can release protons) (H_2O)-halogenation gives a trisubstituted phenol is produced.

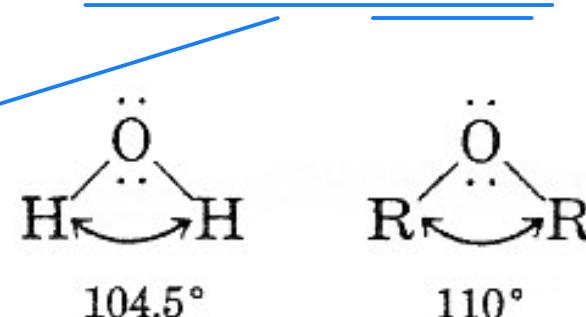
في المذيبات البروتونية (المذيبات التي يمكنها إطلاق البروتونات) يعطي الهرجنة (H^-)- فينول ثلاثي الاستبدال يتم إنتاجه.

Ethers

Structure of Ethers

جميع الإيثرات هي مركبات تكون فيها مجموعتان عضويتان متصلتان بذرة أكسجين واحدة.

- All **ethers** are compounds in which two organic groups are connected to a single oxygen atom.
- The **general formula for an ether** is $R-O-R'$, where R and R' may be identical or different, and they may be alkyl or aryl groups


الصيغة العامة للأثير هي $R-O-R'$, حيث قد يكون R و R' متطابقين أو مختلفين، وقد يكونان مجموعات الأكيل أو أريل

- The geometry of simple ethers is similar to that of water.

هندسة الإيثرات البسيطة مماثلة لهندسة الماء.

and that's why we consider the ether is derivated from water

- The ether is classified as

- **Symmetrical ethers;**

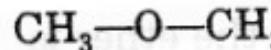
When the organic groups attached to the oxygen are identical.

عندما تكون المجموعات العضوية المرتبطة بالأكسجين متطابقة.

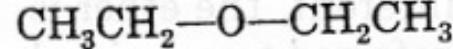
- **Unsymmetrical ethers (mixed ethers);**

When the organic groups attached to the oxygen are different.

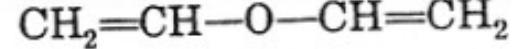
عندما تكون المجموعات العضوية المرتبطة بالأكسجين مختلفة.

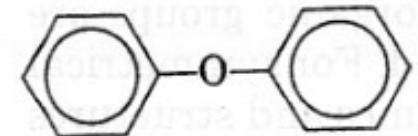

Nomenclature of Ethers

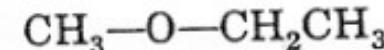
Common Names

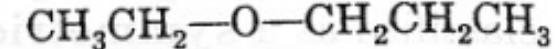

تسمى الإيثرات عادةً بإعطاء اسم كل مجموعة ألكيل أو أريل، بالترتيب الأبجدي، متبوعاً بكلمة ether.

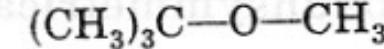
Ethers are usually named by giving the name of each alkyl or aryl group, in alphabetical order, followed by the word ether.

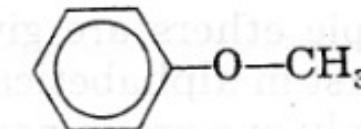

Methyl ether


Ethyl ether

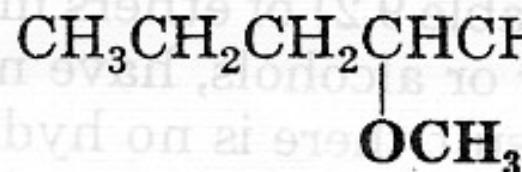

Vinyl ether

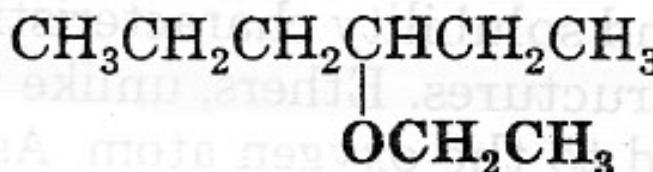

Phenyl ether


Ethyl methyl ether


Ethyl-*n*-propyl ether

t-Butyl methyl ether


Methyl phenyl ether
(anisole)


IUPAC System

بالنسبة للأثيرات ذات البنى الأكثر تعقيداً، قد يكون من الضروري تسمية المجموعة-OR- بمجموعة ألكوكسي. في نظام IUPAC، تسمى المجموعة الألكوكسي الأصغر كمستبدل.

