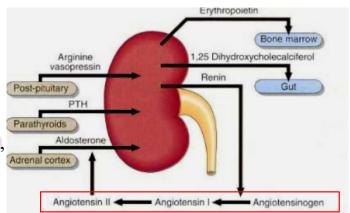


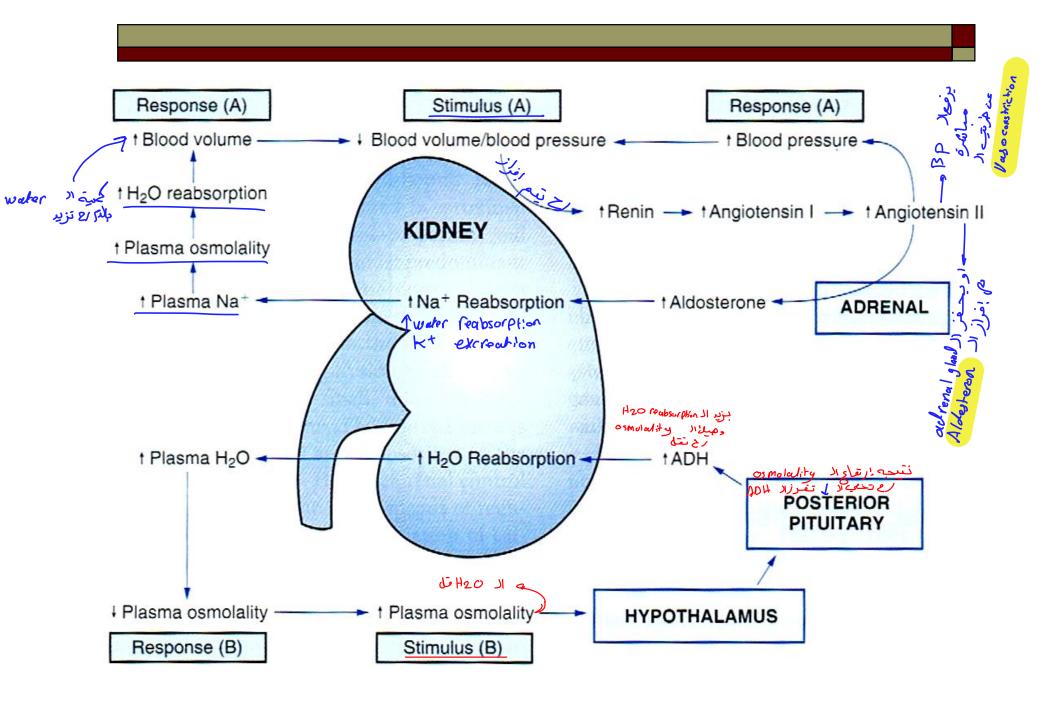
Renal failure

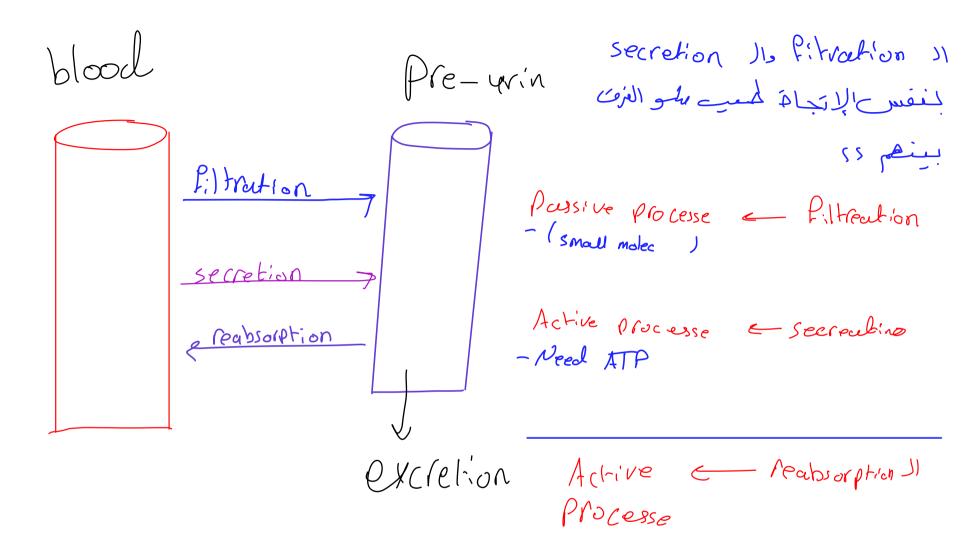
Dr. Iman Mansi

معب ای اکتر علیات معب ای اکترے علیہ عیمات میک زرت صفحات الشرح علیا

كاتنسى زمينا الم الله يرحمه من دما منح


Kidney Functions


dilute verine and stall conc usine and stall since levine and stall since and stall since and stall conc usine and stall since and stall since


- Regulation of acid-base balance long term lenal II is the acrolic of the Later buffering system

 Excretion of the waste products of protein metabolism toxic dei 21 cuts 1:1 wast In effect

- Secretion of hormones: المنظموم المالك المحتنة
 - Renin, Erythropoietin, 1,25-Dihydroxy vitamin D₃, **Prostaglandins**

الرم الجائ من عميع اجزاء الجسم رح بيمنل مل اله وداخل Bowman الم يوشعب للعيرات دمون رح تدخل لا Apsule eiter volumerulur esecuts es glymerulur meis [asterles of the secretion II me 2) is as Proximal type II 2000 feabsoration of the ___ Descending limb from and book II laves يردح الم reabsorption of salt = Ascending limb = Siltrate Ju Aldesteron) Tabul y Itormonul segulation is when Distal tubule I zor zo le rese excretion of 15th reabsorption of H20 Ma ADH Mabular Hormonal regulation and Mollecting duct 11 _ into nephron wordi en collecting dut I

Kidney

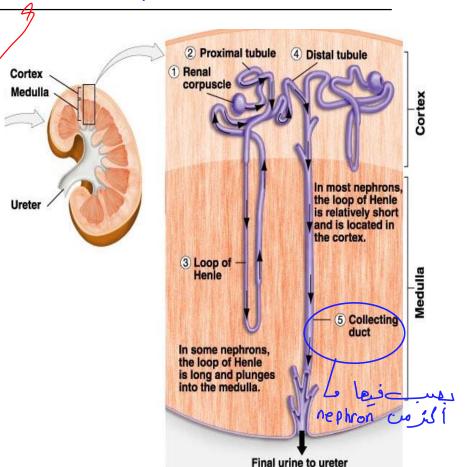
Nephron, functional unit of kidney, consists of glomerulus, Bowman's capsule, proximal tubule, loop of Henle, distal tubule, collecting duct (shared by many nephron). reabsorption of the chief chief chief of the secreption le

Glomerulus: ball of fenestrated capillaries.

