

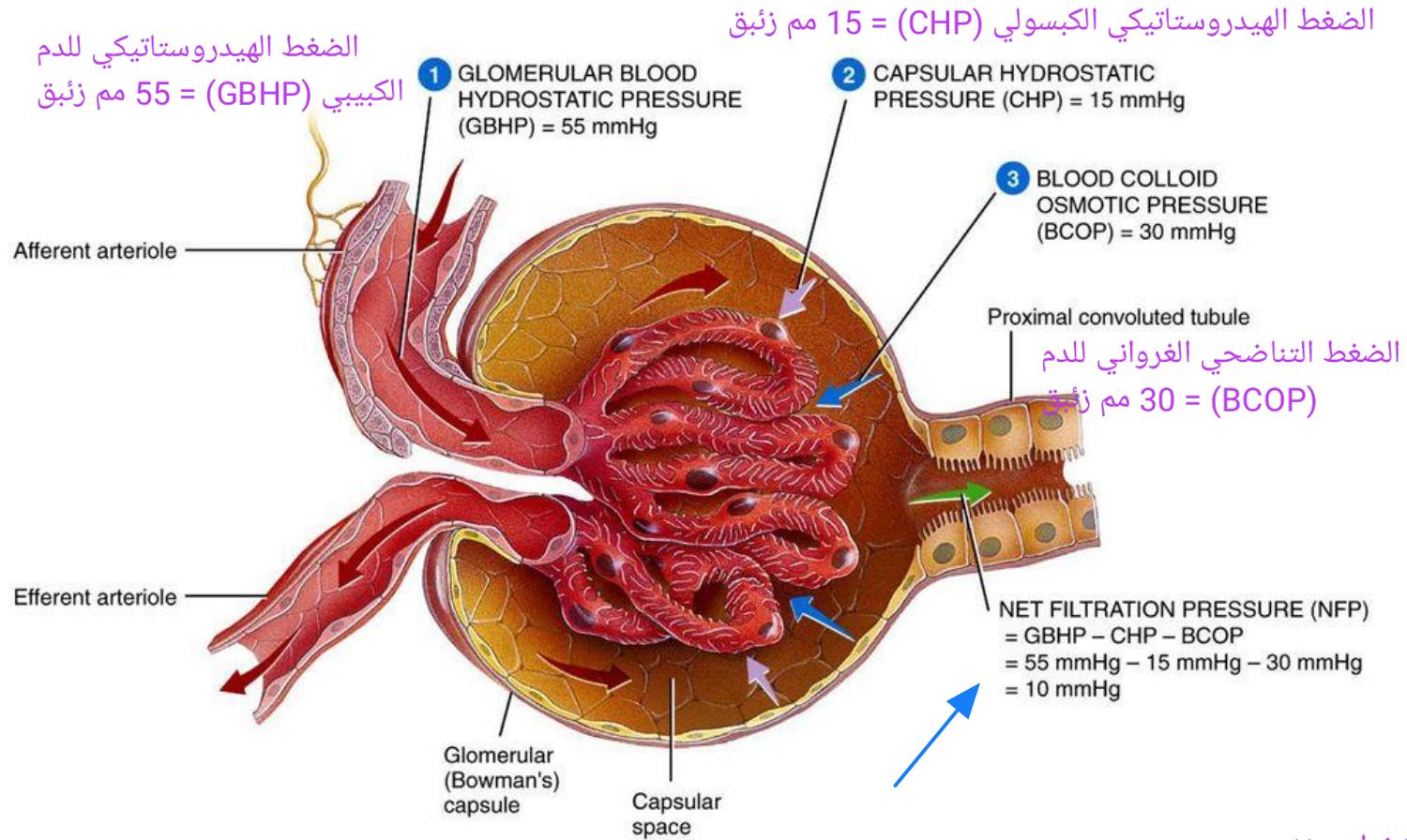
PHYSIOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

DR. AMJAAD ZUHIER ALROSAN

LECTURE 10, PART (2): RENAL PHYSIOLOGY

Objectives


1. Discuss **glomerular filtration rate and regulation of GFR**.
2. Describe **tubular reabsorption**.
3. Explore **homeostatic regulation of tubular reabsorption and tubular secretion**.
4. Discuss **production of dilute and concentrated urine, evaluation of kidney function, and renal plasma clearance**.

(Pages 993- 1014 of the reference)

NET FILTRATION PRESSURE

يعتمد الترشيح الكبيبي على ثلاثة ضغوط رئيسية. ضغط واحد يعزز الترشيح، وضغطان يعارضان الترشيح.

Figure 26.9 The pressures that drive glomerular filtration

Glomerular filtration depends on three main pressures. One pressure promotes filtration, and two pressures oppose filtration.

Glomerular blood hydrostatic pressure promotes filtration, whereas capsular hydrostatic and blood colloid osmotic pressure oppose filtration.

الضغط الهيدروستاتيكي للدم الكبيبي بينما الترشيح الأسموزي بالضغط. يعزز الترشيح، الهيدروستاتيكي الكبسولي والغروانية في الدم يعارض الضغط

NET FILTRATION PRESSURE

ضغط الدم الهيدروستاتيكي الكبيبي (GBHP) هو ضغط الدم في الشعيرات الدموية الكبيبية. يبلغ ضغط الدم الهيدروستاتيكي الكبيبي عادةً حوالي 55 مم زئبق (مليمتر زئبق). يعزز هذا الضغط الترشيح عن طريق دفع الماء والمواد المذابة في بلازما الدم عبر غشاء الترشيح.

- Glomerular blood hydrostatic pressure (GBHP) is the blood pressure in glomerular capillaries. Generally, GBHP is about 55 mmHg (millimetre of mercury). It promotes filtration by forcing water and solutes in blood plasma through the filtration membrane.

الضغط الهيدروستاتيكي الكبسولي (CHP) هو الضغط الهيدروستاتيكي الذي يمارسه السائل الموجود بالفعل في الفراغ الكبسولي والأنبوب الكلوي على غشاء الترشيح. يعارض CHP الترشيح ويمثل "ضغطًا عكسيًا" يبلغ حوالي 15 مم زئبق.

- Capsular hydrostatic pressure (CHP) is the hydrostatic pressure exerted against the filtration membrane by fluid already in the capsular space and renal tubule. CHP opposes filtration and represents a "back pressure" of about 15 mmHg.

الضغط الأسموزي الغروي في الدم (BCOP)، والذي يرجع إلى وجود البروتينات مثل الألبومين والجلوبولين والفيبرينوجين في بلازما الدم، يعارض أيضًا الترشيح. متوسط BCOP في الشعيرات الدموية الكبيبية هو 30 ملم زئبق.

- Blood colloid osmotic pressure (BCOP), which is due to the presence of proteins such as albumin, globulins, and fibrinogen in blood plasma, also opposes filtration. The average BCOP in glomerular capillaries is 30 mmHg.

NET FILTRATION PRESSURE

Net filtration pressure (NFP), the total pressure that promotes filtration, is determined as follows:

$$\text{Net filtration pressure (NFP)} = \text{GBHP} - \text{CHP} - \text{BCOP}$$

By substituting the values just given, normal NFP may be calculated:

$$\begin{aligned}\text{NFP} &= 55 \text{ mmHg} - 15 \text{ mmHg} - 30 \text{ mmHg} \\ &= 10 \text{ mmHg}\end{aligned}$$

وبالتالي، فإن ضغطاً قدره 10 مم زئبق فقط يؤدي إلى ترشيح كمية طبيعية من بلازما الدم (باستثناء بروتينات البلازما) من الكببة إلى الحيز الكبسولي.

Thus, a pressure of only 10 mmHg causes a normal amount of blood plasma (minus plasma proteins) to filter from the glomerulus into the capsular space.

يحدد ضغط الترشيح الصافي (NFP)، وهو الضغط الكلي الذي يعزز الترشيح، كما يلي:

GLOMERULAR FILTRATION RATE

- The amount of filtrate formed in all renal corpuscles of both kidneys each minute is the **glomerular filtration rate (GFR)**.

كمية الترشيح المتكونة في جميع الكريات الكلوية في كلتا الكليتين كل دقيقة هي معدل الترشيح الكبيبي (GFR).

- In adults, the **GFR averages 125 mL/min in males and 105 mL/min in females.**

في البالغين، يبلغ متوسط معدل الترشيح الكبيبي 125 مل / دقيقة عند الذكور و 105 مل / دقيقة عند الإناث.

- **Homeostasis of body fluids** requires that the kidneys maintain a relatively constant GFR.

يتطلب توازن سوائل الجسم أن تحافظ الكليتان على نسبة ثابتة نسبياً من نسبة الارتجاع المرئي.

GLOMERULAR FILTRATION RATE

- **If the GFR is too high**, needed substances may pass so quickly through the renal tubules that some are not reabsorbed and are lost in the urine.

إذا كان معدل الترشيح الكبيبي مرتفعاً جداً، فقد تمر المواد الالزمة بسرعة كبيرة عبر الأنابيب الكلوية بحيث لا يعاد امتصاص بعضها وتفقد في البول.

- **If the GFR is too low**, nearly all the filtrate may be reabsorbed and certain waste products may not be adequately excreted.

إذا كان معدل الترشيح الكلوي منخفضاً جداً، فقد يعاد امتصاص كل السائل المرشح تقريباً، وقد لا يُطرح بعض الفضلات بشكل كافٍ.

- **GFR is directly related to the pressures that determine net filtration pressure**; any change in net filtration pressure will affect GFR.

يرتبط معدل الترشيح الكلوي ارتباطاً مباشراً بالضغط الذي تحدد ضغط الترشيح الصافي، وأي تغيير في ضغط الترشيح الصافي سيؤثر على معدل الترشيح الكلوي.

GLOMERULAR FILTRATION RATE

تعمل الآليات التي تنظم معدل الترشيح الكبيبي بطريقتين رئيسيتين:

- The mechanisms that regulate glomerular filtration rate operate in two main ways:
 - (1) عن طريق ضبط تدفق الدم داخل وخارج الكبيبة. يزداد GFR عندما يزداد تدفق الدم إلى الشعيرات الدموية الكبيبية.
- (1) by adjusting blood flow into and out of the glomerulus. GFR increases when blood flow into the glomerular capillaries increases.
- (2) by altering the glomerular capillary surface area available for filtration. Coordinated control of the diameter of both afferent and efferent arterioles regulates glomerular blood flow. Constriction of the afferent arteriole decreases blood flow into the glomerulus; dilation of the afferent arteriole increases it.
 - (2) عن طريق تغيير مساحة سطح الشعيرات الدموية الكبيبية الم tersible للترشيح. التحكم المنسق في قطر كل من الشرايين الواردة والصادرة ينظم تدفق الدم الكبيبي. يؤدي انقباض الشريان الوارد إلى تقليل تدفق الدم إلى الكبيبة، بينما يؤدي تمدد الشريان الوارد إلى زيادة تدفق الدم.
- Three mechanisms control GFR: renal autoregulation, neural regulation, and hormonal regulation.

هناك ثلاث آليات تتحكم في معدل الترشيح الكبيبي: التنظيم الذاتي الكلوي، والتنظيم العصبي، والتنظيم الهرموني.

RENAL AUTOREGULATION OF GFR

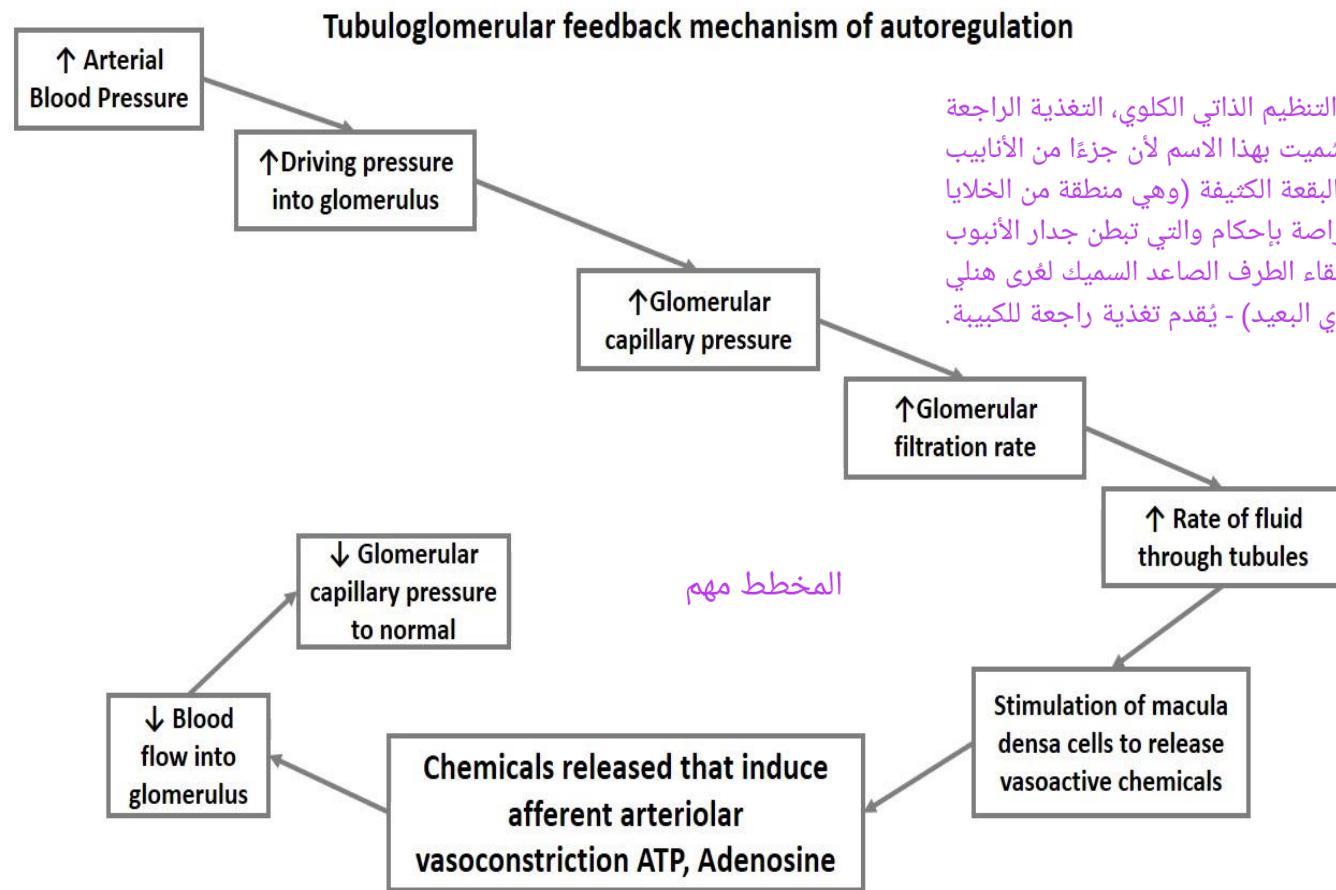
التنظيم الذاتي الكلوي لمعدل الترشيح الكبيبي (GFR)

- The kidneys themselves help maintain a constant renal blood flow and GFR despite normal, everyday changes in blood pressure, like those that occur during exercise. This capability is called **renal autoregulation**.

تساعد الكلى نفسها في الحفاظ على تدفق الدم الكلوي المستمر ومعدل الترشيح الكبيبي (GFR) على الرغم من التغيرات اليومية الطبيعية في ضغط الدم، مثل تلك التي تحدث أثناء ممارسة الرياضة. وتسمى هذه القدرة **التنظيم الذاتي الكلوي**.