For ethers with more complex structures, it may be necessary to name the -OR group as an alkoxy group. In the IUPAC system, the smaller alkoxy group is named as a substituent.

2-Methoxypentane

3-Ethoxyhexane

2-Methoxyethanol

يعني الجزء الأقل كاربونات بيعتبره تفرع
مع اكسجينته وبنعطيه اسم
Alkoxy

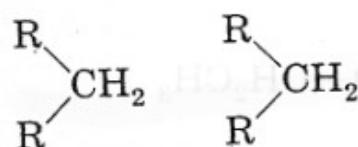
هون الكحول له اولويه فبنسمي
بنفس طريقه تسميه الكحول

الاولويه بناء على مسار الاكسدة

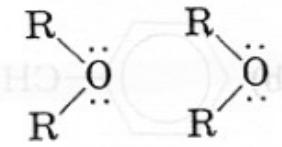
Physical Properties of Ethers

Physical State

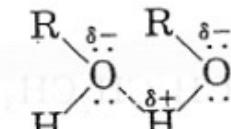
الإيثرات هي مركبات عديمة اللون ذات رائحة مميزة وممتعة نسبياً.


Ethers are colorless compounds with characteristic, relatively pleasant odors.

Boiling Points


لها نقاط غليان أقل (bp, s) من الكحولات التي لها عدد مساوٍ من ذرات الكربون. في الواقع، يحتوي الأثير على نفس bp تقريباً مثل الهيدروكربون المقابل الذي تحل فيه مجموعة -CH₂- محل أكسجين الأثير.

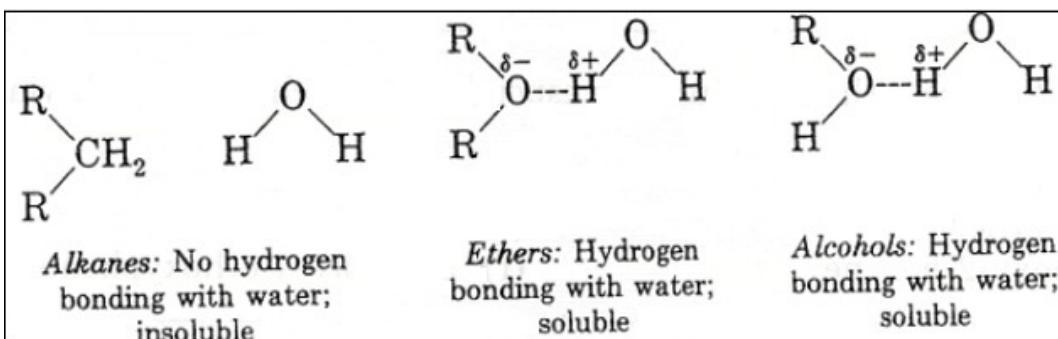
- They have lower boiling points (bp, s) than alcohols with an equal number of carbon atoms.
- In fact, an ether has nearly the same bp as the corresponding hydrocarbon in which a -CH₂- group replaces the ether's oxygen.
- Because of their structures (no O-H bonds), ether molecules cannot form hydrogen bonds with one another.


بسبب بنيتها (لا توجد روابط OH-H)، لا يمكن لجزئيات الأثير تكوين روابط هيدروجينية مع بعضها البعض.

Alkanes: No hydrogen bonding between molecules; low boiling points

Ethers: No hydrogen bonding between molecules; low boiling points

Alcohols: Hydrogen bonding between molecules; high boiling points


Compound	Formula	bp	mol wt	Water solubility (g/100 mL, 20°C)
1-butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	118°C	74	7.9
diethyl ether	CH ₃ CH ₂ -O-CH ₂ CH ₃	35°C	74	7.5
pentane	CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃	36°C	72	0.03

Solubility

الإيثرات منخفضة الوزن الجزيئي، مثل ثنائي
ميثيل الإيثر، قابلة للذوبان تماماً في الماء.

- Low-molecular-weight ethers, such as dimethyl ether, are quite soluble in water.
- Ether molecules can form hydrogen bonds to water.

جزيئات الأثير يمكن أن تكون روابط هيدروجينية مع الماء.