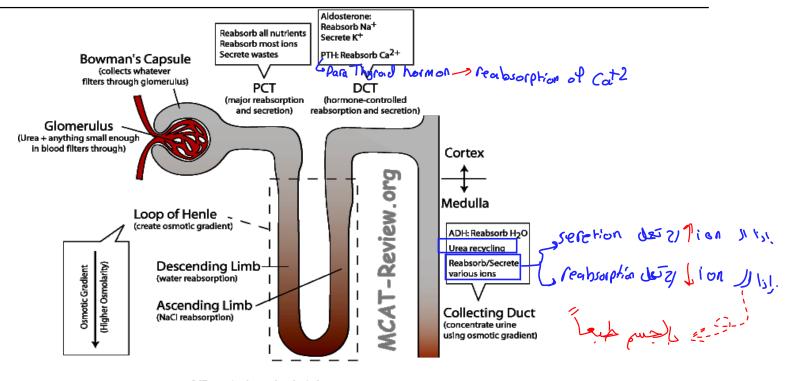
Bowman's capsule: Cup/Capsule that surrounds the glomerulus. П

Proximal tubule: convoluted tubule on the side of the Bowman's capsule. It is the major site for reabsorption (nutrient, salts and water) and secretion (except for K⁺, the secretion of which is the job of distal convoluted tubule in response to aldosterone).

Loop of Henle: U shaped loop that dips into the renal medulla. countercurrent multiplier mechanism occurs here


- - Descending limb:water reabsorption by osmosis (permeable to water, but not to solute).
- Bottom of U: most concentrated.
- Ascending limb: salt reabsorption (permeable to salt, but not water).

Kidney


بكل شغل الي قبله

□ Distal tubule: convoluted tubule on the side of the collecting duct. hormone-controlled (fine tunes the work done by the proximal tubule) reabsorption of salts and water. Aldosterone-controlled secretion of K⁺

Collecting duct: the distal tubules of many nephrons drain here. ADH-controlled reabsorption of water, hormone-controlled reabsorption/secretion of salts.

Kidney and nephrons

PCT proximal convoluted tubule Ouick facts:

DCT distal convoluted tubule

pH homeostasis tubules secrete H+ if blood too acidic

don't reabsorb (same effect as secrete) HCO₃- If too basic

urea recycling urea diffuse out of collecting duct back into loop of Henle

help maintain osmotic gradient

Wastes secreted by PCT NH₄+, Creatinine, Organic Acids

Loop of Henle The longer the loop of Henle, the more concentrated the urine can be produced

Countercurrent Mechanism Powered by NaCl pumps in upper ascending limb.

Results in osmotic gradient down loop of Henle

filtration ا عقوة منع المع الي راخل على اله الخلاموي الحد الحي الحد المعان على اله المعان ال

Formation of urine

□ Glomerular filtration

- Filtration is a passive process which is powered by hydrostatic pressure.
- All substances and ions are filtered out, as long as its small enough.
- The amount of filtrate that flows out of all the renal corpuscles of both kidneys every minute is called the **glomerular filtration rate** (GFR). In the normal adult, this rate is **about 125 ml/min**
- Proteins with molecular weights lower than that of albumin (68,000 ->68 k ماماله daltons) are filterable عدم المعالمة على المعالمة

الله الكواد من خلاله على الكواد من خلاله الكواد عليه الكواد الك

الالاطلبولا الم الكراك تعلق مس المراك الم الكراك تعلق مس المراك الم الكراك تعلق مس المراك الم المراك المرا

Formation of urine

Secretion and reabsorption of solutes

Proximal convoluted tubules reabsorb all the nutrients and most of the La Rookon Metal and Sox a classed 10ns.

Materials that are reabsorbed include water, glucose, amino acids, urea (partially), and ions such as Na+, K+, Ca2+, Cl-, HCO3 -, and HPO3-.

Waste products are left in the filtrate (as urea), And also actively excreted (NH₄+, creatinine, organic acids). (real nin عربيط يطير إلى المالك المالك

transpotred with (Na+) ions. من كا كا المتعامل كا المت

Loop of Henle reabsorbs water and salt using the countercurrent mechanism.

- Distal convoluted tubules selectively reabsorb or secrete substances
- Collecting duct reabsorb water to concentrate urine if ADH present. (Also can secrete and reabsorb substances based on hormonal control)
- Regulation of blood pH: secrete H+ when blood too acidic, not to reabsorb HCO3- when blood too basic.