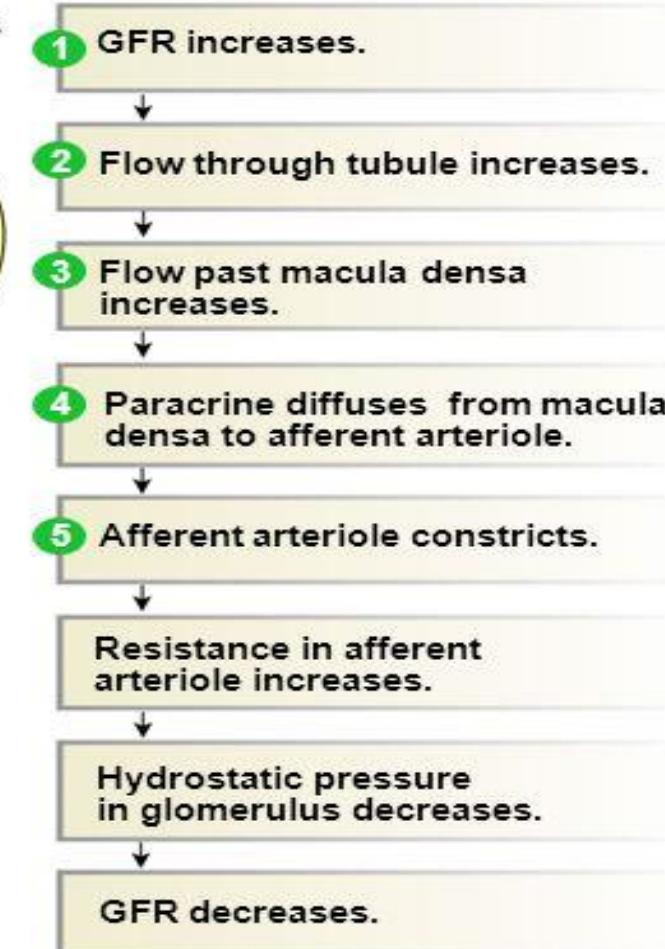
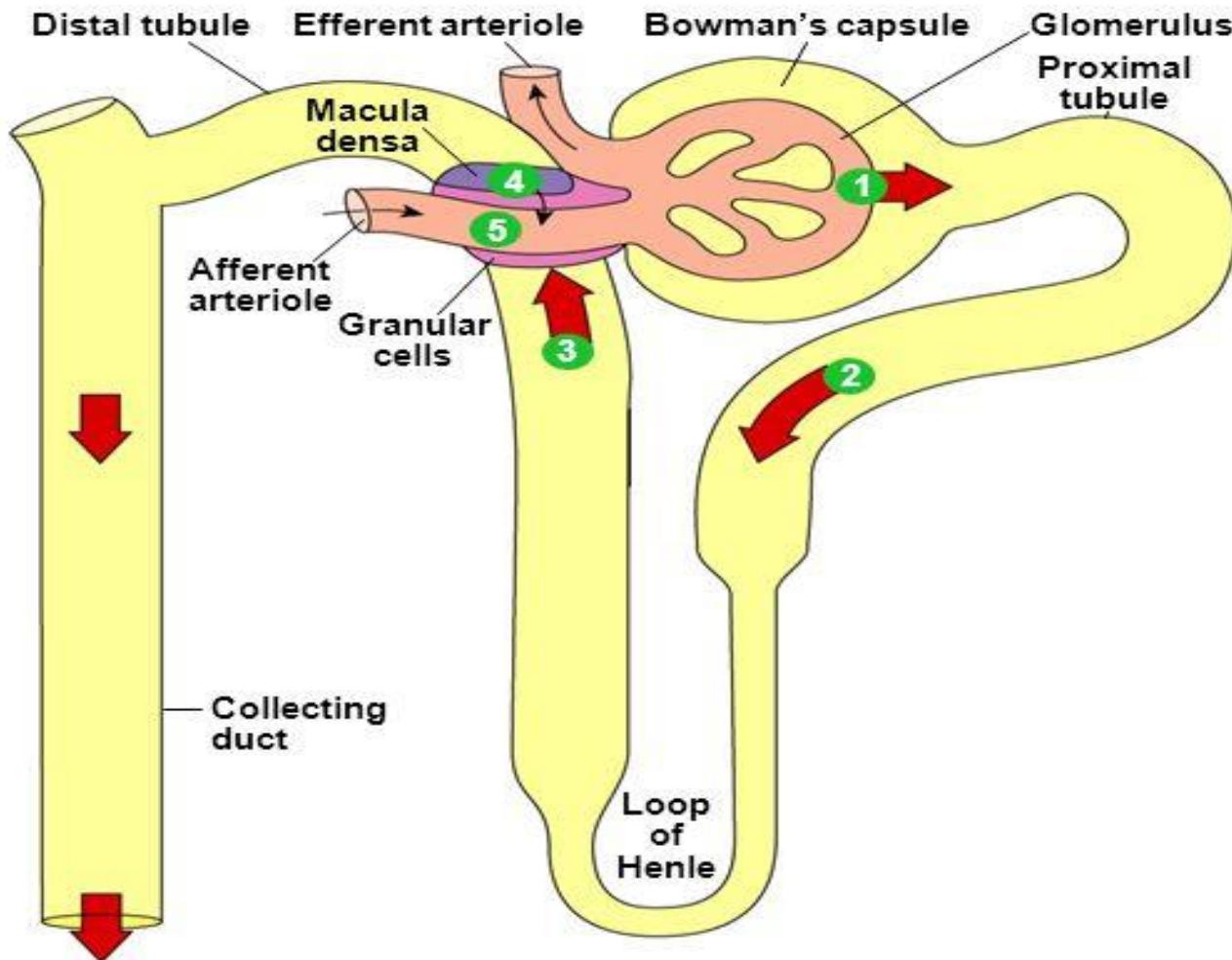
- It consists of two mechanisms—the **myogenic mechanism** and **tubuloglomerular feedback**. **Working together**, they can maintain nearly constant GFR over a wide range of systemic blood pressures.

وهو يتكون من آليتين - آلية المنشأ العضلي والتغذية الراجعة الأنبوية الكبيبية. ومن خلال العمل معاً، يمكنهما الحفاظ على معدل الترشيح الكبيبي (GFR) ثابتاً تقريباً على نطاق واسع من مستويات ضغط الدم الجهازية.


RENAL AUTOREGULATION OF GFR

- The myogenic mechanism occurs when stretching triggers contraction of smooth muscle cells in the walls of afferent arterioles. As blood pressure rises, GFR also rises because renal blood flow increases. However, the elevated blood pressure stretches the walls of the afferent arterioles, which narrows the arteriole's lumen. As a result, renal blood flow decreases, thus reducing GFR to its previous level.

تحدث الآلية العضلية عندما يُحفز التمدد انقباض خلايا العضلات الملساء في جدران الشرايين الواردة. مع ارتفاع ضغط الدم، يرتفع معدل الترشيح الكبيبي أيضًا بسبب زيادة تدفق الدم الكلوي. ومع ذلك، يؤدي ارتفاع ضغط الدم إلى تمدد جدران الشرايين الواردة، مما يضيق تجويف الشريان. ونتيجة لذلك، ينخفض تدفق الدم الكلوي، مما يقلل معدل الترشيح الكبيبي إلى مستواه السابق.



RENAL AUTOREGULATION OF GFR

- The second contributor to renal autoregulation, tubuloglomerular feedback, is so named because part of the renal tubules—the macula densa (is an area of closely packed specialized cells lining the wall of the distal tubule, at the point where the thick ascending limb of the Loop of Henle meets the distal convoluted tubule.)—provides feedback to the glomerulus.

Tubuloglomerular Feedback

NEURAL REGULATION OF GFR

التنظيم العصبي لمعدل الترشيح الكبيبي

- Like most blood vessels of the body, those of the kidneys are supplied by sympathetic ANS fibers that release norepinephrine.

كما هو الحال مع معظم الأوعية الدموية في الجسم، تُغذي أوعية الكلية بواسطة ألياف الجهاز العصبي الإذاري الودي التي تفرز النيروبينفرين.

- At rest, sympathetic stimulation is moderately low, the afferent and efferent arterioles are dilated, and renal autoregulation of GFR prevails.

< في حالة الراحة، يكون التحفيز الودي منخفضاً بشكل معتدل، وتتوسّع الشرايين الواردة والصادرة، ويُسод التنشيط الذاتي الكلوي لمعدل الترشيح الكبيبي.

- With moderate sympathetic stimulation, both afferent and efferent arterioles constrict to the same degree. Blood flow into and out of the glomerulus is restricted to the same extent, which decreases GFR only slightly.

< مع التحفيز الودي المعتدل، تنقبض الشرايين الواردة والصادرة بنفس الدرجة. ويقل تدفق الدم داخل وخارج الكبيبة بنفس الدرجة، مما يقلل من معدل الترشيح الكبيبي بشكل طفيف فقط.

NEURAL REGULATION OF GFR

مع زيادة التحفيز الودي، كما يحدث أثناء التمرين أو النزيف، يسود انقباض الشرايين الواردة. ونتيجة لذلك، ينخفض تدفق الدم إلى الشعيرات الدموية الكببية بشكل كبير، وينخفض معدل الترشيح الكبيبي.

- With greater sympathetic stimulation, however, as occurs during exercise or hemorrhage, vasoconstriction of the afferent arterioles predominates. As a result, blood flow into glomerular capillaries is greatly decreased, and GFR drops.
- This lowering of renal blood flow has two consequences: (1) It reduces urine output, which helps conserve blood volume. (2) It permits greater blood flow to other body tissues.

لهذا الانخفاض في تدفق الدم الكلوي نتائجتان: (1) تقليل إنتاج البول، مما يساعد على الحفاظ على حجم الدم. (2) يسمح بتدفق دم أكبر إلى أنسجة الجسم الأخرى.

HORMONAL REGULATION OF GFR

Two hormones contribute to regulation of GFR:

يساهم هرمونان في تنظيم معدل الترشيح الكبيبي:

1. Angiotensin II (very potent vasoconstrictor) reduces GFR. 1. أنجيوتنسين 2 (مضيق أوعية قوي جدًا) يقلل معدل الترشيح الكبيبي.
2. Atrial natriuretic peptide (ANP) increases GFR because ANP increases the capillary surface area available for filtration. 2. يزيد البيتيد الأذيني المدر للصوديوم (ANP) من معدل الترشيح الكبيبي لأن ANP يزيد من مساحة سطح الشعيرات الدموية الممتاحة للترشيح.

TABLE 26.2**Regulation of Glomerular Filtration Rate (GFR)**

ملخص

TYPE OF REGULATION	MAJOR STIMULUS	MECHANISM AND SITE OF ACTION	EFFECT ON GFR
Renal autoregulation			
Myogenic mechanism	Increased stretching of smooth muscle fibers in afferent arteriole walls due to increased blood pressure.	Stretched smooth muscle fibers contract, thereby narrowing lumen of afferent arterioles.	Decrease.
Tubuloglomerular feedback	Rapid delivery of Na^+ and Cl^- to the macula densa due to high systemic blood pressure.	Decreased release of nitric oxide (NO) by juxtaglomerular apparatus causes constriction of afferent arterioles.	Decrease.
Neural regulation	Increase in activity level of renal sympathetic nerves releases norepinephrine.	Constriction of afferent arterioles through activation of α_1 receptors and increased release of renin.	Decrease.
Hormone regulation			
Angiotensin II	Decreased blood volume or blood pressure stimulates production of angiotensin II.	Constriction of afferent and efferent arterioles.	Decrease.
Atrial natriuretic peptide (ANP)	Stretching of atria of heart stimulates secretion of ANP.	Relaxation of mesangial cells in glomerulus increases capillary surface area available for filtration.	Increase.

TUBULAR REABSORPTION AND TUBULAR SECRETION

إعادة الامتصاص الأنبوبي والإفراز الأنبوبي

إعادة الامتصاص 0

Reabsorption: > عودة معظم الماء الفرّشح والعديد من المواد المذابة الفرّشحة (مثل أيونات الصوديوم والبوتاسيوم والكلوريد والبيكربونات والفوسفات) إلى مجرى الدم.

➤ The return of most of the filtered water and many of the filtered solutes (as sodium, potassium, chloride, bicarbonate and phosphate ions) to the bloodstream.

إفراز الأنبوبي 0

Tubular secretion: > نقل المواد (مثل الهيدروجين، وأيونات البوتاسيوم، وأيونات الأمونيوم، والكرياتينين، وبعض الأدوية مثل البنسلين) من الدم وخلايا الأنابيب إلى الراشح الكبيبي. للإفراز الأنبوبي نتائجتان مهمتان:

➤ the transfer of materials (as hydrogen, potassium ions and ammonium ions, creatinine, and certain drugs such as penicillin) from the blood and tubule cells into glomerular filtrate. Tubular secretion has two important outcomes:

➤ (1) **The secretion of hydrogen ions helps control blood pH.**

(1) يساعد إفراز أيونات الهيدروجين على التحكم بدرجة حموضة الدم.

➤ (2) **The secretion of other substances helps eliminate them from the body in urine**

(2) إفراز مواد أخرى يساعد على التخلص منها من الجسم في البول.

Substances Filtered, Reabsorbed, and Excreted in Urine per Day

TABLE 21.1

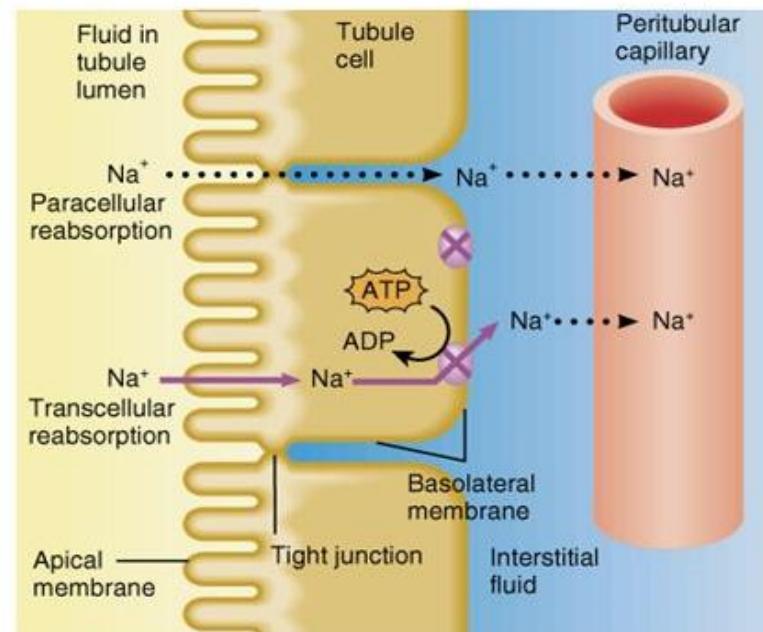
Substances Filtered, Reabsorbed, and Excreted in Urine per Day

SUBSTANCE	FILTERED* (ENTERS RENAL TUBULE)	REABSORBED (RETURNED TO BLOOD)	SECRETED IN URINE
Water	180 liters	178–179 liters	1–2 liters
Chloride ions (Cl^-)	640 g	633.7 g	6.3 g
Sodium ions (Na^+)	579 g	575 g	4 g
Bicarbonate ions (HCO_3^-)	275 g	274.97 g	0.03 g
Glucose	162 g	162 g	0
Urea	54 g	24 g	30 g [†]
Potassium ions (K^+)	29.6 g	29.6 g	2.0 g [‡]
Uric acid	8.5 g	7.7 g	0.8 g
Creatinine	1.6 g	0	1.6 g

*Assuming glomerular filtration is 180 liters per day.