Structure	Name	Mol.wt.	Bp (°C)	Solubility in H ₂ O At 20 °C
CH ₃ CH ₂ CH ₃	propane	44	-42	insoluble
CH ₃ OCH ₃	methyl ether	46	-24	soluble
CH ₃ CH ₂ OH	ethanol	46	78	soluble
CH ₃ CH ₂ CH ₂ CH ₃	<i>n</i> -butane	58	-0.5	insoluble
CH ₃ CH ₂ OCH ₃	ethyl methyl ether	60	8	soluble
CH ₃ CH ₂ CH ₂ OH	1-propanol	60	97	soluble
CH ₃ (CH ₂) ₃ CH ₃	<i>n</i> -pentane	72	35	insoluble
CH ₃ CH ₂ OCH ₂ CH ₃	ethyl ether	74	36	7.5 g/100 g
CH ₃ (CH ₂) ₂ CH ₂ OH	1-butanol	74	118	7.9 g/100 g
CH ₃ (CH ₂) ₅ CH ₃	<i>n</i> -heptane	100	98	insoluble
CH ₃ (CH ₂) ₂ O(CH ₂) ₂ CH ₃	<i>n</i> -propyl ether	102	91	0.2 g/100 g
CH ₃ (CH ₂) ₄ CH ₂ OH	1-hexanol	102	157	0.6 g/100 g

Preparation of Ethers

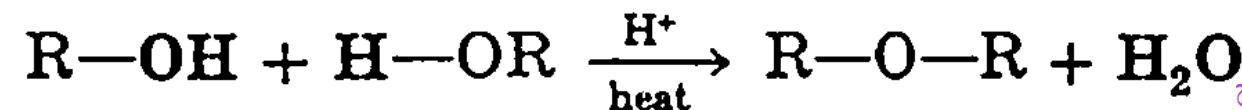
- There are two general methods for synthesizing ethers.

1) Dehydration of alcohols 1) نزع الماء من الكحولات

It is used commercially and in the laboratory to make certain symmetrical ethers.

يتم استخدامه تجاريًا وفي المختبر لصنع بعض الإيثرات المتماثلة.

2) Williamson synthesis

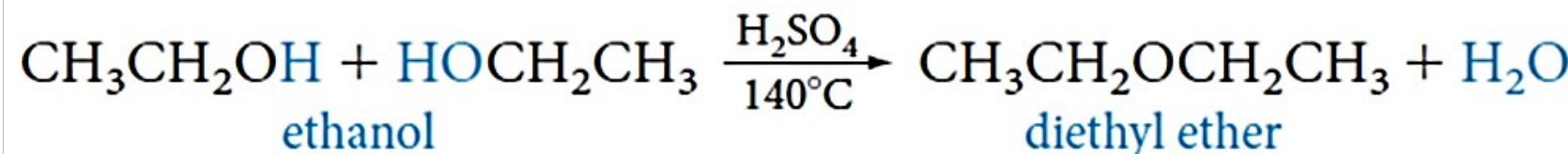

General laboratory method used to prepare all kinds of ethers, symmetrical and unsymmetrical.

طريقة معملية عامة تستخدم لإعداد جميع أنواع الإيثرات المتماثلة وغير المتماثلة.

1) Dehydration of Alcohols

يحدث في وجود محفزات حمضية (H₃PO₄, H₂SO₄) (تفاعل بين الجزيئات)

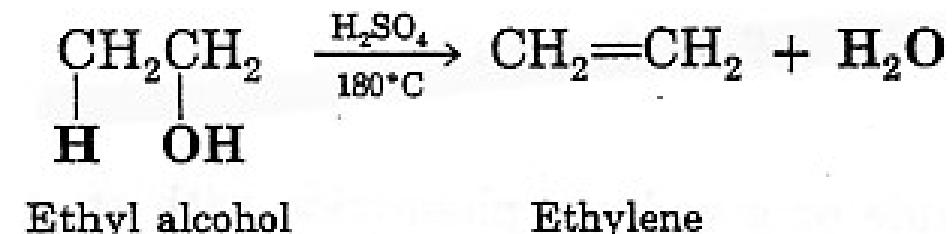
It takes place in the presence of acid catalysts (H_2SO_4 , H_3PO_4) (intermolecular reaction)


اما اذا كان intra رح
ننزع الماء من نفس
الكحول الواحد
ويينتجلنا الكين

نركز انه هون inter فبتفتفعل كحول مع كحول آخر وينتحلنا الايش

Example;

The most important commercial ether is diethyl ether. It is prepared from ethanol and sulfuric acid.