[in too acidic blood] H+ DI excreation she I sein H+ DI list

[in too acidic blood] H= DI excreation she I sein H+ DI list

[in too base blood] reabsorpto de 26 acidic HCO3 II il list

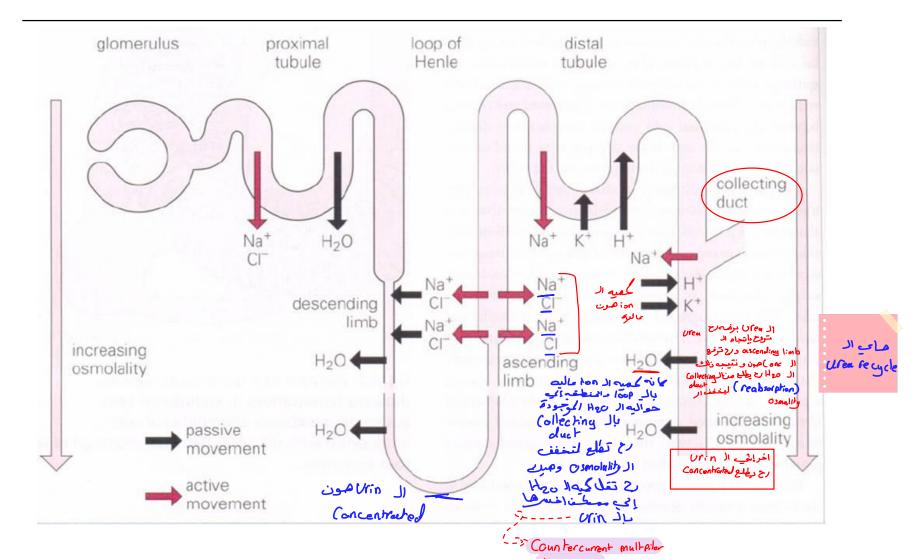
Nasla Gly

Formation of urine we was collecting Y UNIN HOO

Concentration of urine П

alle Olea Dand age

- The distal convoluted tubule contains dilute solution of urea.
- The collecting duct concentrates it by water reabsorption (facilitated diffusion) when ADH is present.
- Water reabsorption in the collecting duct is possible because the loop of Henle has very high osmolarity (very concentrated) at the bottom.
- Countercurrent multiplier mechanism (basic function)


NaCl pump on ascending limb creates an osmotic gradient down the معلى ما المحالية الموادية المحالية ا

ما بمرق الله على الله على Descending limb: water flow out of filtrate, impermeable to salt. Ascending limb: salt flow out of filtrate, impermeable to water ما بمرق له

The gradient-producing power of each individual NaCl pump multiplies down the length of the loop of Henle. Longer the loop of Henle, greater ا الع سكون ال عمال the osmotic gradient, more concentrated urine can be produced.

> What is urea recycling? Urea at the bottom of collecting duct leaks out into the interstitial fluid and back into the filtrate. Contributes to the high osmolarity at the bottom of the loop of Henle.

Urine formation

Endocrine function of kidney

روحو للهفده ي بعد هذا السلايد بالأول

> Secretion of hormones:

- > Renin: produced by juxtaglomerular cells of the renal medulla as a result of reduced kidney perfusion
- Erythropoietin: secreted by cells near to proximal tubule as a response to blood oxygen levels. It affects bone marrow to produce erythrocytes
- > 1,25-Dihydroxy vitamin $D_{3:}$ act in the formation of the active form of vitamin D3
- Prostaglandins: increases renal blood flow, sodium and water excretion, and renin release

so 1,25-Dihydroxy vit D. 11 Kidney I alord PN and cute 1:1 Renin 11 join e Turing J Kichney J 11/1-12 1) cus cel-ve form hydroxy lation (toH) all mes = Vit D ولمانع) فراره مثورج بمراد in the liver a Ces de per cinque Renin Angiotensin 1 ... Angiotensin 2 Dips Kidney N 2 2 2 2 2000 1 aldestern direct valoconstriction nito our hydroxylation al men Nt showline e (1 ler PS & Kichey It Il lies pric !! H20/Na retention Pike vit D supplement peres) 21 2001 2000 1 Bp, Blood volum 1 des in activated of Is we 125 difydroxy Vit Dy VILD Oxygenation 11 Kidney N John Mill 1-1 Extidney 1 Step o Chec (dela) care al. Hormon jei Krolney II ale bonemarrow I 291 2 Frythropo et in 11 juis ويدفوم ليتم ١١ كا كا يتموى ال الديمة على الد 55 De gue ent Prostagianeta Vienes en la part chas Hemoglobin الرحم له للنص لاے باخنوا دانی Vincienal blood flow عناهم الرم عالي كانه الرم : ي ي يو هال الربير المال الجون Julio -V:, Oxygenetion 11 Dinc Na /Hzo excration Kidney JOG Jarull Cein 2/ (:-3) inc renin release Hormon Il lip Rened Fallure 16

عبارة عن موليات تنتج من عمليات ال Metabolism ال المعانوه عن موليات تنتج من عمليات المحالية المعان هيائي المناه المعان هيائي المناه المعان هيائي المناه المن

Elimination of Nonprotein Nitrogen Compounds

Nonprotein nitrogen compounds (NPN) are waste products formed in the body as a result of the degradative metabolism of nucleic acids, amino acids, and proteins. The three principal compounds are urea, creatinine, and uric acid.

Urea

Urea makes up the majority (>75%) of the NPN waste. Urea الجسم يصع الساء الماء synthesis occurs in the liver from ammonia liver JUNHZ JIM Wea cycled abuly

excretion I purellagible 'excretion I surellagible 'excretion I was about the Kidney I was

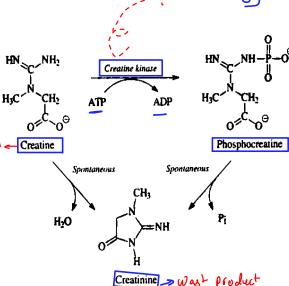
The kidney is the only significant route of excretion for urea.