[†]In addition to being filtered and reabsorbed, urea is secreted.

[‡]After virtually all filtered K^+ is reabsorbed in the convoluted tubules and loop of Henle, a variable amount of K^+ is secreted in the collecting duct.

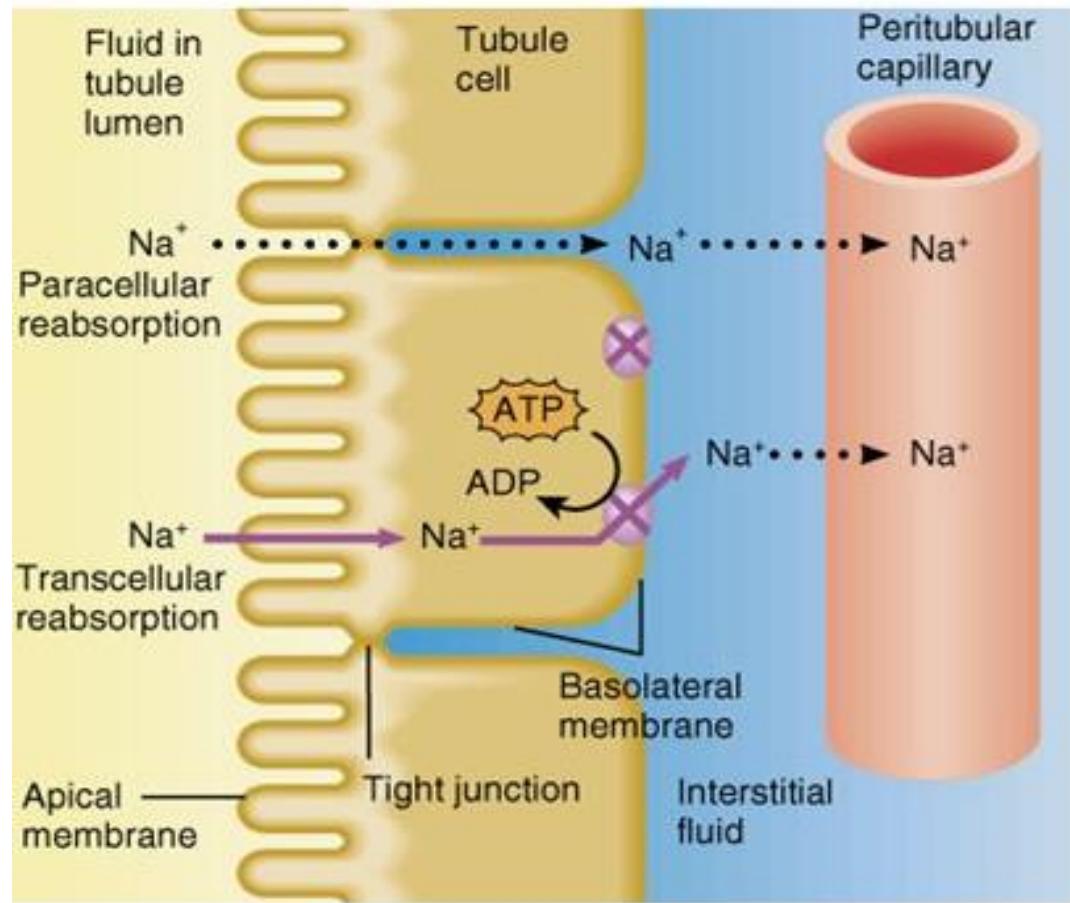

REABSORPTION ROUTES

طرق إعادة الامتصاص

إعادة الامتصاص بين الخلايا: ينتقل 50% من المادة المعاد امتصاصها بين الخلايا عن طريق الانتشار في بعض أجزاء البنيات

Reabsorption Routes

- Paracellular reabsorption
 - 50% of reabsorbed material moves between cells by diffusion in some parts of tubule
- Transcellular reabsorption
 - material moves through both the apical and basal membranes of the tubule cell by active transport

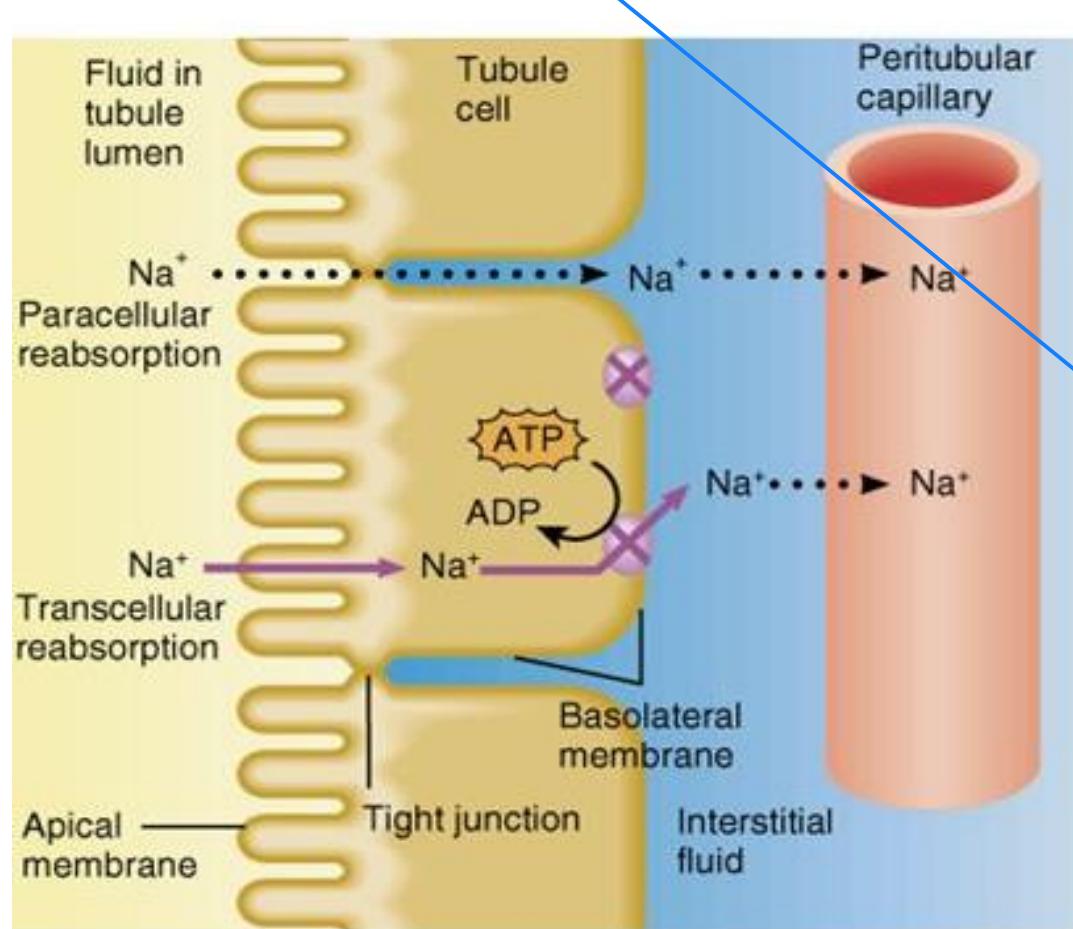

• إعادة الامتصاص عبر الخلايا - تنتقل المادة عبر الغشاءين القمي والقاعدي لخلية الأنابيب عن طريق النقل النشط

في الجهاز الكلوي، الشعيرات الدموية حول الأنابيب هي أوعية دموية صغيرة، تغذيها الشرايين الصادرة، وتسير بمحاذاة النيفرونات، مما يسمح بإعادة الامتصاص والإفراز بين الدم والتجويف الداخلي للنيفرون.

✓ In the renal system, peritubular capillaries are tiny blood vessels, supplied by the efferent arteriole, that travel alongside nephrons allowing reabsorption and secretion between blood and the inner lumen of the nephron.

REABSORPTION ROUTES

يتصل الغشاء القمي بالسائل الأنبوبي،
ويتصل الغشاء القاعدي الجانبي بالسائل
الخلالي عند قاعدة الخلية وجوانبها.


- ✓ The apical membrane contacts the tubular fluid, and the basolateral membrane contacts interstitial fluid at the base and sides of the cell.
- ✓ Even though the epithelial cells are connected by tight junctions, the tight junctions between cells in the proximal convoluted tubules are “leaky” and permit some reabsorbed substances to pass between cells into peritubular capillaries.

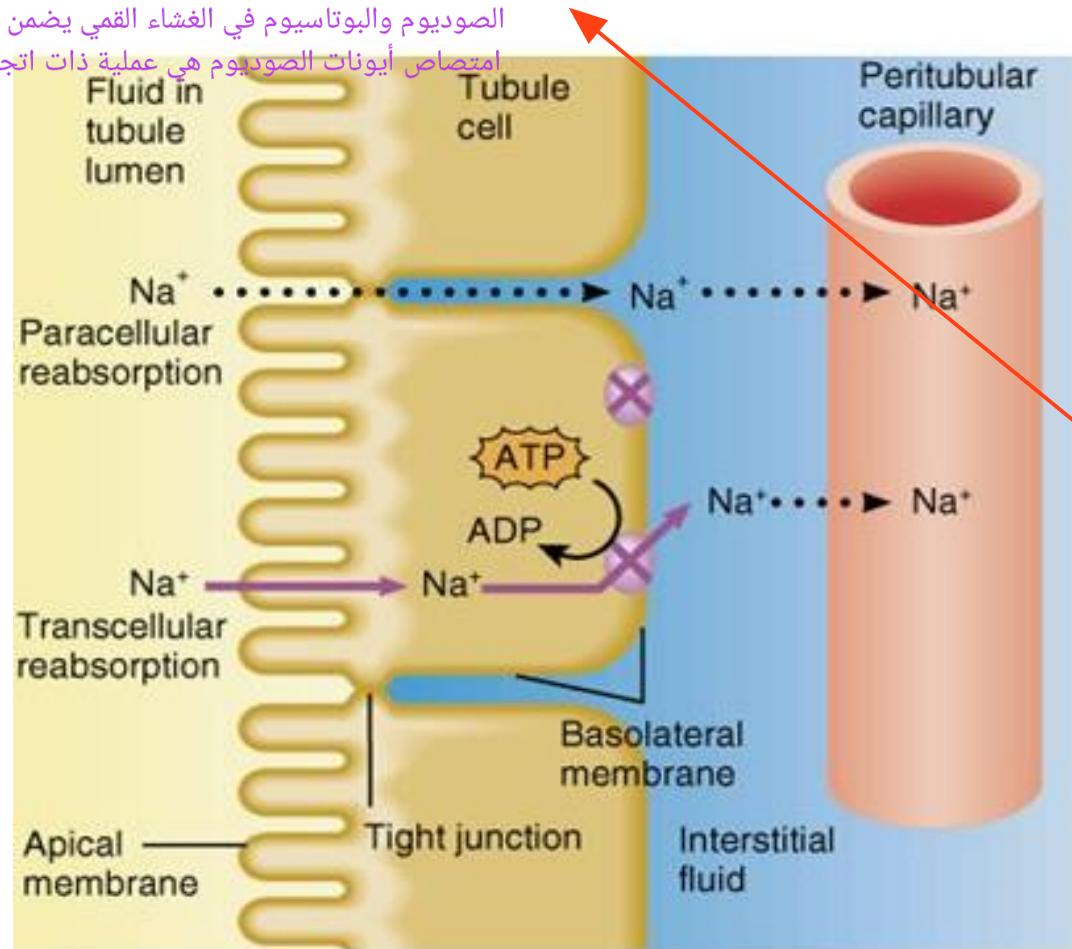
على الرغم من أن الخلايا الظهارية متصلة بواسطة وصلات محكمة، فإن الوصلات الضيقة بين الخلايا في الأنابيب الملتوية القريبة تكون “متسربة” وتسمح لبعض المواد المعد امتصاصها بالمرور بين الخلايا إلى الشعيرات الدموية المحيطة بالنبيبات.

TRANSPORT MECHANISMS

عندما تنقل الخلايا الكلوية المواد المذابة من أو إلى السائل الأنبوب، فإنها تنقل مواد محددة في اتجاه واحد فقط. ليس من المستغرب أن توجد أنواع مختلفة من بروتينات النقل في الأغشية القمية والقاعدية الجانبية. تشكل الوصلات الضيقية حاجزاً يمنع اختلاط البروتينات في حجرات الغشاء القمية والقاعدية.

في إعادة الامتصاص عبر الخلايا، تمر المادة من السائل في تجويف الأنابيب عبر الغشاء القمي لخلية الأنابيب، عبر السيتوبوسول، ثم إلى السائل الخلالي عبر الغشاء القاعدية الجانبي.

✓ In transcellular reabsorption, a substance passes from the fluid in the tubular lumen through the apical membrane of a tubule cell, across the cytosol, and out into interstitial fluid through the basolateral membrane.


✓ When renal cells transport solutes out of or into tubular fluid, they move specific substances in one direction only. Not surprisingly, different types of transport proteins are present in the apical and basolateral membranes. The tight junctions form a barrier that prevents mixing of proteins in the apical and basolateral membrane compartments.

لكل نوع من الناقلات حد أقصى لسرعته، تماماً كما أن للسلم المتحرك هذا أقصى لعدد الأشخاص الذين يمكنه نقلهم من مستوى إلى آخر خلال فترة زمنية محددة. يُقاس هذا الحد، الذي يُسمى الحد الأقصى للنقل (T_m)، بوحدة مل/دقيقة.

TRANSPORT MECHANISMS

تحتوي الخلايا المبطنة للنبيبات الكلوية، مثل الخلايا الأخرى في جميع أنحاء الجسم، على تركيز منخفض من أيونات الصوديوم في العصارة الكلوية بسبب نشاط مضخات الصوديوم والبوتايسيوم. تقع هذه المضخات في الأغشية القاعدية الجانبيّة وتقوم بإخراج أيونات الصوديوم من خلايا الأنابيب الكلوية. إن غياب مضخات

الصوديوم والبوتايسيوم في الغشاء القمي يضمن أن إعادة امتصاص أيونات الصوديوم هي عملية ذات اتجاه واحد.

✓ Each type of transporter has an upper limit on how fast it can work, just as an escalator has a limit on how many people it can carry from one level to another in a given period. This limit, called the transport maximum (T_m), is measured in mg/min.