أهم إيثر تجاري هو ثنائي إيشيل الإيثر. يتم تحضيره من الإيثانول وحمض الكبريتيك.

Scope and Limitations

عندما يتم تجفيف الكحول الإيثيلي بحمض الكبريتيك عند 180 درجة مئوية، يكون الناتج السائد هو الإيثيلين.

- When ethyl alcohol is dehydrated by sulfuric acid at 180° C, the dominant product is ethylene.

طبعا العامل المحفز هو يلي بقرارلنا اذا التفاعل رح يكون intra ولا عشان هيك لازم نعرفهم وركز هون على درجة الحرارة وطريقة التحضير

- To prepare ethyl ether

- Dissolve ethyl alcohol in sulfuric acid at ambient temperature.
- Heat the solution to 140°C while adding more alcohol.

- قم بإذابة الكحول الإيثيلي في حمض الكبريتيك عند درجة حرارة الغرفة. سخن محلول إلى 140 درجة مئوية مع إضافة المزيد من الكحول.

2) Williamson Synthesis

- This method has two steps;

- 1) An alcohol is converted to its alkoxide by treatment with a reactive metal (sodium or potassium).

(1) يتم تحويل الكحول إلى ألكوكسيد عن طريق المعالجة بمعدن تفاعلي (صوديوم أو بوتاسيوم).

- 2) Displacement is carried out between the alkoxide and an alkyl halide.

(2) يتم إجراء الإزاحة بين الألكوكسيد وهاليد الألكيل.

- للحصول على أفضل إنتاجية من إيثرات ثنائي الأكيل مختلطة، نختار هاليد الأكيل 1° بدلاً من هاليد الأكيل 2° أو 3° ونتفاعل مع ألكوكسيد الصوديوم

- لتحضير إيثر أربيل الأكيل، يجب الحرص على عدم اختيار تركيبة تحتوي أحد الكواشف فيها على هالوجين مرتبط مباشراً بحلقة عطرية.

To obtain the best yields of mixed dialkyl ethers, we select a 1° rather than a 2° or 3° alkyl halide and react it with a sodium alkoxide

To prepare an alkyl aryl ether, we must be careful not to pick a combination in which one of the reagents has a halogen directly attached to an aromatic ring.