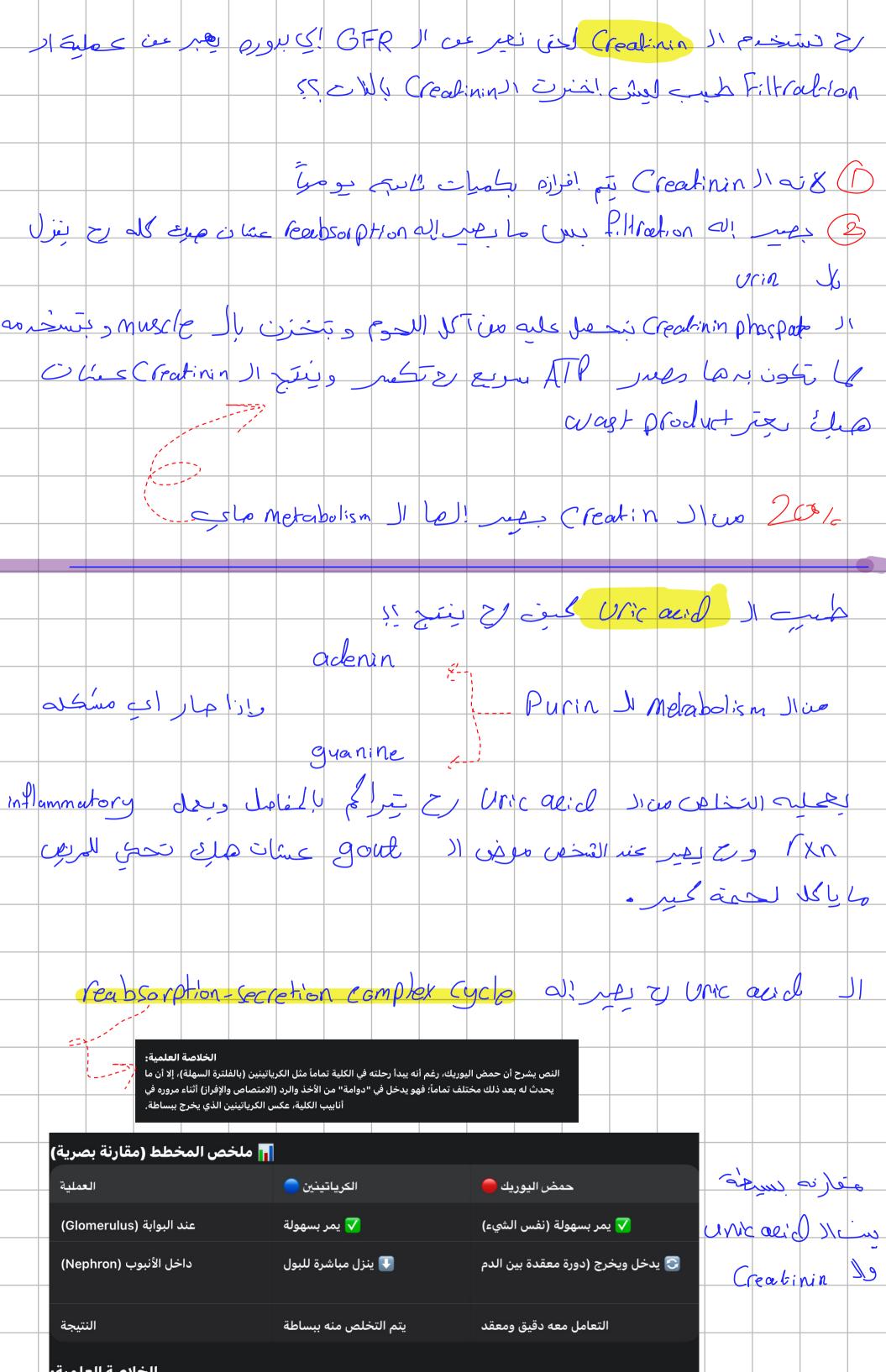
It is readily filtered by the glomerulus. In the collecting ducts, 40-60% of urea is reabsorbed. The reabsorbed urea contributes to the high osmolality in the medulla, which is one of the processes

of urinary concentration \$426 Deabsorption is also well supported by plus uses well supported by plus uses with supported by the supported by

Elimination of Nonprotein Nitrogen Compounds

Creatinine


- Muscle contains creatine phosphate, a high-energy compound for the rapid formation of ATP catalyzed by creatine kinase (CK).
- Every day up to 20% of total muscle creatine (and its phosphate) spontaneously dehydrates and cycles to form the waste product creatinine.


0° ° ر Creatine کیر کارسانا ح

Crearinine is readily filtered by the glomerulus but not reabsorbed by the tubules.

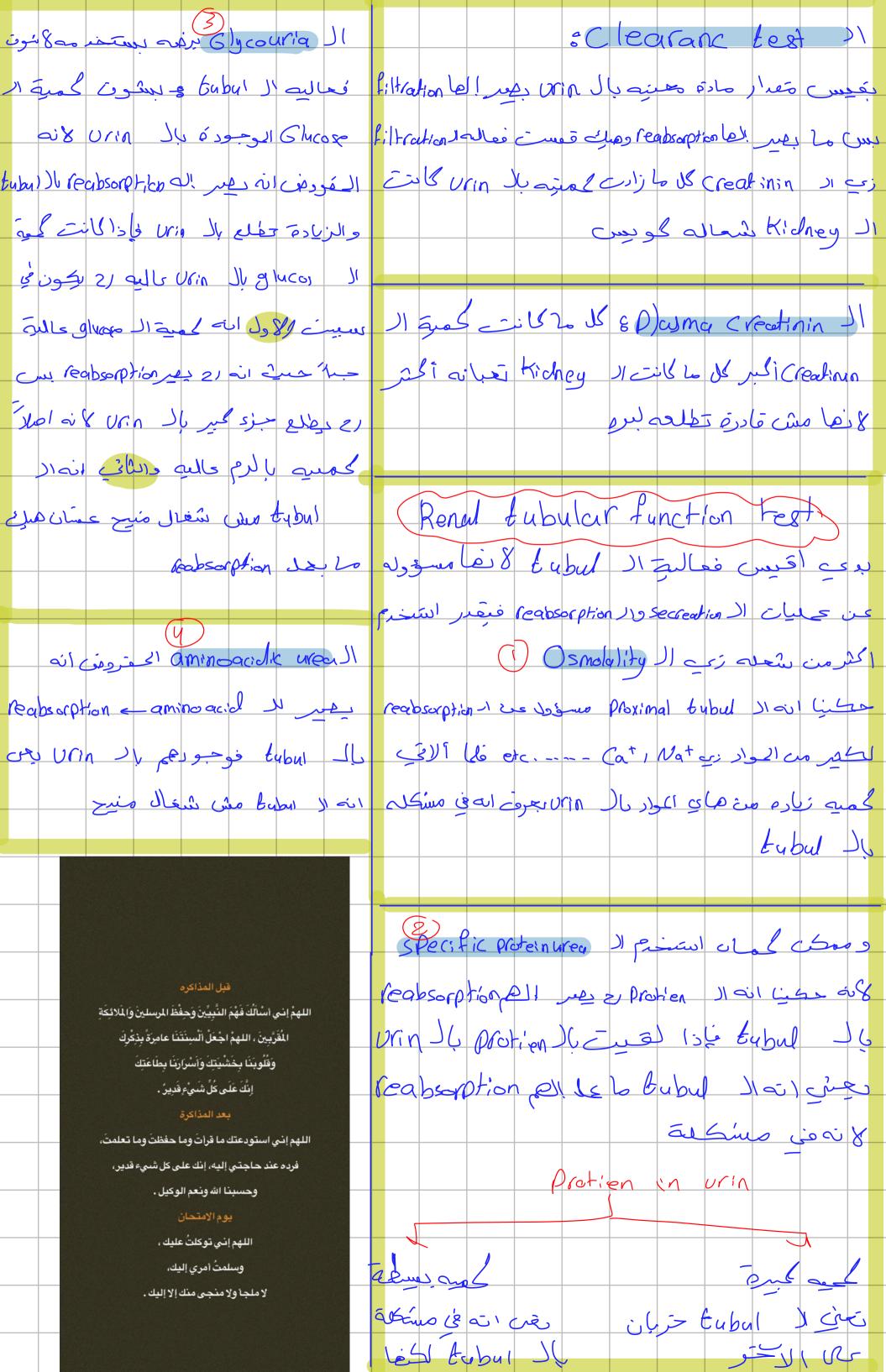
Uric acid

- uric acid is the primary waste product of purine metabolism (adenine and guanine)
- like creatinine, uric acid is readily filtered by the glomerulus, but undergoes a complex cycle of reabsorption and secretion as it crosses through the nephron