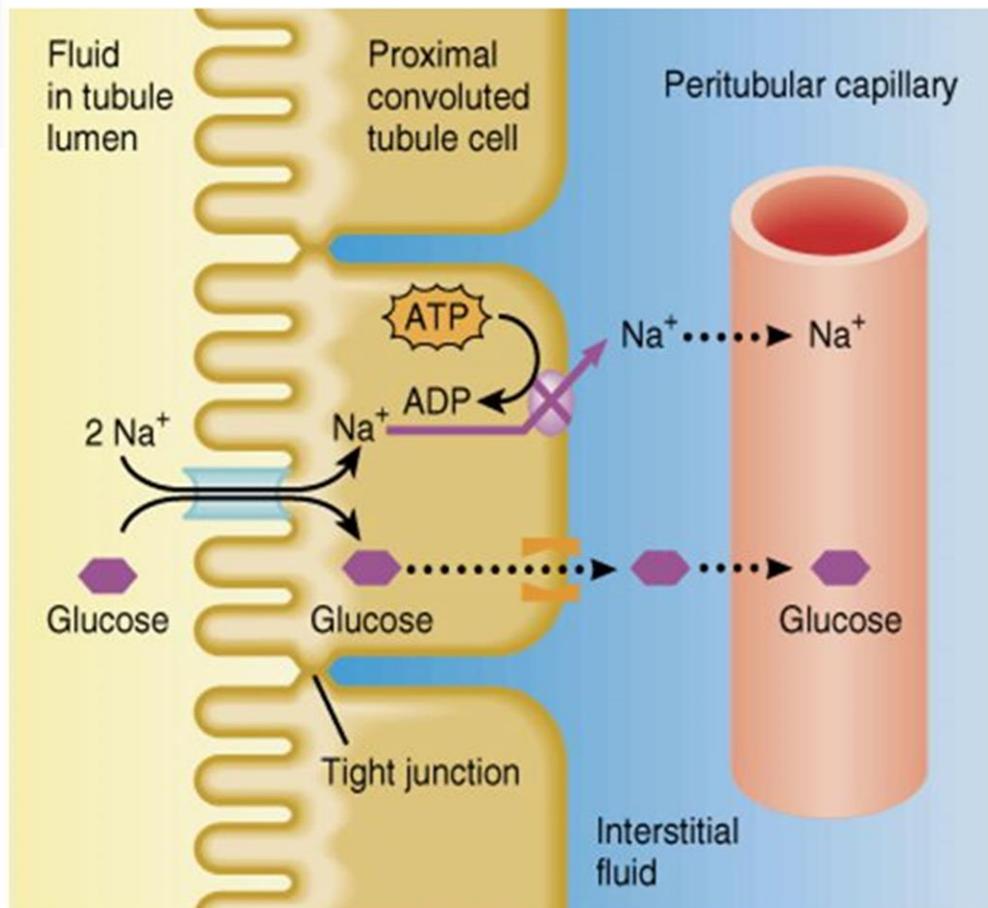
✓ Cells lining the renal tubules, like other cells throughout the body, have a low concentration of sodium ions in their cytosol due to the activity of sodium-potassium pumps. These pumps are located in the basolateral membranes and eject sodium ions from the renal tubule cells. The absence of sodium-potassium pumps in the apical membrane ensures that reabsorption of sodium ions is a one-way process.

TUBULAR REABSORPTION

إعادة امتصاص المذاب يدفع إعادة امتصاص الماء لأن كل إعادة امتصاص الماء تحدث عن طريق الخاصية الأسموزية. يحدث ما يقرب من 90% من إعادة امتصاص الماء الذي تم تصفيته بواسطة الكلى جنباً إلى جنب مع إعادة امتصاص المذيبات مثل أيونات الصوديوم والكلوريد والجلوكوز.

- ✓ **Solute reabsorption drives water reabsorption because all water reabsorption occurs via osmosis. About 90% of the reabsorption of water filtered by the kidneys occurs along with the reabsorption of solutes such as sodium and chloride ions, and glucose.**

يسمى الماء المعاد امتصاصه مع المواد المذابة في السائل الأنبوبي بإعادة امتصاص الماء الإلزامية لأن الماء "ملزم" بمتابعة المواد المذابة عند إعادة امتصاصها. يحدث هذا النوع من إعادة امتصاص الماء في النبيب الملتوى القريب والطرف النازل من حلقة البيفرون.
- ✓ **Water reabsorbed with solutes in tubular fluid is termed obligatory water reabsorption because the water is "obliged" to follow the solutes when they are reabsorbed. This type of water reabsorption occurs in the proximal convoluted tubule and the descending limb of the nephron loop.**
- ✓ **Reabsorption of the final 10% of the water, a total of 10–20 liters per day, is termed facultative water reabsorption. Facultative water reabsorption is regulated by antidiuretic hormone and occurs mainly in the collecting ducts.**


إعادة امتصاص الـ 10% الأخيرة من الماء، أي ما مجموعه 20-10 لترًا يومياً، يطلق عليها اسم إعادة امتصاص الماء الاختياري. يتم تنظيم إعادة امتصاص الماء الاختياري بواسطة الهرمون المضاد لإدرار البول ويحدث بشكل رئيسي في القنوات الجامدة.

REABSORPTION AND SECRETION IN THE PROXIMAL CONVOLUTED TUBULE

- ✓ The largest amount of solute and water reabsorption from filtered fluid occurs in the proximal convoluted tubules.

تحدث أكبر كمية من إعادة امتصاص
المواد المذابة والماء من السائل المفرّش
في الأنابيب الملتوية القريبة.

Reabsorption of Glucose in PCT

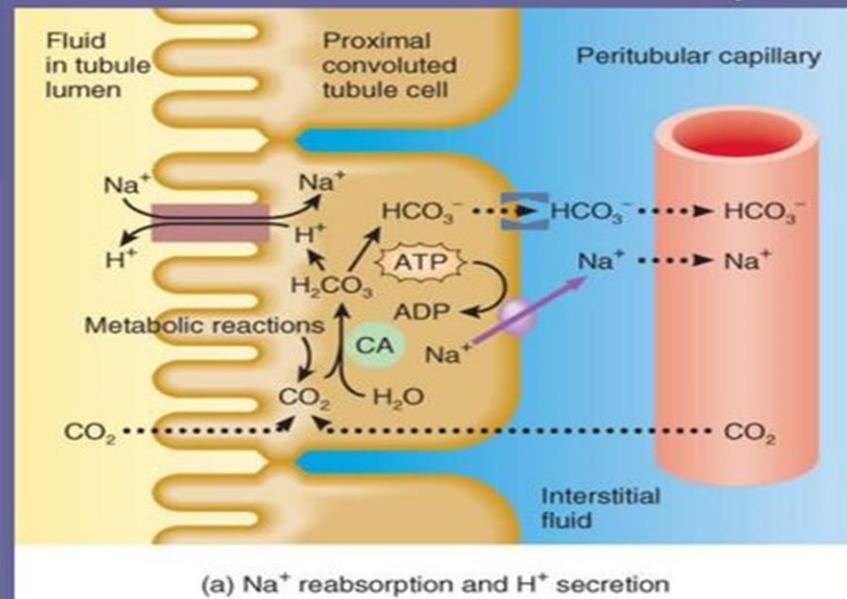
Key:

Na^+ -glucose symporter

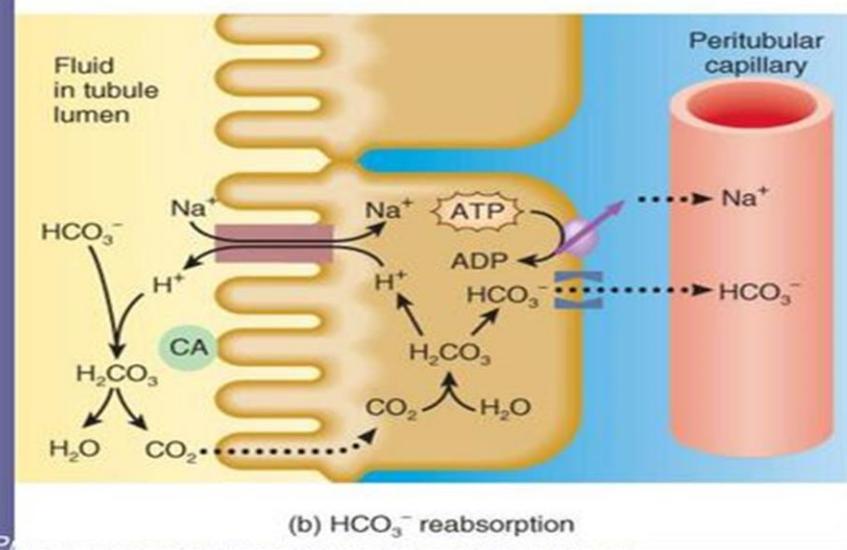
Glucose facilitated diffusion transporter

Diffusion

Sodium-potassium pump


- Intracellular sodium levels are kept low due to Na^+/K^+ ATPase pump on basolateral membrane
- Low intracellular Na^+ creates concentration gradient
 - high in filtrate – low in cell
- Na^+ **symporters** on apical membrane use energy from gradient to bring in glucose
 - **Secondary active transport**
- 2 Na^+ and 1 glucose attach to symporter and enter cell together
- Glucose then diffuses out of cell and into peritubular capillaries

يتم الاحتفاظ
بمستويات الصوديوم
داخل الخلايا منخفضة
بسبب مضخة Na^+ على K^+ ATPase
الغشاء القاعدي. يؤدي
انخفاض الصوديوم
داخل الخلايا إلى
إنشاء تدرج في
التركيز.


- نسبة عالية من الترشيح
منخفضة في الخلية،
تستخدم نظيرات
 Nat الموجودة على الغشاء القمي
الطاقة من التدرج لجلب
الجلوكوز. النقل النشط
الثانوي 2 Na^+ و 1 جلوكوز
يلتصقان بالمعاطف
ويدخلان الخلية معاً

ثم ينتشر الجلوكوز
خارج الخلية إلى
الشعيرات الدموية
المحيطة بالأنانبيب.

Reabsorption of Bicarbonate, Na^+ & H^+ Ions

(a) Na^+ reabsorption and H^+ secretion

(b) HCO_3^- reabsorption

- Na^+ antiporters reabsorb Na^+ and secrete H^+
 - PCT cells produce the H^+ & release bicarbonate ion to the peritubular capillaries
 - important buffering system
- For every H^+ secreted into the tubular fluid, one filtered bicarbonate eventually returns to the blood

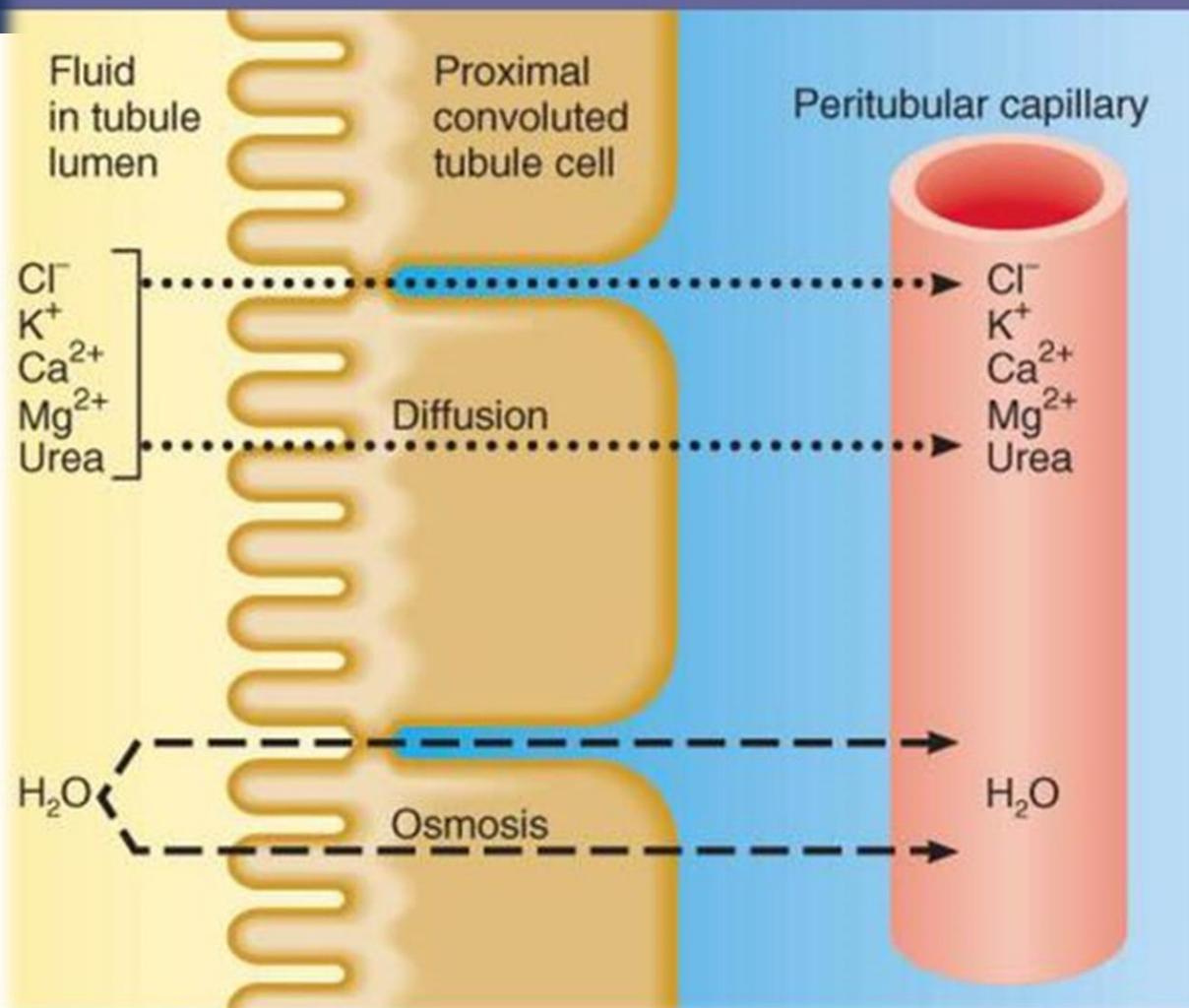
Key:

Na^+-H^+ antiporter

HCO_3^- facilitated diffusion transporter

Diffusion

Sodium–potassium pump


ناقلات الصوديوم تعيد
امتصاص أيونات
الصوديوم وتفرز أيونات
الهيدروجين

ثنتج خلايا PCT أيونات
الهيدروجين ونطلق
أيونات البيكربونات إلى
الشعيرات الدموية
المحيطة بالأنابيب.

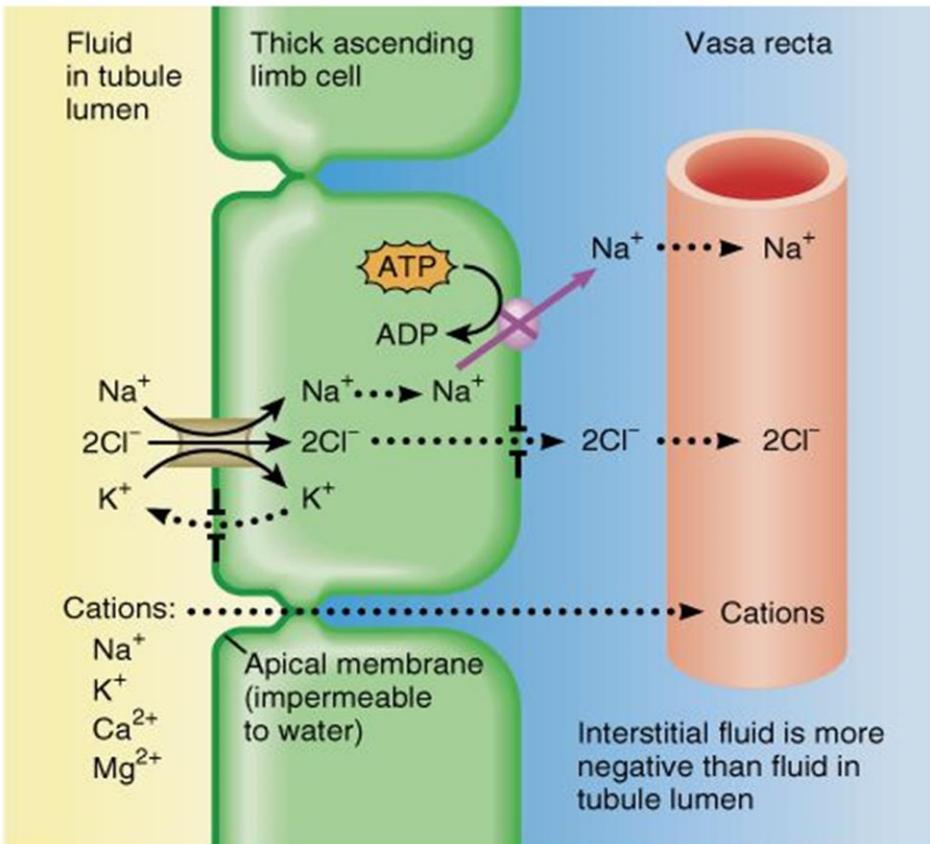
نظام التخزين
المؤقت المهم

لكل أيونات
الهيدروجين
(+H) ثفز في
السائل الأنبوبي،
تعود بيكربونات
واحدة مفرضة
إلى الدم.