2) Williamson Synthesis

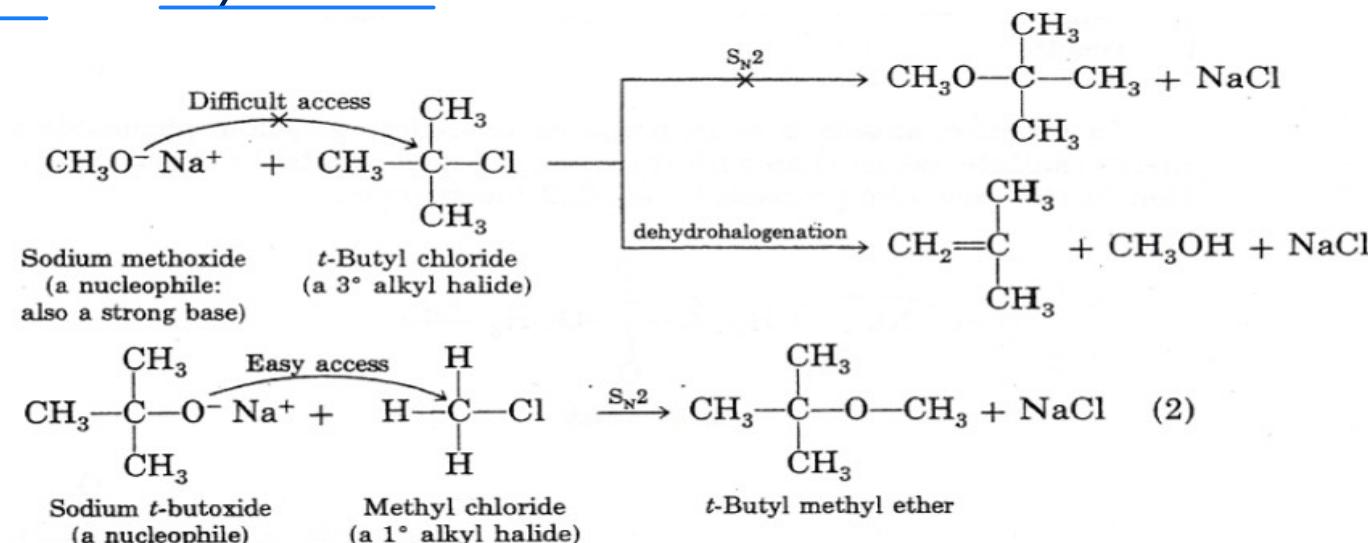
المثال 1، تحضير تي-بيوتيل ميثيل إيثر

○ Example 1; Preparation of *t*-butyl methyl ether, $(CH_3)_3C-O-CH_3$.

► من الناحية النظرية، يمكن القيام بذلك من خلال أي من تفاعلين.

➤ In theory, this could be done by either of two reactions.

1. You could react sodium methoxide, $CH_3O^-Na^+$, with *t*-butyl chloride, $(CH_3)_3C-Cl$.

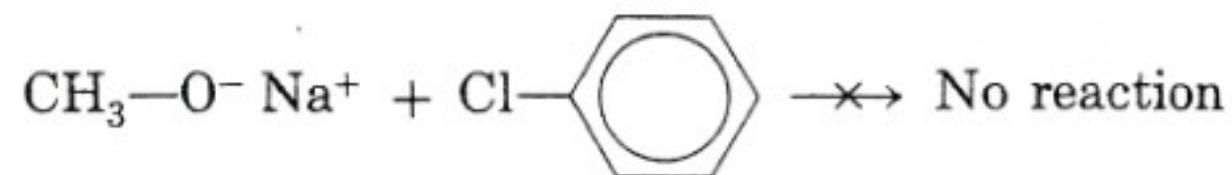

This combination leads to dehydrohalogenation to an alkene, an elimination reaction.

2. You could react sodium *t*-butoxide, $(CH_3)_3C-O^-Na^+$, with methyl chloride, CH_3Cl .

This route gives the desired ether by substitution.

1. يمكنك تفاعل ميتوكسيد الصوديوم، $CH_3O^-Na^+$, مع كلوريد تي-بيوتيل، $(CH_3)_3C-Cl$, يؤدي هذا المزيج إلى نزع الهيدروجين الهالوجيني إلى الأكين، وهو تفاعل إزالة.

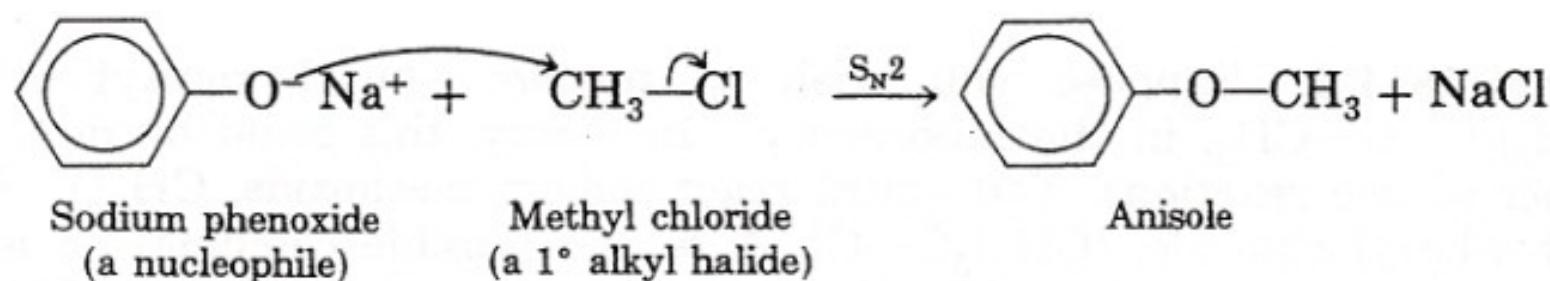
2. يمكنك تفاعل تي-بوتوكسيد الصوديوم، $CH_3O^-Na^+$, مع كلوريد الميتشيل، CH_3Cl . يعطي هذا المسار الأثير المطلوب عن طريق الاستبدال.