فحعا مظائف الكلا Renal assessment

Renal function tests focus largely on glomerular clearances, as assessed by <u>creatinine</u> and urea measurements GFRLo filtration) veses

filtredon >1 min (Snephron


Tubular functions are assessed by protein measurements (eg, urine electrophoresis) من المار على المارك المارك

The analysis of urine for analytes, such as pH, glucose, ketones, and bilirubin, continue to be important screening tests for many non-renal diseases, such as diabetes mellitus, ketoacidosis, hemolysis, and liver disease

Protien 11 grad = stylo dés tubul de reabsorptional une protien 11 au libre cons Civer diseas | drabet = glucous | Win the levery of shear of hemolysis = bilirubine | Keto acidonic | Li

Renal assessment

- > Measurement of GFR > Filtration 11 aules
 - Clearance tests
 - > Plasma creatinine
 - \triangleright Urea, uric acid and β 2-microglobulin
- > Renal tubular function tests 64641)1 21 Les
 - Osmolality measurements
 - > Specific proteinurea
 - > Glycouria
 - > Aminoaciduria
- > Urinalysis we wrin >1 we la:
 - Appearance
 - Specific gravity and osmolality
 - > pH
 - Glucose
 - Protein
 - Urinary sediments

بنقيم الإستباء الى حطيًا عنها بالعقمة المرمن test المرمن العقمة المرمن المعاقبة عن طريق المرمن العقمة المرمن المر Analytic procedures

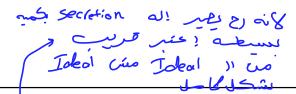
To assess the various aspects of nephron function, including glomerular filtration and proximal and distal tubular secretion and reabsorption, many tests are انسیاء صس کارم اندورتها بالم وها و الله و ا performed

Clearance Measurements

All laboratory methods rely on the measurement of waste products in blood, usually urea and creatinine. which accumulate when the kidneys begin to fail معنا ها الله كما يخرب د

وظائف الكليه هنول رح

Renal failure must be advanced, with only about 20-30% of the nephrons still functioning, before the concentration of either substance begins to increase in the blood. The rate at which creatinine and urea are removed or cleared from the blood into the urine is termed clearance المفهوم: هو المعدل (السرعة) الذي يتم فيه إزالة مواد مثل الكرياتينين واليوريا من الدم ونقلها إلى البول.


بالدم ؟؛ كما تكون الكليه سكماله + %(٥٤-٥٥)س بالكليم الوحدة معلى تقرما السكفال بس لكن كليم

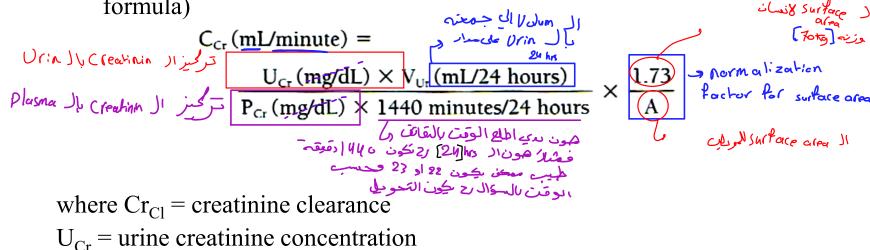
Clearance is defined as that volume of plasma from which a measured amount of substance can be completely eliminated into the urine per unit of time expressed in

ال العقعق الواحدة عن مقيل لهارة معينه موجودة بالمحارض النه يطلع الم المفروض انه يطلع الم Orin المفروض انه يطلع الم

Measurement of clearance is used to estimate the rate of glomerular filtration

Creatinine

- > Creatinine is a nearly ideal substance for the measurement of clearance
- It is an endogenous metabolic product synthesized at a constant rate for a given individual and cleared essentially only by glomerular filtration (it is not reabsorbed and is only slightly secreted by the proximal tubule).
- Analysis of creatinine is simple and inexpensive using colorimetric assays.


Creatinin-charge I primi ilas Jeses

- > Calculation of creatinine clearance has become the standard laboratory method to determine glomerular filtration Rate (GFR).
- This value is derived by mathematically relating the serum creatinine concentration to the urine creatinine concentration excreted during a period of time, usually 24 hours
- Specimen collection must include both a 24-hour urine specimen and a serum creatinine value, ideally collected at the midpoint of the 24-hour urine collection.
- The urine container (clean, dry and free of contaminants or preservatives) must be kept refrigerated throughout the duration of both the collection procedure and the subsequent storage period until laboratory analysis can be performed
- The concentration of creatinine in both serum and urine is measured by the applicable methods

Creatinine Clearance and GFR

The total volume of urine is carefully measured, and the creatinine clearance is calculated using the following formula (Cockcroft-Gault formula)

 V_{Cr} = urine volume excreted in 24 hours P_{Cr} = serum creatinine concentration مطيامش مشرط الم