Passive Reabsorption in the 2nd Half of PCT

- Electrochemical gradients produced by symporters & antiporters causes passive reabsorption of other solutes
- Cl^- , K^+ , Ca^{2+} , Mg^{2+} and urea passively diffuse into the peritubular capillaries
- Promotes osmosis in PCT (especially permeable due to aquaporin-1 channels)

التدريجات
الكهربوكييمائية
الناتجة عن
الناقلات
المتماثلة
والمضادة
للناقلات تسبب
عادة امتصاص
سلبية لمواد
مذابة أخرى.
 Cl^- , K^+ ,
 Ca^{2+} , Mg^{2+}
والبيوريا بشكل
سلبي في
الشعيرات
الدموية حول
الأنبوب.


يعزز التناضح
PCT في
(خاصة)
بفضل قنوات
أكوابورين-1).

REABSORPTION IN THE NEPHRON LOOP

Because all of the proximal convoluted tubules reabsorb about 65% of the filtered water (about 80 mL/min), fluid enters the next part of the nephron, the nephron loop, at a rate of 40–45 mL/min.

نظرًا لأن جميع الأنابيب الملتوية القريبة تعيد امتصاص حوالي 65% من الماء المفرّش (حوالي 80 مل/دقيقة)، يدخل السائل إلى الجزء التالي من النيفرون، حلقة النيفرون، بمعدل 40-45 مل/دقيقة.

Symporters in the Loop of Henle

- Thick limb of loop of Henle has Na^+ - K^+ - Cl^- symporters that reabsorb these ions
- K^+ leaks through K^+ channels back into the tubular fluid leaving the interstitial fluid and blood with a negative charge
- Cations passively move to the vasa recta

Key:

Na^+ - K^+ - 2Cl^- symporter

Leakage channels

Sodium–potassium pump

Diffusion

• يحتوي الطرف السميكي من عروة هنلي على ناقلات Na^+ - K^+ - Cl^- التي تعيد امتصاص هذه الايونات. • يتسرب K^+ عبر قنوات K^+ إلى السائل الأنبوبي تاركاً السائل الخلالي والدم بشحنة كاتيونات سالبة بشكل سلبي. الانتقال إلى الأوعية المستقيمة

REABSORPTION IN THE EARLY DISTAL CONVOLUTED TUBULE

يدخل السائل إلى البنيات الملتوية البعيدة بمعدل حوالي 25 مل/دقيقة لأن 80% من الماء المرشح قد أعيد امتصاصه الآن.

- **Fluid enters the distal convoluted tubules at a rate of about 25 mL/ min because 80% of the filtered water has now been reabsorbed.**
- **The early or initial part of the distal convoluted tubule (DCT) reabsorbs about 10–15% of the filtered water, 5% of the filtered Na ions, and 5% of the filtered Cl ions.**

يعيد الجزء المبكر أو الأولي من النبيب الملتوي البعيد (DCT) امتصاص حوالي 10-15% من الماء المرشح، و5% من أيونات الصوديوم المرشحة، و5% من أيونات الكلوريد المرشحة.
- **Reabsorption of Na and Cl ions occurs by means of Na–Cl ions symporters in the apical membranes.**

تحدث إعادة امتصاص أيونات الصوديوم والكلوريد بواسطة ناقلات أيونات الصوديوم-الكلوريد في الأغشية القمية.

REABSORPTION IN THE EARLY DISTAL CONVOLUTED TUBULE

تسمح مضخات الصوديوم والبوتاسيوم وقنوات تسرب أيونات الكلوريد في الأغشية القاعدية الجانبية بإعادة امتصاص أيونات الصوديوم وأيونات الكلوريد في الشعيرات الدموية المحيطة بالأنابيب.

- Sodium-potassium pumps and Cl ions leakage channels in the basolateral membranes then permit reabsorption of Na ions and Cl ions into the peritubular capillaries.
- The early DCT also is a major site where parathyroid hormone (PTH) stimulates reabsorption of calcium ions. The amount of calcium ions reabsorption in the early DCT varies depending on the body's needs.

كما يُعد التصوير المقطعي المحسوب المبكر موقعاً رئيسياً يحفز فيه هرمون الغدة جار الدرقية (PTH) إعادة امتصاص أيونات الكالسيوم. تختلف كمية إعادة امتصاص أيونات الكالسيوم في التصوير المقطعي المحسوب المبكر حسب احتياجات الجسم.

REABSORPTION AND SECRETION IN THE LATE DISTAL CONVOLUTED TUBULE AND COLLECTING DUCT

- ✓ **Two different types of cells—principal cells and intercalated cells**—are present at the late or terminal part of the distal convoluted tubule and throughout the collecting duct.

يوجد نوعان مختلفان من الخلايا - الخلايا الرئيسية والخلايا المتدخلة - في الجزء المتأخر أو الطرفي من النبيب المتولى البعيد وفي جميع أنحاء القناة الجامدة.
- ✓ In contrast to earlier segments of the nephron, sodium ions passes through the apical membrane of principal cells via sodium leakage channels rather than by means of symporters or antiporters.

على عكس الأجزاء السابقة من النبيرون، تمر أيونات الصوديوم عبر الغشاء القمي للخلايا الرئيسية عبر قنوات تسرب الصوديوم بدلاً من الناقلات المتماثلة أو الناقلات المضادة.
- ✓ In the apical membrane of principal cells, sodium leakage channels allow entry of sodium ions while potassium ions leakage channels allow exit of potassium ions into the tubular fluid.

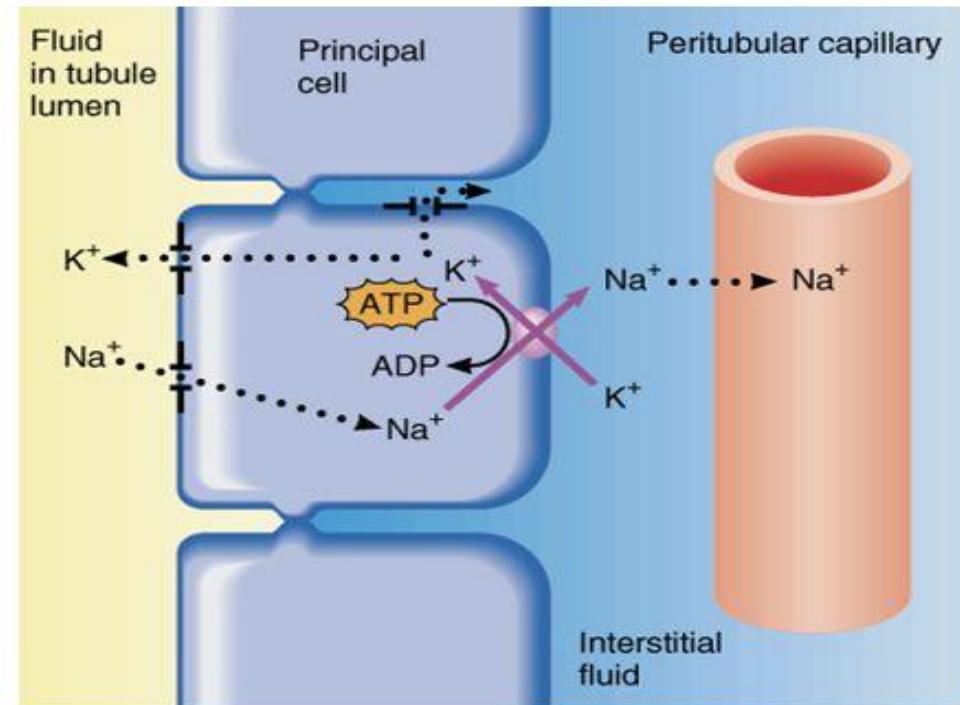
في الغشاء القمي للخلايا الرئيسية، تسمح قنوات تسرب الصوديوم بدخول أيونات الصوديوم بينما تسمح قنوات تسرب أيونات البوتاسيوم بخروج أيونات البوتاسيوم إلى السائل الأنبوبي.

Actions of the Principal Cells

Key:

- → Diffusion
- ↔ Leakage channels
- ↑↓ Sodium-potassium pump

يدخل Na^+ إلى الخلايا الرئيسية من خلال قنوات التسرب، وتحافظ مضخات Na^+ على تركيز Na^+ في العصارة الخلوية منخفضاً


تفرز الخلايا كميات متغيرة من K^+ ، لضبط التغيرات الغذائية في تناول K^+

يزيد الألدوستيرون من إعادة امتصاص Na^+ (وإعادة امتصاص الماء السلبي) وإفراز K^+ بواسطة الخلايا الرئيسية عن طريق تحفيز تخلق مضخات وقنوات جديدة.

- Na^+ enters principal cells through leakage channels
- Na^+ pumps keep the concentration of Na^+ in the cytosol low
- Cells secrete variable amounts of K^+ , to adjust for dietary changes in K^+ intake

— down concentration gradient due to Na^+/K^+ pump

Aldosterone increases this Na^+ reabsorption (and passive water reabsorption) & K^+ secretion by principal cells by stimulating the synthesis of new pumps and channels.

درج التركيز السفلي بسبب مضخة Na^+/K^+

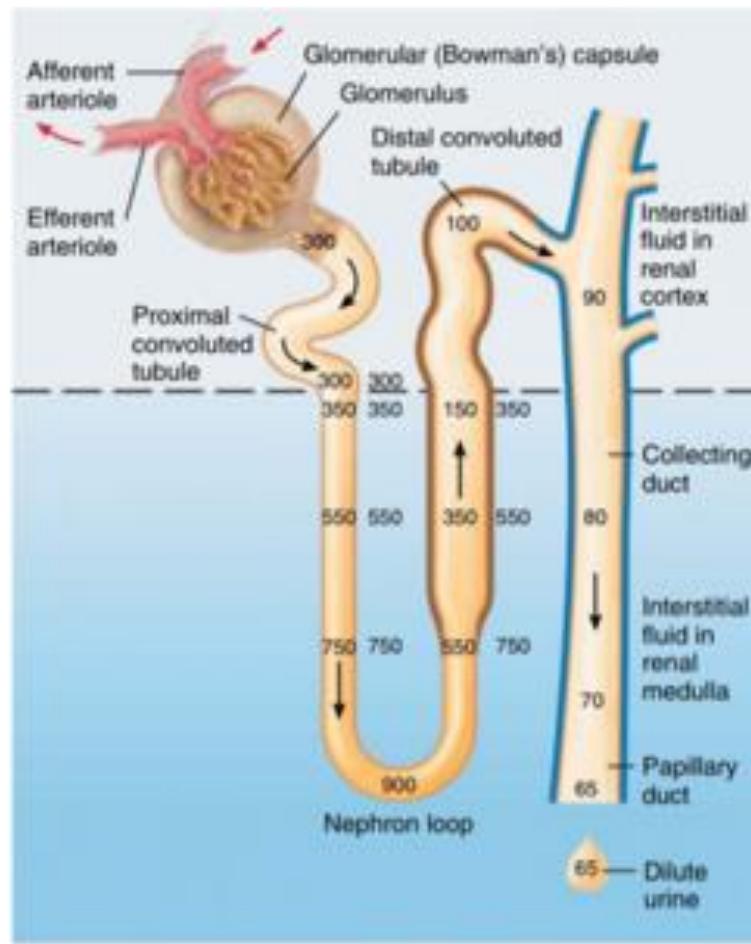
HOMEOSTATIC REGULATION OF TUBULAR REABSORPTION AND TUBULAR SECRETION

- Five hormones affect the extent of sodium, calcium and chloride ions, and water reabsorption as well as potassium ions secretion by the renal tubules. These hormones include: angiotensin II, aldosterone, antidiuretic hormone, atrial natriuretic peptide, and parathyroid hormone.

تؤثر خمسة هرمونات على مدى انتشار أيونات الصوديوم والكالسيوم والكلوريد، وإعادة امتصاص الماء، بالإضافة إلى إفراز أيونات البوتاسيوم بواسطة الأنابيب الكلوية. تشمل هذه الهرمونات: الأنجيوتنسين 2، والألدوستيرون، والهرمون المضاد لإدرار البول، والبيتيد الأذيني المدر للصوديوم، وهرمون الغدة جارة الدرقية.

TABLE 26.4**Hormonal Regulation of Tubular Reabsorption and Tubular Secretion**

جداول


HORMONE	MAJOR STIMULI THAT TRIGGER RELEASE	MECHANISM AND SITE OF ACTION	EFFECTS
Angiotensin II	Low blood volume or low blood pressure stimulates renin-induced production of angiotensin II.	Stimulates activity of $\text{Na}^+–\text{H}^+$ antiporters in proximal tubule cells.	Increases reabsorption of Na^+ , other solutes, and water, which increases blood volume and blood pressure.
Aldosterone	Increased angiotensin II level and increased level of plasma K^+ promote release of aldosterone by adrenal cortex.	Enhances activity of sodium–potassium pumps in basolateral membrane and Na^+ channels in apical membrane of principal cells in collecting duct.	Increases secretion of K^+ and reabsorption of Na^+ , Cl^- ; increases reabsorption of water, which increases blood volume and blood pressure.
Antidiuretic hormone (ADH)	Increased osmolarity of extracellular fluid or decreased blood volume promotes release of ADH from posterior pituitary gland.	Stimulates insertion of water channel proteins (aquaporin-2) into apical membranes of principal cells.	Increases facultative reabsorption of water, which decreases osmolarity of body fluids.
Atrial natriuretic peptide (ANP)	Stretching of atria of heart stimulates ANP secretion.	Suppresses reabsorption of Na^+ and water in proximal tubule and collecting duct; inhibits secretion of aldosterone and ADH.	Increases excretion of Na^+ in urine (natriuresis); increases urine output (diuresis) and thus decreases blood volume and blood pressure.
Parathyroid hormone (PTH)	Decreased level of plasma Ca^{2+} promotes release of PTH from parathyroid glands.	Stimulates opening of Ca^{2+} channels in apical membranes of early distal tubule cells.	Increases reabsorption of Ca^{2+} .