Preparation of Ethers

2) Williamson Synthesis

المثال 2، افترض أنك بحاجة إلى تخلق ميثيل فينيل إيثر (أنيسول)، $\text{CH}_3\text{-O-C}_6\text{H}_5\text{H}$ ، بطريقة ويليانسون. { من الناحية النظرية، يمكنك الحصول على أنيسول بإحدى الطريقتين.

Example 2: Assume you need to synthesize methyl phenyl ether (anisole), $\text{CH}_3\text{-O-C}_6\text{H}_5$, by the Williamson method.


➤ In theory, you could obtain anisole in either of two ways.

Sodium methoxide
(a nucleophile)

Chlorobenzene
(an aryl halide)

هون قلنا انه اي بنزين بحافظ على الروابط وبصعب جدا انه يفكها لذلك الافضل انه يكون الاكسجينه على البنزين نفسه حتى يقدر يهاجم

Sodium phenoxide
(a nucleophile)

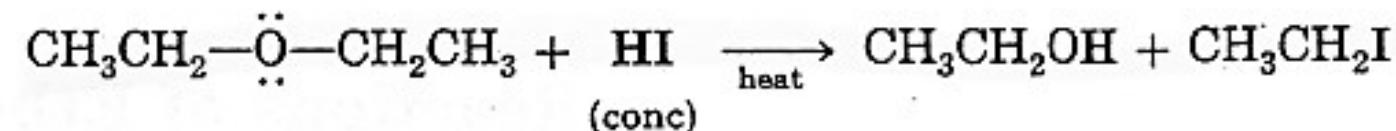
Methyl chloride
(a 1° alkyl halide)

Anisole

Reactions of Ethers

الأثيرات مركبات مستقرة تماماً.

- **Ethers** are quite stable compounds. لا يتفاعل رابط الأثير مع القواعد أو عوامل الاختزال أو عوامل الأكسدة أو المعادن النشطة.
- The ether linkage does not react with bases, reducing agents, oxidizing agents, or active metals.
- **Ethers** react only under strongly acidic conditions. تتفاعل الأثيرات فقط في ظل ظروف حمضية قوية.

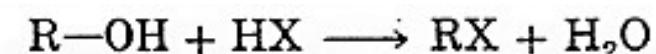

يعني باختصار بقول لنا انه الايثير نادر ما يتفاعل لانه مستقر تقريباً فلذلك عنده تفاعل وحيد وفي حالة وحيدة

انشطار الإيثرات بواسطة الأحماض المركزة الساخنة

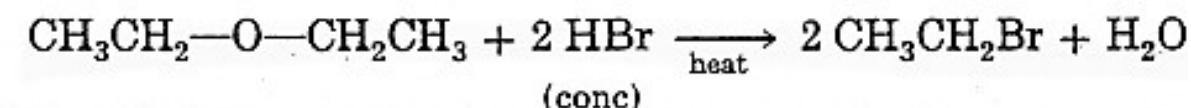
Cleavage of Ethers by Hot Concentrated Acids

عندما تُسخن الإيثرات في محليل حمضية مركزة، ينكسر ارتباط الإيثر.

- When **ethers** are heated in concentrated acid solutions, the ether linkage is broken.


- The acids most often used in this reaction are HI, HBr, and HCl.

> الأحماض الأكثر استخداماً في هذا التفاعل هي HI و HBr و HCl.


- If an excess of acid is present, the alcohol initially produced is converted into an alkyl halide by the reaction.

> إذا كان هناك فائض من الحمض، يتم تحويل الكحول المنتج في البداية إلى هاليد الکيل من خلال التفاعل.

يعني بيكول لنا ان الناتج النهائي من هذا التفاعل هو دائمًا يكون هاليد الکيل فإذا كان الإيثر symmetrical يكون الناتج هو 2 مول من هاليد الالکيل اما اذا كان unsymmetrical فـ ينتـج اثـنين هـالـيدـ الـکـيلـ مـخـتـلـفـهـ طـبـعـاـ هـالـشـيـ فيـ حالـ وجـودـ كـمـيـهـ زـيـادـهـ مـنـ الـحـمـضـ عـشـانـ يـسـاعـدـ النـاتـجـ الـكـحـولـيـ اـنـ يـتـحـولـ لـهـالـيدـ الـکـيلـ

For example,