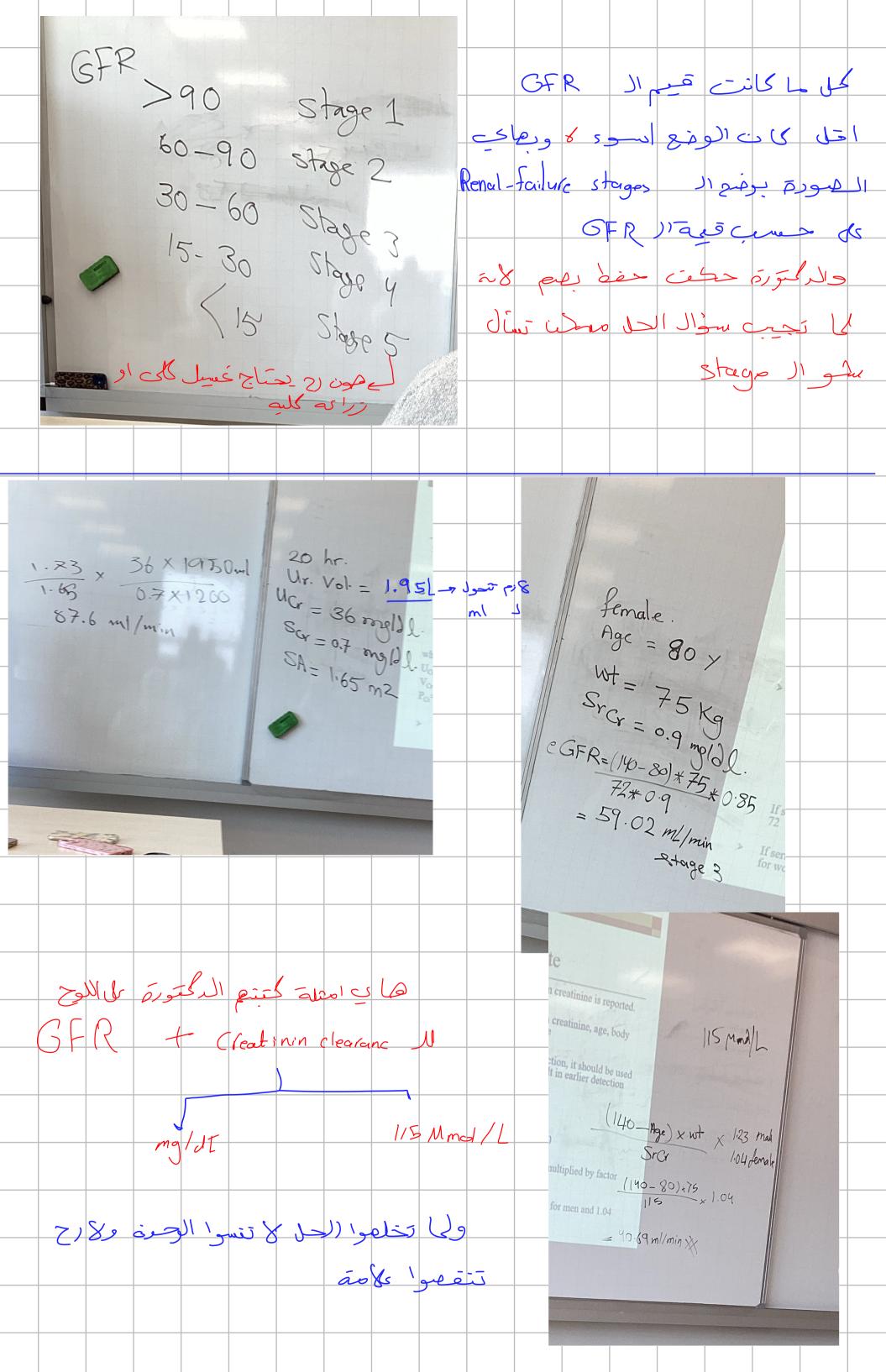
> 1.73/A normalization factor for body surface area

Reference ranges for creatinine clearance

- Male: 97- 137 mL/minute per 1.73 m²
- Female: 88-128 mL/minute per 1.73 m²
- > Creatinine clearance normally decreases with age, with a decrease of

about 6.5 ml/minute per 1.73m² for each **decade** of life من المعنى المع

مع زیادہ العر ال Creation clearanc کے تول بمقدال العربی بھی کا سنوات وهذا الحدی بھیر بعد عمراد ال


Estimated Glomerular Filtration Rate - مدا المعالم عند المناعد ال

- > The estimated GFR (eGFR) is calculated each time a serum creatinine is reported.
- The equation is used to predict GFR and is based on serum creatinine, age, body size, gender, and race, without the need of a urine creatinine
- Because the calculation does not require a timed urine collection, it should be used more often than the traditional creatinine clearance and result in earlier detection of chronic kidney disease

GFR (mL/minute) =
$$\frac{(140 - \text{Age}) \times \text{Weight (kg)}}{72 \times S_{\text{Cr}}(\text{mg/dL})} \times 0.85 = \text{if female}$$

$$(0.85 \text{ if female})^* \qquad \text{(Eq. 24-6)}$$

- If serum creatinine is measured in mg/dl, serum creatinine is multiplied by factor 72
- If serum creatinine is measured in μmol/L, the constant is 1.23 for men and 1.04 for women

- Urea clearance was one of the first clearance tests performed. اوا على ال المعناد ا
- Urea is freely filtered at the glomerulus and approximately 40% reabsorbed by the tubules. For this reason, it does not provide a full clearance assessment and is no longer widely used
- Older clearance tests used administration of <u>inulin</u>, <u>sodium</u> [125] iothalamate, or <u>p</u>-aminohippurate to assess glomerular filtration or tubular secretion
- These tests are time-consuming, expensive, and difficult to administer and, for the most part, have been discontinued.

زمان كنا نستخدم جاعي اكمواد عيثان نقيم اله GFR بس جاب المولا احتا بنبطيها للمويف وبعد بن بنيوف كم اله العاما الى رح يطلعوا باله Urin وطبعا من [conboenous] وهندل اله الموجم وقت و خاليب و كمان وطبعا عيث عيثان حيث بطلنا نستجملهم

Urine Electrophoresis tobal similar prosider

- Owing to the efficiency of renal glomerular filtration and tubular reabsorption, normal urinary protein excretion is only about 50-150 mg/24 hours
- Proteinuria may develop when there are defects in renal reabsorption or glomerular capillary permeability or when there is a significant increase in serum immunoglobulins.
- As a result, urine electrophoresis is used primarily to distinguish between acute glomerular nephropathy and tubular proteinuria
- > It is also used to screen for abnormal monoclonal or polyclonal globulins.
- Positive identification and subtyping of the urinary paraproteins can be performed by immunofixation electrophoresis