PRODUCTION OF DILUTE AND CONCENTRATED URINE

- Even though your fluid intake can be highly variable, the total volume of fluid in your body normally remains stable.
على الرغم من أن كمية السوائل التي تتناولها قد تختلف اختلافاً كبيراً، إلا أن الحجم الإجمالي للسوائل في جسمك يبقى ثابتاً عادةً.
- Homeostasis of body fluid volume depends in large part on the ability of the kidneys to regulate the rate of water loss in urine.
يعتمد توازن حجم سوائل الجسم بشكل كبير على قدرة الكلى على تنظيم معدل فقدان الماء في البول.
- Normally functioning kidneys produce a large volume of dilute urine when fluid intake is high, and a small volume of concentrated urine when fluid intake is low or fluid loss is large.
تنتج الكلى السليمة كمية كبيرة من البول المخفف عندما يكون تناول السوائل مرتفعاً، وكمية صغيرة من البول المركز عندما يكون تناول السوائل منخفضاً أو يكون فقدان السوائل كبيراً.
- ADH controls whether dilute urine or concentrated urine is formed. In the absence of ADH, urine is very dilute. However, a high level of ADH stimulates reabsorption of more water into blood, producing a concentrated urine.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

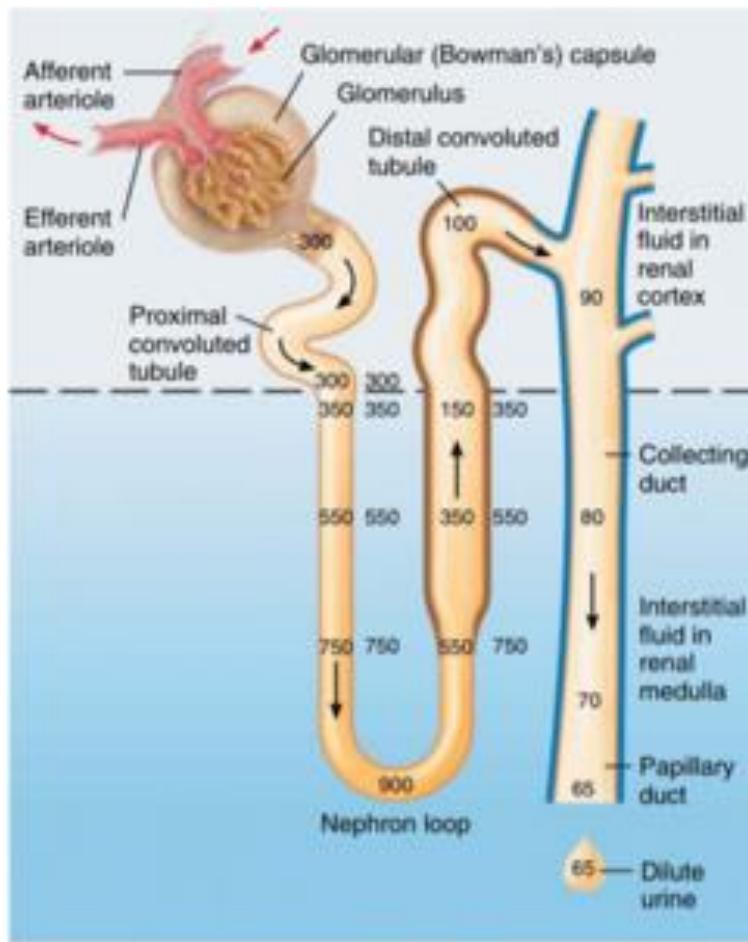
When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

FORMATION OF DILUTE URINE

يحتوي الراشح الكبيبي على نفس نسبة الماء والجسيمات المذابة الموجودة في الدم، وتبلغ الأسمولية حوالي 300 ملي أوسمول/لتر

- Glomerular filtrate has the same ratio of water and solute particles as blood; its osmolarity is about 300 mOsm/liter.

السائل الذي يغادر النبيب الملتوي القريب
لا يزال متساوي التوتر بالنسبة للبلازما.


- Fluid leaving the proximal convoluted tubule is still isotonic to plasma.

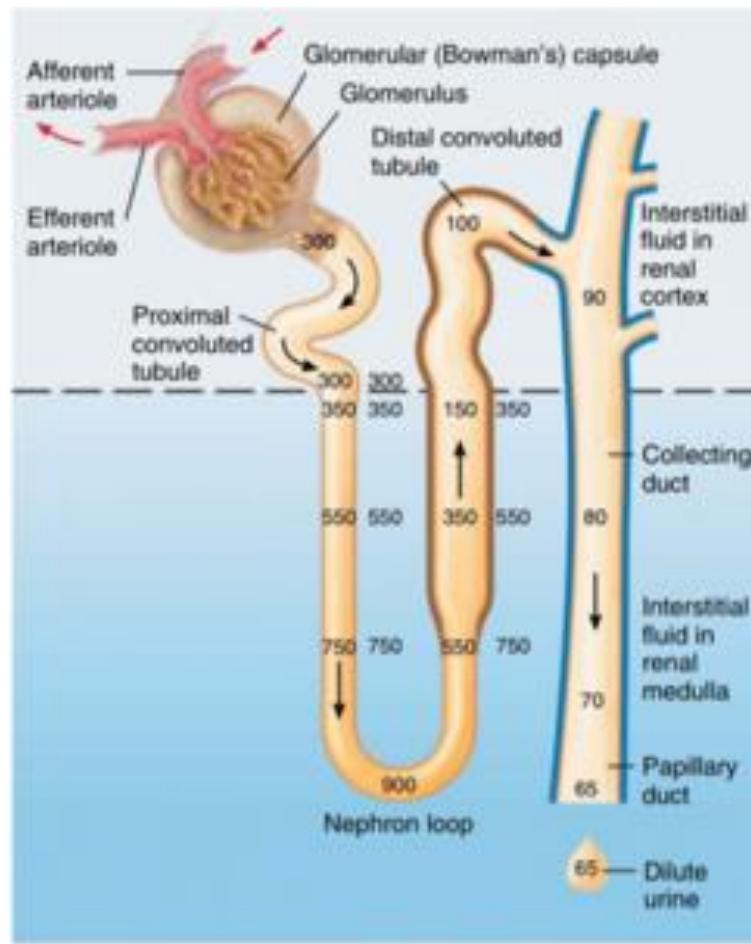
عندما يتشكل البول المخفف، تزداد أسمولية السائل في التجويف الأنبوبي عندما يتدفق إلى أسفل الطرف النازل من حلقة النيفرون، وتتناقص عندما يتدفق إلى الطرف الصاعد، وتتناقص أكثر عندما يتدفق عبر بقية النيفرون والقناة الحامضة.

- When dilute urine is being formed, the osmolarity of the fluid in the tubular lumen increases as it flows down the descending limb of the nephron loop, decreases as it flows up the ascending limb, and decreases still more as it flows through the rest of the nephron and collecting duct.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

FORMATION OF DILUTE URINE


نظراً لأن أوسمولية السائل الخلالي في النخاع الكلوي تصبح أكبر تدريجياً، يتم إعادة امتصاص المزيد والمزيد من الماء عن طريق التناضح حيث يتدفق السائل الأنبوبي على طول الطرف النازل باتجاه طرف حلقة التيفرون.

1. Because the osmolarity of the interstitial fluid of the renal medulla becomes progressively greater, more and more water is reabsorbed by osmosis as tubular fluid flows along the descending limb toward the tip of the nephron loop.
2. Cells lining the thick ascending limb of the loop have symporters that actively reabsorb sodium, potassium, and chloride ions from the tubular fluid.

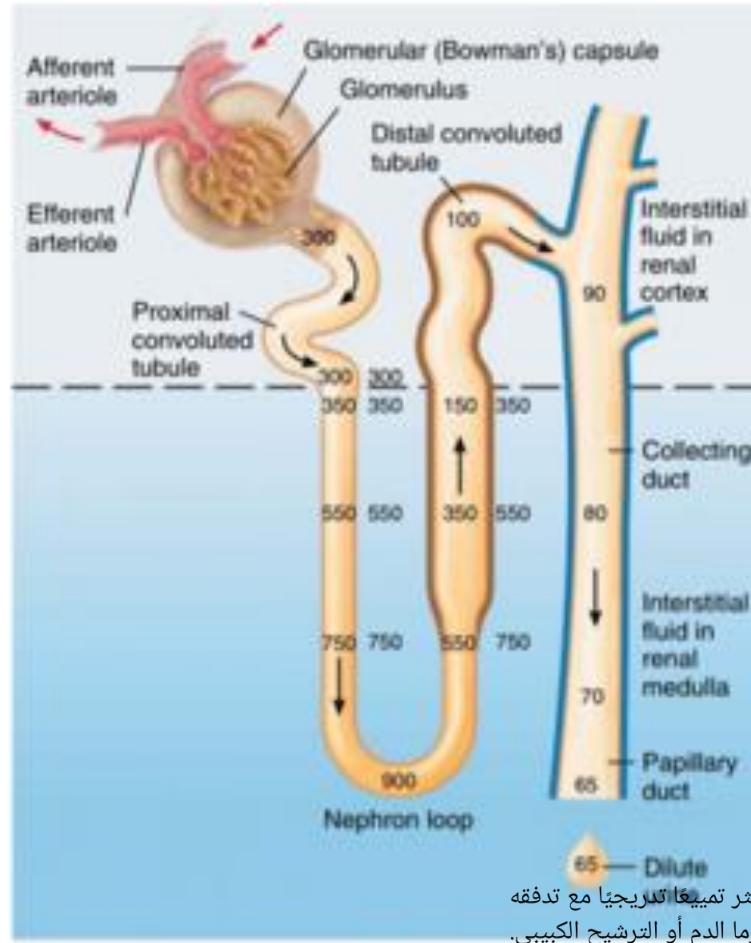
تحتوي الخلايا المبطنة للطرف الصاعد السميكة للحلقة على متكافلات تعمل على إعادة امتصاص أيونات الصوديوم والبوتاسيوم والكلوريد من السائل الأنبوبي.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

2. تمر الأيونات من السائل الأنبوي إلى خلايا الأطراف الصاعدة السمية، ثم إلى السائل الخلالي، وأخيراً ينتشر بعضها في الدم داخل الأوعية المستقيمة.

2. The ions pass from the tubular fluid into thick ascending limb cells, then into interstitial fluid, and finally some diffuse into the blood inside the vasa recta.


3. على الرغم من إعادة امتصاص المواد المذابة في الطرف الصاعد السميكي، إلا أن نقادة الماء لهذا الجزء من النافر تكون دائماً منخفضة جداً، لذلك لا يمكن أن يبيع الماء عن طريق التناضح. عندما تفادر المواد المذابة - وليس جزيئات الماء - السائل الأنبوي، تنخفض أسموليته إلى حوالي 150 ملي أوسمول/لتر. وبالتالي فإن السائل الذي يدخل إلى المخفف البعيد من الأنابيب الملتوي يكون أكثر من البلازمـا.

3. Although solutes are being reabsorbed in the thick ascending limb, the water permeability of this portion of the nephron is always quite low, so water cannot follow by osmosis. As solutes—but not water molecules—are leaving the tubular fluid, its osmolarity drops to about 150 mOsm/liter. The fluid entering the distal convoluted tubule is thus more dilute than plasma.

Figure 26.18 Formation of dilute urine. Numbers indicate osmolarity in milliosmoles per liter (mOsm/liter). Heavy brown lines in the ascending limb of the nephron loop and in the distal convoluted tubule indicate impermeability to water; heavy blue lines indicate the last part of the distal convoluted tubule and the collecting duct, which are impermeable to water in the absence of ADH; light blue areas around the nephron represent interstitial fluid.

When the ADH level is low, urine is dilute and has an osmolarity less than the osmolarity of blood.

4. بينما يستمر السائل بالتدفق على طول النبيب الملتوي البعيد، يتم إعادة امتصاص المواد المذابة الإضافية ولكن عدد قليل فقط من جزيئات الماء. خلايا الأنابيب الملتوية البعيدة المبكرة ليست نفاذية للماء ولا يتم تنظيمها بواسطة ADH.

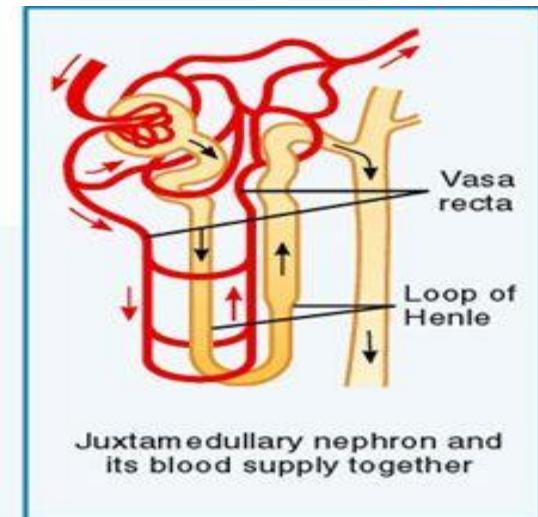
5. أخيراً، تكون الخلايا الرئيسية للأنبوبية الملتوية البعيدة المتأخرة والقنوات الجامدة غير منفذة للماء عندما يكون مستوى ADH منخفضاً جداً. وهكذا، يصبح السائل الأنابيب أكثر تخفيفاً تدريجياً مع تدفقه للأمام. بحلول الوقت الذي يصرف فيه السائل الأنابيب إلى الحوض الكلوي، يمكن أن يصل تركيزه إلى 65-70 ملي أوسمول/لتر. وهذا أكثر تخفيفاً بأربع مرات من بلازما الدم أو الترشيح الكببي.

FORMATION OF DILUTE URINE

4. While the fluid continues flowing along the distal convoluted tubule, additional solutes but only a few water molecules are reabsorbed. The early distal convoluted tubule cells are not very permeable to water and are not regulated by ADH.
5. Finally, the principal cells of the late distal convoluted tubules and collecting ducts are impermeable to water when the ADH level is very low. Thus, tubular fluid becomes progressively more dilute as it flows onward. By the time the tubular fluid drains into the renal pelvis, its concentration can be as low as 65-70 mOsm/liter. This is four times more dilute than blood plasma or glomerular filtrate.

FORMATION OF CONCENTRATED URINE

عندما يكون تناول الماء منخفضاً أو فقدان الماء مرتفعاً (كما هو الحال أثناء التعرق الشديد)، يجب على الكلية الحفاظ على الماء مع التخلص من الفضلات والأيونات الزائدة. تحت تأثير هرمون ADH، تُنتج الكلية كمية صغيرة من البول عالي التركيز.


- **When water intake is low or water loss is high (such as during heavy sweating), the kidneys must conserve water while still eliminating wastes and excess ions. Under the influence of ADH, the kidneys produce a small volume of highly concentrated urine.**
- **Urine can be four times more concentrated (up to 1200 mOsm/liter) than blood plasma or glomerular filtrate (300 mOsm/liter).**

يمكن أن يكون البول أكثر تركيزاً بأربع مرات (حتى 1200 ملي أسمول/لتر) من بلازما الدم أو الرشاح الكبيبي (300 ملي أسمول/لتر).

Mechanism of urine concentration in long-loop juxtapamedullary nephrons

(a) Reabsorption of Na^+ , Cl^- and water in a long-loop juxtapamedullary nephron

(b) Recycling of salts and urea in the vasa recta

FORMATION OF CONCENTRATED URINE

تعتمد قدرة هرمون ADH على إفراز بول مركز على وجود تدرج تناضحي للمواد المذابة في السائل الخلالي للنخاع الكلوي.

- The ability of ADH to cause excretion of concentrated urine depends on the presence of an osmotic gradient of solutes in the interstitial fluid of the renal medulla.
- Two main factors contribute to building and maintaining this osmotic gradient: (1) differences in solute and water permeability and reabsorption in different sections of the long nephron loops and the collecting ducts, and (2) the countercurrent flow of fluid through tube-shaped structures in the renal medulla.

يساهم عاملان رئيسيان في بناء هذا التدرج التناضحي والحفاظ عليه: (1) الاختلافات في نفاذية المواد المذابة والماء وإعادة امتصاصها في أقسام مختلفة من حلقات التيفرون الطويلة والقنوات الجامدة، و(2) التدفق المعاكس للسائل عبر هيكل أنبوبية الشكل في النخاع الكلوي.