Urin Il level 1 chao Protien is tuby! It also of to auto of the Sons Protiences are and unit of Makin Ide Wal Orin De Cesti · Urin Il le oyi copo tubul in wi and Protien EVI who U assesso de de la circo de la dalton Immunof, xation electrophoresis I carbice رح بتفعل مطونات الرح وهاري glumerular Protien)) Sjimme = Z) and Urin Il ells () وسمان بکون فی carcer کے دی : ک حرج réspontion 11 rue au jus Kidney su Protien is just the es eso (8/ all) al 819 reabsorption les carles of Lo سکوت بال ۱۱۸۰ in- Immunoglobulin Pul Est 2 de Protien 11 800 from Protien Leid Ist about 1 in 1 Cuy 68 Kdaltin Nico De Alaras It about I cie and other Geap sorption ies no lease protien dictil 1:1 los filtration de lo glomerular 1 Jamunoglobuln)1 Jages Cancer (30'0512 Urin) Non venal Noblem = Monoclonal

هذول الـ Protien رح سك سقوا عن وجود مشكله بالجسم ما إما بالدم الربال منه الم معطى متا بعة المربي

Urine Electrophoresis

Newer protein assays, such as urine microalbumin, serum β2-M, cystatin C, and serum and urine myoglobin, can provide important prognostic information useful for patient management.

المسلم المسلمة المسلمة والمسلمة والمسل ھے۔ β2-M is useful for early renal transplant rejection- الکید الجدیرہ عالمیں کی واحد یزیج۔ الجدیرہ عالمیں کی واحد یزیج۔

Myoglobin clearance rates are helpful in predicting rhabdomyolysis hab do myslysk induced acute renal failure.

العفلات رح تنبح تنبح ومعتن يسبب كير ومعن يسبب كير التعذيم حماكل بالراما والمعالل المعالل المعال

ntulcs' (realisin pel)

ulus (realin ist U)

تنى عفل ، عثان هك

all bu Cystatin prizu

Microalbumin

- Urine microalbumin measurement is important in the management of patients with diabetes mellitus, who are at serious risk of developing nephropathy over their lifetimes
- > Type 1 has a 30-45% risk, and Type 2 has a 30% risk

In the early stages of nephropathy there is renal <u>hypertrophy</u> hyperfunction, and increased thickness of the glomerular and <u>tubular</u> basement membranes

β2-Microglobulin

g Monde als Lo

β2-Microglobulin (β2-M) is a small, nonglycosylated peptide (MW, 11.8 KDa) found on the surface of most nucleated cells

حودال کا 132 کیمیات بسیطی المام اس طبعی کانه اکه Alasma-membron ری دیطالی کمیان منه احلاً

The plasma membrane sheds β 2-M as a relatively intact molecule into the surrounding extracellular fluid so stable levels in normal patients

لعن الخلايا عمرها اقسر

- Its serum elevated levels indicate increased <u>cellular turnover</u> as seen in myeloproliferative and <u>lymphoproliferative disorders</u>, inflammation, and renal failure المحكمة الخيارا المحكمة ا
- ه β2-M is easily filtered by the glomerulus. About 99.9% is then reabsorbed by the proximal tubules and catabolized بيعيد الما المائلة المائ
- Measurement of serum β2-M is used clinically to assess **renal tubular function in renal transplant patients** (high when organ rejection)
- β2-M is more efficient marker of renal transplant rejection than serum creatinine values (independent on lean muscle mass)
 ا هار رفين مناب عليه عادي عالم محدي يكون قاتله

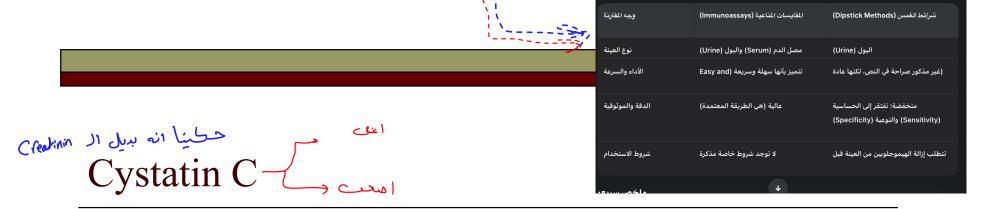
Myoglobin

البداية: إصابة العضلات اطلاق كميات كبيرة من المايوجلوبير النتيجة النهائية: فشل كلوى حاد (Acute Renal Failure)

Myoglobin is associated with acute skeletal and cardiac muscle injury

In rhabdomyolysis, myoglobin release from skeletal muscle is sufficient to overload the proximal tubules and cause acute renal failure

اذا إنتبعت عمال انعواه وسعلطما بهكل مسكر Acute renal failure


Early diagnosis and aggressive treatment of elevated myoglobin may prevent or lessen the severity of renal failure. Recently, myoglobin clearance has been proposed as an effective early indicator of myoglobin-induced acute renal failure. A high clearance or a low clearance and low serum concentration indicates low risk and a Jow clearance and high serum concentration indicates high risk.

> Serum and urine myoglobin can be measured easily and rapidly by **immunoassays**. Urine myoglobin can also be measured by dipstick methods after removing hemoglobin, but this method has a lack of sensitivity and specificity.

الم إذا كان ال المال الم المال الم المعلى المال الم عادي كانه الجسم قاعد يَخلف منه بس لوكانت النسب بال المعنى عنه الجسم قاعد يَخلف منه بس لوكانت النسب بال المعنى عنه عالميه واله والم المعنى Us de antipodio ne antigen la blish mes la antigen - antibodios rxn la cos osles ! Immunoassays la de

تعتبر المقايسات المناعية (Immunoassays) هي الخيار الأفضل والأسهل، بينما طريقة الشرائط (Dipstick) تعتبر أقل دقة وتتطلب خطوات إضافية (إزالة الهيموجلوبين) لتجنب النتائج الخاطئة.