FORMATION OF CONCENTRATED URINE

- **Countercurrent flow refers to the flow of fluid in opposite directions.** This occurs when fluid flowing in one tube runs counter (opposite) to fluid flowing in a nearby parallel tube. Examples of countercurrent flow include the flow of tubular fluid through the descending and ascending limbs of the nephron loop and the flow of blood through the ascending and descending parts of the vasa recta.

يشير مصطلح التدفق المعاكس إلى تدفق السائل في اتجاهين متعاكسيين. يحدث هذا عندما يتدفق السائل في أحد الأنابيب في اتجاه معاكس (معاكس) لتدفق السائل في أنبوب موازٍ قریب. من أمثلة التدفق المعاكس تدفق السائل الأنبوبي عبر الأطراف الصاعدة والهابطة لغري النیفرون، وتدفق الدم عبر الأجزاء الصاعدة والهابطة للأسهر المستقيم.

FORMATION OF CONCENTRATED URINE

- Since countercurrent flow through the descending and ascending limbs of the long nephron loop **establishes the osmotic gradient in the renal medulla**, the long nephron loop is said to function as a countercurrent multiplier. **The kidneys use this osmotic gradient to excrete concentrated urine.**

نظرًا لأن تدفق التيار المعاكس عبر الأطراف الهابطة والصاعدة للحلقة النيفرون الطويلة ينشئ التدرج الأسموزي في النخاع الكلوي،
يقال إن حلقة النيفرون الطويلة تعمل كمضاعف للتيار المعاكس. تستخدم الكلى هذا التدرج الأسموزي لإفراز البول المركز.

FORMATION OF CONCENTRATED URINE

يحدث إنتاج البول المركّز بواسطة الكلى بالطريقة التالية:

□ Production of concentrated urine by the kidneys occurs in the following way:

1. تسبّب الناقلات التماضية في خلايا الأطراف الصاعدة السمية لغري النيفرون تراكم أيونات الصوديوم والكلوريد في النخاع الكلوي (لا يُعاد امتصاص الماء في هذا الجزء).

1. Sympoters in thick ascending limb cells of the nephron loop cause a buildup of Na and Cl ions in the renal medulla (water is not reabsorbed in this segment).
2. Countercurrent flow through the descending and ascending limbs of the nephron loop establishes an osmotic gradient in the renal medulla.

2. يؤدي التدفق المعاكس للتيار عبر الأطراف الهاابطة والصاعدة لغري النيفرون إلى تدرج تناضحي في النخاع الكلوي.

FORMATION OF CONCENTRATED URINE

2. Countercurrent flow: Since tubular fluid constantly moves from the descending limb to the thick ascending limb of the nephron loop, the thick ascending limb is constantly reabsorbing Na and Cl ions. Consequently, the reabsorbed Na and Cl ions become increasingly concentrated in the interstitial fluid of the medulla, which results in the formation of an osmotic gradient.

2. التدفق المعاكس للتيار: بما أن السائل الأنبوبي يتحرك باستمرار من الطرف الصاعد السميكة لفرع النيفرون، فإن الطرف الصاعد السميكة يعيد امتصاص أيونات الصوديوم والكلوريد باستمرار. وبالتالي، تزداد تركيز أيونات الصوديوم والكلوريد المُعاد امتصاصها في السائل الخلالي للنخاع، مما يؤدي إلى تكوين تدرج تناضجي.

FORMATION OF CONCENTRATED URINE

* الطرف النازل من حلقة النبيرون نفاذ للغاية للماء، ولكنه غير نفاذ للمواد المذابة باستثناء اليوريا.

- ❖ The descending limb of the nephron loop is very permeable to water but impermeable to solutes except urea.
- ❖ Because the osmolarity of the interstitial fluid outside the descending limb is higher than the tubular fluid within it, water moves out of the descending limb via osmosis.

ولأن الضغط الأسمولي للسائل الخلالي خارج الطرف النازل أعلى من الضغط الأسمولي للسائل الأنبويي داخله، فإن السائل يخرج من الطرف النازل بالتناضح.

FORMATION OF CONCENTRATED URINE

* الطرف الصاعد من العروة غير منفذ للماء، لكن ناقلاته تعيي امتصاص أيونات الصوديوم والكلوريد من السائل الأنبوبي إلى السائل الخلالي في النخاع الكلوي، وبالتالي تتناقص أسمولية السائل الأنبوبي تدريجياً مع تدفقه عبر الطرف الصاعد. بشكل عام، يزداد تركيز السائل الأنبوبي تدريجياً مع تدفقه على طول الطرف الهاابط، ويزداد تخفيفه تدريجياً مع تحركه على طول الطرف الصاعد.

❖ The ascending limb of the loop is impermeable to water, but its symporters reabsorb Na and Cl ions from the tubular fluid into the interstitial fluid of the renal medulla, so the osmolarity of the tubular fluid progressively decreases as it flows through the ascending limb. Overall, tubular fluid becomes progressively more concentrated as it flows along the descending limb and progressively more dilute as it moves along the ascending limb.

FORMATION OF CONCENTRATED URINE

3. Cells in the collecting ducts reabsorb more water and urea.

When ADH increases the water permeability of the principal cells, water quickly moves via osmosis out of the collecting duct tubular fluid, into the interstitial fluid of the inner medulla, and then into the vasa recta.

3. تعيد الخلايا في القنوات الجامعة امتصاص المزيد من الماء واليوريا. عندما يزيد هرمون ADH من نفاذية الماء للخلايا الرئيسية، ينتقل الماء بسرعة عبر التناضح من السائل الأنبوبي للقناة الجامعة، إلى السائل الخلالي للنخاع الداخلي، ثم إلى الأسهر المستقيمية.

FORMATION OF CONCENTRATED URINE

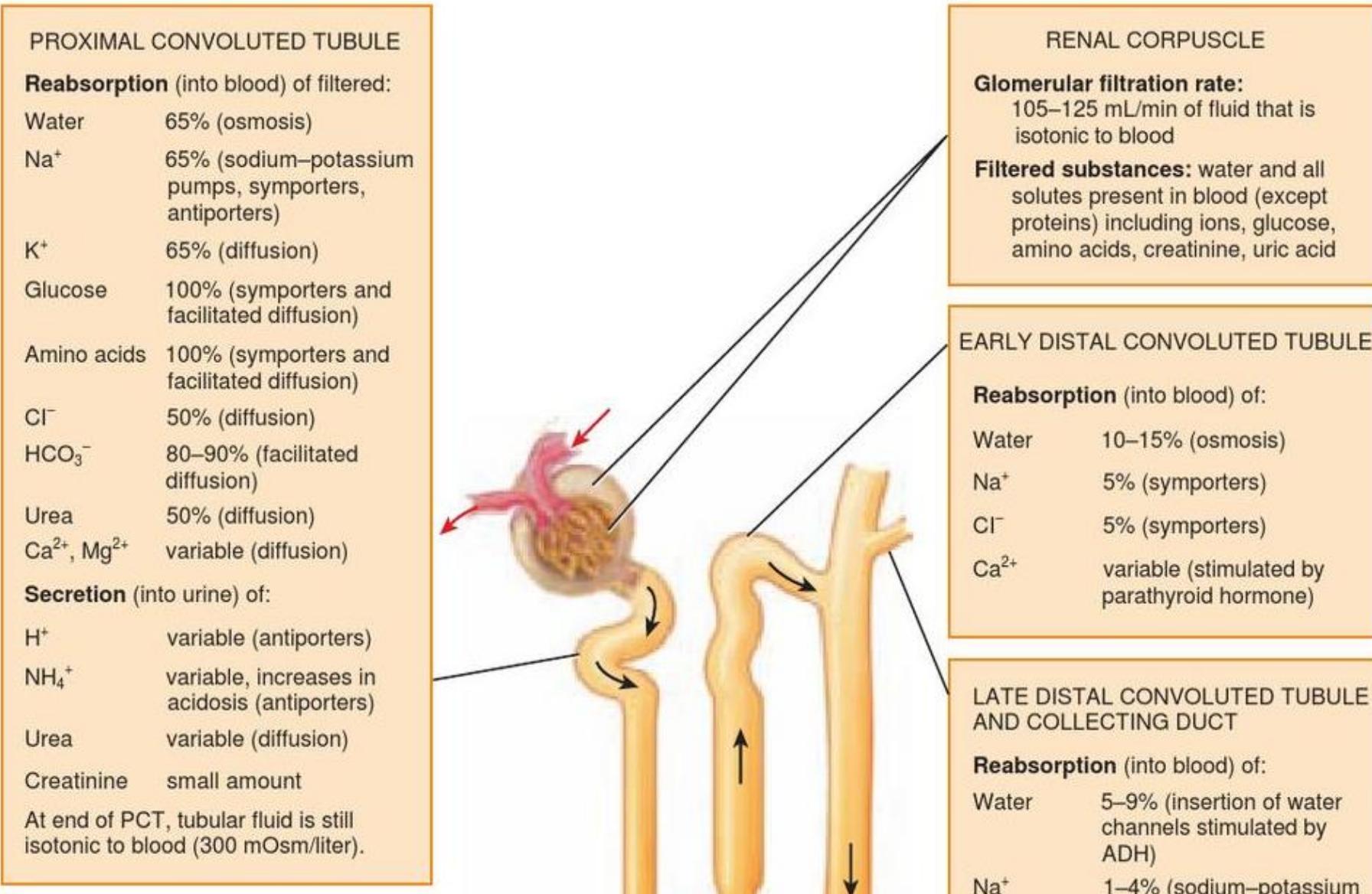
4. يُسبب إعادة تدوير اليوريا تراكمها في النخاع الكلوي.

4. Urea recycling causes a buildup of urea in the renal medulla.

- As urea accumulates in the interstitial fluid, some of it diffuses into the tubular fluid in the descending and thin ascending limbs of the long nephron loops, which also are permeable to urea.
- However, while the fluid flows through the thick ascending limb, distal convoluted tubule, and cortical portion of the collecting duct, urea remains in the lumen because cells in these segments are impermeable to it.

ومع ذلك، بينما يتدفق السائل عبر الطرف الصاعد السميكي، والنبيبة الملتوية البعيدة، والجزء القشرى من القناة الجامعة، تبقى اليوريا في التجويف لأن الخلايا الموجودة في هذه الأجزاء غير منفذة لها.

- As fluid flows along the collecting ducts, water reabsorption continues via osmosis because ADH is present.


مع تدفق السائل على طول قنوات التجميع، يستمر إعادة امتصاص الماء عن طريق التناضح بسبب وجود ADH.

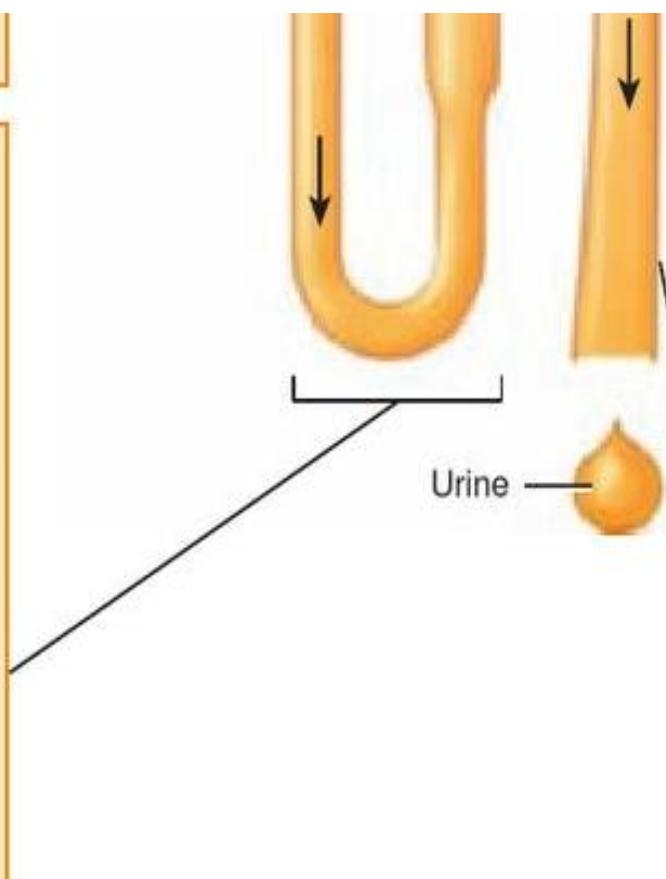
عندما تراكم اليوريا في السائل الخلالي، ينتشر بعض منها في السائل الأنبوبي في الأطراف الهابطة والصاعدة الرقيقة لحلقات النبيرون الطويلة، والتي تكون أيضًا نفاذية لليوريا.

Figure 26.20 Summary of filtration, reabsorption, and secretion in the nephron and collecting duct.

Filtration occurs in the renal corpuscle; reabsorption occurs all along the renal tubule and collecting ducts.

isotonic to blood (300 mOsm/liter).

LOOP OF HENLE


Reabsorption (into blood) of:

Water	15% (osmosis in descending limb)
Na^+	20–30% (symporters in ascending limb)
K^+	20–30% (symporters in ascending limb)
Cl^-	35% (symporters in ascending limb)
HCO_3^-	10–20% (facilitated diffusion)
$\text{Ca}^{2+}, \text{Mg}^{2+}$	variable (diffusion)

Secretion (into urine) of:

Urea	variable (recycling from collecting duct)
------	---

At end of loop of Henle, tubular fluid is hypotonic (100–150 mOsm/liter).

ADH)

Na^+ 1–4% (sodium–potassium pumps and sodium channels stimulated by aldosterone)

HCO_3^- variable amount, depends on H^+ secretion (antiporters)

Urea variable (recycling to loop of Henle)

Secretion (into urine) of:

K^+ variable amount to adjust for dietary intake (leakage channels)

H^+ variable amounts to maintain acid–base homeostasis (H^+ pumps)

Tubular fluid leaving the collecting duct is dilute when ADH level is low and concentrated when ADH level is high.

EVALUATION OF KIDNEY FUNCTION:

I- URINALYSIS

- تحليل البول

TABLE 26.5

Characteristics of Normal Urine

CHARACTERISTIC	DESCRIPTION
Volume	One to two liters in 24 hours; varies considerably. من لتر إلى لترين خلال 24 ساعة، ويختلف ذلك بشكل كبير.
Color	Yellow or amber; varies with urine concentration and diet. Color due to urochrome (pigment produced from breakdown of bile) and urobilin (from breakdown of hemoglobin). Concentrated urine is darker in color. Color affected by diet (reddish from beets), medications, and certain diseases. Kidney stones may produce blood in urine. أصفر أو كهرمانى: يختلف باختلاف تركيز البول والنظام الغذائي. اللون يرجع إلى البيوروكروروم (الصياغ الناتج عن تحلل الصفراء) والبيوروبيلين (من تحلل الهيموجلوبين). البول المركز أغمق في اللون. يتأثر اللون بالنظام الغذائي (الأحمر من البندورة)، والأدوية، وبعض الأمراض. حصوات الكلى قد تنتج الدم في البول.
Turbidity	Transparent when freshly voided; becomes turbid (cloudy) on standing. شفاف عندما يكون مفرغاً حديثاً: يصبح شفافاً (غائماً) عند الوقوف.
Odor	Mildly aromatic; becomes ammonia-like on standing. Some people inherit ability to form methylmercaptan from digested asparagus, which gives characteristic odor. Urine of diabetics has fruity odor due to presence of ketone bodies. عطري بشكل معتدل، يصبح مثل الأمونيا عند الوقوف. يرث بعض الأشخاص القدرة على تكوين ميكيل مركباتان من الهيليون المضروم، والذي يعطي رائحة مميزة. بول مرضى السكر له رائحة فاكهة أجسام الكيتون.
pH	Ranges between 4.6 and 8.0; average 6.0; varies considerably with diet. High-protein diets increase acidity; vegetarian diets increase alkalinity. يتراوح بين 4.6 و 8.0، ومتوسط 6.0، ويختلف بشكل كبير مع النظام الغذائي. الوجبات الغذائية الغنية بالبروتين تزيد الحموضة؛ الوجبات الغذائية النباتية تزيد القلوية.
Specific gravity (density)	Specific gravity (density) is ratio of weight of volume of substance to weight of equal volume of distilled water. In urine, 1.001–1.035. The higher the concentration of solutes, the higher the specific gravity. الكتافة النوعية (الكتافة) هي نسبة وزن حجم المادة إلى وزن حجم متساوٍ من الماء المقطر، في البول. 1.035-1.001. كلما زاد تركيز الماء المذابة، زادت الكتافة النوعية.

TABLE 26.6**Summary of Abnormal Constituents in Urine**

ABNORMAL CONSTITUENT	COMMENTS
Albumin	Normal constituent of plasma; usually appears in only very small amounts in urine because it is too large to pass through capillary fenestrations. Presence of excessive albumin in urine— albuminuria (al'-bō-mi-NOO-rē-a)—indicates increase in permeability of filtration membranes due to injury or disease, increased blood pressure, or irritation of kidney cells by substances such as bacterial toxins, ether, or heavy metals.
Glucose	Presence of glucose in urine— glucosuria (gloo-kō-SOO-rē-a)—usually indicates diabetes mellitus. Occasionally caused by stress, which can cause excessive epinephrine secretion. Epinephrine stimulates breakdown of glycogen and liberation of glucose from liver.
Red blood cells (erythrocytes)	Presence of red blood cells in urine— hematuria (hem-a-TOO-rē-a)—generally indicates pathological condition. One cause is acute inflammation of urinary organs due to disease or irritation from kidney stones. Other causes: tumors, trauma, kidney disease, contamination of sample by menstrual blood.
Ketone bodies	High levels of ketone bodies in urine— ketonuria (kē-tō-NOO-rē-a)—may indicate diabetes mellitus, anorexia, starvation, or too little carbohydrate in diet.

عادة ما يظهر المكون الطبيعي للبلازما بكميات صغيرة جدًا في البول لأنه كبير جدًا بحيث لا يمكنه المرور عبر فتحات الشعيرات الدموية. يشير وجود الألبومين المفروط في البول الزلالي (al-al-*bo-mi-NOO-rē-a*) إلى زيادة في نفاذية أغشية الترشيح بسبب الإصابة أو المرض، أو ارتفاع ضغط الدم، أو تهيج خلايا الكلية بماء مقل السومن البكتيرية، أو الآتین أو المعادن الثقيلة.

وجود خلايا دم حمراء في البول - بيلة دموية (hem-a-TOO-rē-a) - يشير عادةً إلى حالة مرضية. أحد أسبابه هو التهاب حاد في أعضاء الجهاز البولي نتيجة مرض أو تهيج ناتج عن حصوات الكلية. أسباب أخرى: الأورام، والصدمات، وأمراض الكلية، وتلوث العينة بدم الحيض.

المستويات العالية من أجسام الكيتون في البول الكيتوني - قد تشير إلى داء السكري، أو فقدان الشهية، أو الجوع، أو القليل جداً من الكربوهيدرات في النظام الغذائي.

TABLE 26.6**Summary of Abnormal Constituents in Urine**

ABNORMAL CONSTITUENT	COMMENTS	عندما يتم تدمير خلايا الدم الحمراء بواسطة الخلايا الباعمية، ينقسم جزء الجلوبين من الهيموجلوبين ويتحول إليهم إلى بيليفيردين. يتم تحويل معظم البيليفيردين إلى بيليروبين، الذي يعطي الصفراء صبغتها الرئيسية. يسمى المستوى الأعلى من الطبيعي للبيليروبين في البول البيليروبين (bil'-e-roo-bi-NOO-re-a).
Bilirubin		When red blood cells are destroyed by macrophages, the globin portion of hemoglobin is split off and heme is converted to biliverdin. Most biliverdin is converted to bilirubin, which gives bile its major pigmentation. Above-normal level of bilirubin in urine is called bilirubinuria (bil'-e-roo-bi-NOO-re-a).
Urobilinogen	يطلق على وجود الوروبيلينوجين (منتج تحلل الهيموجلوبين) في البول اسم بيلة الـ <u>الـurobilinogen</u> (ə-roo-bi-lin'-je-NOO-re-a). الكهرباء الضئيلة طبيعية، ولكن ارتفاع الـ <u>الـurobilinogen</u> قد يكون بسبب فقر الدم الانحلالي أو الخبيث، والتهاب الكبد المعدني، وانسداد القنوات الصفراوية، والبرقان، والتليف، وفشل القلب الاحتقاني، أو كريات الدم البيضاء المعدنية.	Presence of urobilinogen (breakdown product of hemoglobin) in urine is called urobilinogenuria (ə'-roo-bi-lin'-ə-je-NOO-re-a). Trace amounts are normal, but elevated urobilinogen may be due to hemolytic or pernicious anemia, infectious hepatitis, biliary obstruction, jaundice, cirrhosis, congestive heart failure, or infectious mononucleosis.
Casts	الـ <u>casts</u> عبارة عن كتل صغيرة من المواد التي تصلب واتخذت شكل تجويف النبضات التي تشكلت فيها، والتي يتم مسحها منها عندما ينراكم المرض خلفها. تتم تسمية القوالب على اسم الخلايا أو المواد التي تتكون منها أو بناء على المظهر (على سبيل المثال، قوالب خلايا الدم البيضاء، وقوالب خلايا الدم الحمراء، وقوالب الخلايا الظهارية التي تحتوي على خلايا من جدران الأنبوب).	Casts are tiny masses of material that have hardened and assumed shape of lumen of tubule in which they formed, from which they are flushed when filtrate builds up behind them. Casts are named after cells or substances that compose them or based on appearance (for example, white blood cell casts, red blood cell casts, and epithelial cell casts that contain cells from walls of tubules).
Microbes	يختلف عدد ونوع البكتيريا باختلاف التهابات المسالك البولية. واحدة من أكثرها شيوعا هي الإشريكية القولونية. الفطريات الأكبر شيوعا هي خميرة المبيضات البيضاء، المسببة لالتهاب المهبل. أكبر الكائنات الأولية شيوعا هي المشعرة المهبلية، التي تسبب التهاب المهبل عند الإناث والتهاب الإحليل عند الذكور.	Number and type of bacteria vary with specific urinary tract infections. One of the most common is <i>E. coli</i> . Most common fungus is yeast <i>Candida albicans</i> , cause of vaginitis. Most frequent protozoan is <i>Trichomonas vaginalis</i> , cause of vaginitis in females and urethritis in males.

EVALUATION OF KIDNEY FUNCTION:

تقييم وظائف الكلى:- 2- فحوصات الدم

2- BLOOD TESTS

❖ Two blood-screening tests can provide information about kidney function:-

يمكن لاختبارين لفحص الدم توفير معلومات
حول وظائف الكلى:-

1. Blood urea nitrogen (BUN) test.
2. Plasma creatinine.

1. اختبار نيتروجين اليوبيا في الدم (BUN).
2. كرياتينين البلازما.

BLOOD UREA NITROGEN (BUN) TEST

❖ It measures the blood nitrogen that is part of the urea resulting from catabolism and deamination of amino acids.

*يقيس نيتروجين الدم الذي هو جزء من الــurea الناتج عن تقويض وتمبيع الأحماض الأمينية.

❖ When glomerular filtration rate decreases severely, as may occur with renal disease or obstruction of the urinary tract, BUN rises steeply.

عندما ينخفض معدل الترشيح الكبيبي بشدة، كما قد يحدث في أمراض الكلى أو انسداد المسالك البولية، يرتفع مستوى نيتروجين الــurea في الدم بشكل حاد.

❖ One strategy in treating such patients is to minimize their protein intake, thereby reducing the rate of urea production.

PLASMA CREATININE

❖ It results from catabolism of creatine phosphate in skeletal muscle.

ينتج عن استقلاب فوسفات الكرياتين في العضلات الهيكلية.

❖ Normally, the blood creatinine level remains steady because the rate of creatinine excretion in the urine equals its discharge from muscle.

عادة، يظل مستوى الكرياتينين في الدم ثابتاً لأن معدل طرح الكرياتينين في البول يساوي خروجه من العضلات.

❖ A creatinine level above 1.5 mg/dL (135 mmol/liter) usually is an indication of poor renal function.

عادةً ما يكون مستوى الكرياتينين أعلى من 1.5 ملг/дисильтр (135 مليمول/لتر) مؤشراً على ضعف وظائف الكلى.

RENAL PLASMA CLEARANCE

تصفية البلازما الكلوية هي حجم الدم الذي ينْظَف أو يُصْفَى من مادة ما في وحدة زمنية، ويُعبَر عنها عادةً بوحدات المليلتر في الدقيقة.

- ❖ **Renal plasma clearance** is the volume of blood that is “cleaned” or cleared of a substance per unit of time, usually expressed in units of milliliters per minute.
- ❖ **Low clearance** indicates inefficient excretion. For example, the clearance of glucose normally is zero because it is completely reabsorbed; therefore, glucose is not excreted at all.

يشير الخلوص المنخفض إلى إفراز غير فعال. على سبيل المثال، تكون تصفية الجلوكوز عادةً صفرًا لأنه يتم إعادة امتصاصه بالكامل، وبالتالي لا يتم إخراج الجلوكوز على الإطلاق.

RENAL PLASMA CLEARANCE

معرفة تصفية الدواء أمر ضروري لتحديد الجرعة الصحيحة. إذا كانت التصفية عالية (أحد الأمثلة هو البنسلين)، فيجب أن تكون الجرعة عالية أيضاً، ويجب إعطاء الدواء عدة مرات يومياً للحفاظ على مستوى علاجي مناسب في الدم.

❖ Knowing a drug's clearance is essential for determining the correct dosage. If clearance is high (one example is penicillin), then the dosage must also be high, and the drug must be given several times a day to maintain an adequate therapeutic level in the blood.

تستخدم المعادلة التالية لحساب التصفية:

The following equation is used to calculate clearance:

$$\text{Renal plasma clearance of substance S} = \left(\frac{U \times V}{P} \right)$$

تصفية المادة S في بلازما الكل =

where U and P are the concentrations of the substance in urine and plasma, respectively (both expressed in the same units, such as mg/mL), and V is the urine flow rate in mL/min.

حيث U و P هما تركيز المادة في البول والبلازما على التوالي (كلاهما يعبر عنه بنفس الوحدات، مثل ملغم/ملتر)، و V هو معدل تدفق البول بالملليلتر/دقيقة.

RENAL PLASMA CLEARANCE

❖ The clearance of a solute depends on the three basic processes of a nephron:

1. Glomerular filtration.
2. Tubular reabsorption.
3. Tubular secretion.

*تعتمد تصفية المذاب على العمليات الأساسية الثلاث للنيرفون:

1. الترشيح الكبيبي.
2. إعادة الامتصاص الأنبوبي.
3. الإفراز الأنبوبي.

TABLE 26.7

Summary of Urinary System Organs

STRUCTURE	LOCATION	DESCRIPTION	FUNCTION
Kidneys	Posterior abdomen between last thoracic and third lumbar vertebrae posterior to peritoneum (retroperitoneal). Lie against ribs 11 and 12. البطن الخلفي بين الفقرات الصدرية الأخيرة والفقرات القطنية الثالثة خلف الصفاق (خلف الصفاق). استلقي على الضلعين 11 و12.	Solid, reddish, bean-shaped organs. Internal structure: three tubular systems (arteries, veins, urinary tubes). أعضاء صلبة، حمراء، على شكل حبة الفول. البنية الداخلية: ثلاثة أنظمة أنوية (الشرايين، الأوردة، الأنابيب البولية).	Regulate blood volume and composition, help regulate blood pressure, synthesize glucose, release erythropoietin, participate in vitamin D synthesis, excrete wastes in urine.
Ureters	Posterior to peritoneum (retroperitoneal); descend from kidney to urinary bladder along anterior surface of psoas major muscle and cross back of pelvis to reach inferoposterior surface of urinary bladder anterior to sacrum. الخلفي إلى الصفاق (خلف الصفاق): ينزل من الكلية إلى المثانة البولية على طول السطح الأمامي للضلة القطنية الرئيسية ويعبر الجزء الخلفي من الحوض للوصول إلى السطح السفلي الخلفي للمثانة البولية أمام العجز	Thick, muscular walled tubes with three structural layers: mucosa of transitional epithelium, muscularis with circular and longitudinal layers of smooth muscle, adventitia of areolar connective tissue. أنابيب عضلية سميك الجدران ذات ثلاث طبقات هيكلية: القشاء المخاطي للظهارة الانتقالية، عضلية ذات طبقات دائرة وطولية من العضلات الملساء، مقامرة السنجق العاند الهاي.	Transport tubes that move urine from kidneys to urinary bladder. أنابيب النقل التي تنقل البول من الكليتين إلى المثانة البولية.
Urinary bladder	In pelvic cavity anterior to sacrum and rectum in males and sacrum, rectum, and vagina in females and posterior to pubis in both sexes. In males, superior surface covered with parietal peritoneum; in females, uterus covers superior aspect. في تحريف الحوض أمام العجز والمستقيم عند الذكور والعجز والمستقيم والمهبل عند الإناث وخلف العانة عند كلا الجنسين. في الذكور السطح العلوي مغطى بالصفاق الجداري، في الإناث، يغطي الرحم الجانب العلوي.	Hollow, distensible, muscular organ with variable shape depending on how much urine it contains. Three basic layers: inner mucosa of transitional epithelium, middle smooth muscle coat (detrusor muscle), outer adventitia or serosa over superior aspect in males. → عضو تخزين يخزن البول مؤقتاً بينما ينصرف من الجسم.	Storage organ that temporarily stores urine until convenient to discharge from body. عضو تخزين يخزن البول مؤقتاً بينما ينصرف من الجسم.
Urethra	Exits urinary bladder in both sexes. In females, runs through perineal floor of pelvis to exit between labia minora. In males, passes through prostate, then perineal floor of pelvis, and then penis to exit at its tip. يخرج المثانة البولية عند الجنسين. في الإناث، يمر عبر قاع الحوض ليخرج بين الشفرين الصغيرين. عند الذكور، يمر عبر البروستاتا، ثم قاع العجان في الحوض، ثم القضيب ليخرج عند طرفه.	Thin-walled tubes with three structural layers: inner mucosa that consists of transitional, stratified columnar, and stratified squamous epithelium; thin middle layer of circular smooth muscle; thin connective tissue exterior. → أنابيب رقيقة الجدران ذات ثلاث طبقات هيكلية: القشاء المخاطي الداخلي الذي يتكون من ظهارة الانتقالية وعمودية طبقة وظهارة حرشفية طبقة، وطبقة وسطى رقيقة من العضلات الملساء الدائيرية: سنجق ضام رقيق خارجي.	Drainage tube that transports stored urine from body. أنابيب تصريف ينقل البول المخزن من الجسم.

THANK YOU

AMJADZ@HU.EDU.JO