Myglobin land

- Cystatin C is a low-molecular-weight protein produced by nucleated cells. It is freely filtered by the glomerulus and reabsorbed and catabolized by the proximal tubule
- Produced at a constant rate, levels remain stable if kidney function is normal
- Measurement of cystatin C to be at least as useful as serum creatinine and creatinine clearance in detecting early changes in kidney function.
 Cystatin C can be measured by immunoassay methods

Urinalysis Physical Characteristics

Initial morning specimens are preferred, particularly for protein analyses, because they are more concentrated from overnight retention in the bladder well Concentrated

> The urine should be freshly collected into a clean, dry container with a tightfitting cover

It must be analyzed within 1 hour of collection if held at room temperature or else refrigerated at 2°-8°C for not more than 8 hours before analysis

Bacterial multiplication will cause false-positive nitrite tests, and ureaseproducing organisms will degrade urea to NH3 and alkalinize pH

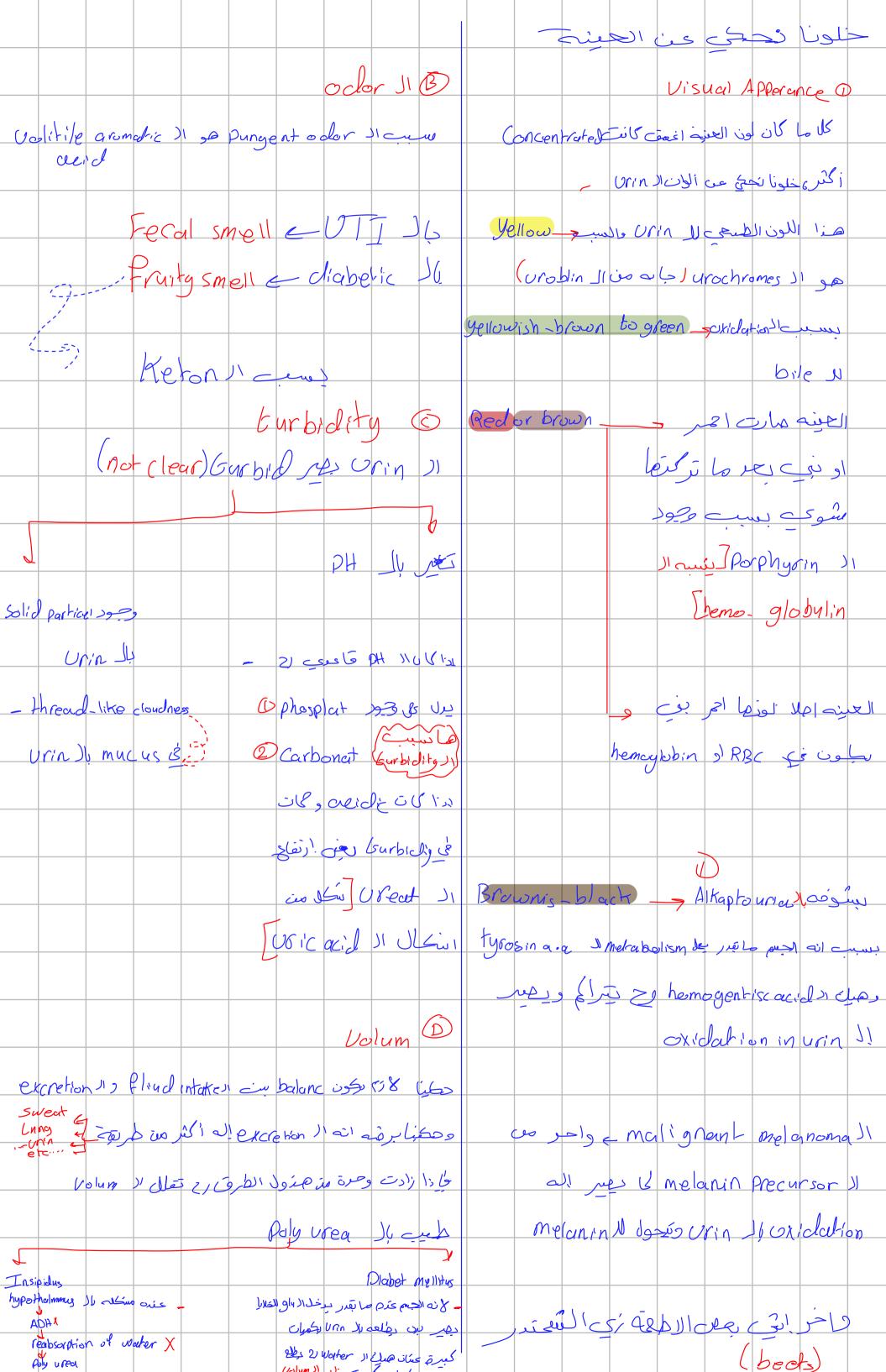
Loss of CO₂ by diffusion into the air adds to this pH elevation, which causes cast degeneration and red-cell lysis

hydrulysis use Ureas I de لا مه Urea ورح تطاع یا NH (مه اه Orea) عشان حیال مرح ترجع اله Oria لا Uria ا

Urinalysis Physical Characteristics

- > **Visual Appearance**. Color intensity of urine correlates with concentration: the darker the color, the more concentrated the specimen
 - Yellow and amber are generally due to urochromes (derivatives of urobilin), whereas a yellowish-brown to green color is a result of bile pigment oxidation.
 - Red and brown after standing are due to porphyrins, whereas reddishbrown in fresh specimens comes from hemoglobin or red cells.
 - Prownish- black after standing is seen in alkaptonuria (a result of excreted homogentisic acid) and in malignant melanoma (in which the precursor melanogen oxidizes in the air to melanin). Drugs and some foods, such as beets, also may alter urine color.
- > **Odor**: The characteristic pungent odor of fresh urine is due to volatile aromatic acids
 - Urinary tract infections impart a noxious, fecal smell to urine, whereas the urine of diabetics often smells fruity as a result of ketones.

Urinalysis Physical Characteristics


- Turbidity The cloudiness of a urine specimen depends on pH and dissolved solids composition.
 - Thread-like cloudiness is observed when the specimen is full of mucus. In alkaline urine, suspended precipitates of amorphous phosphates and carbonates may be responsible for turbidity whereas in acidic urine, amorphous urates may be the cause
- **Volume**. The volume of urine excreted indicates the balance between fluid ingestion and water lost from the lungs. sweat, and intestine.
 - Polyuria is observed in diabetes mellitus and insipidus (in insipidus, as a result of lack of ADH). as well as in chronic renal disease بيانت يعلى المعالية على المعالية الم

Thiorin is the

acromegaly, (overproduction of the growth hormone)

Poly urea Chronic Cenal disease

acromegly

تكما هيره المالية

Renal diseases

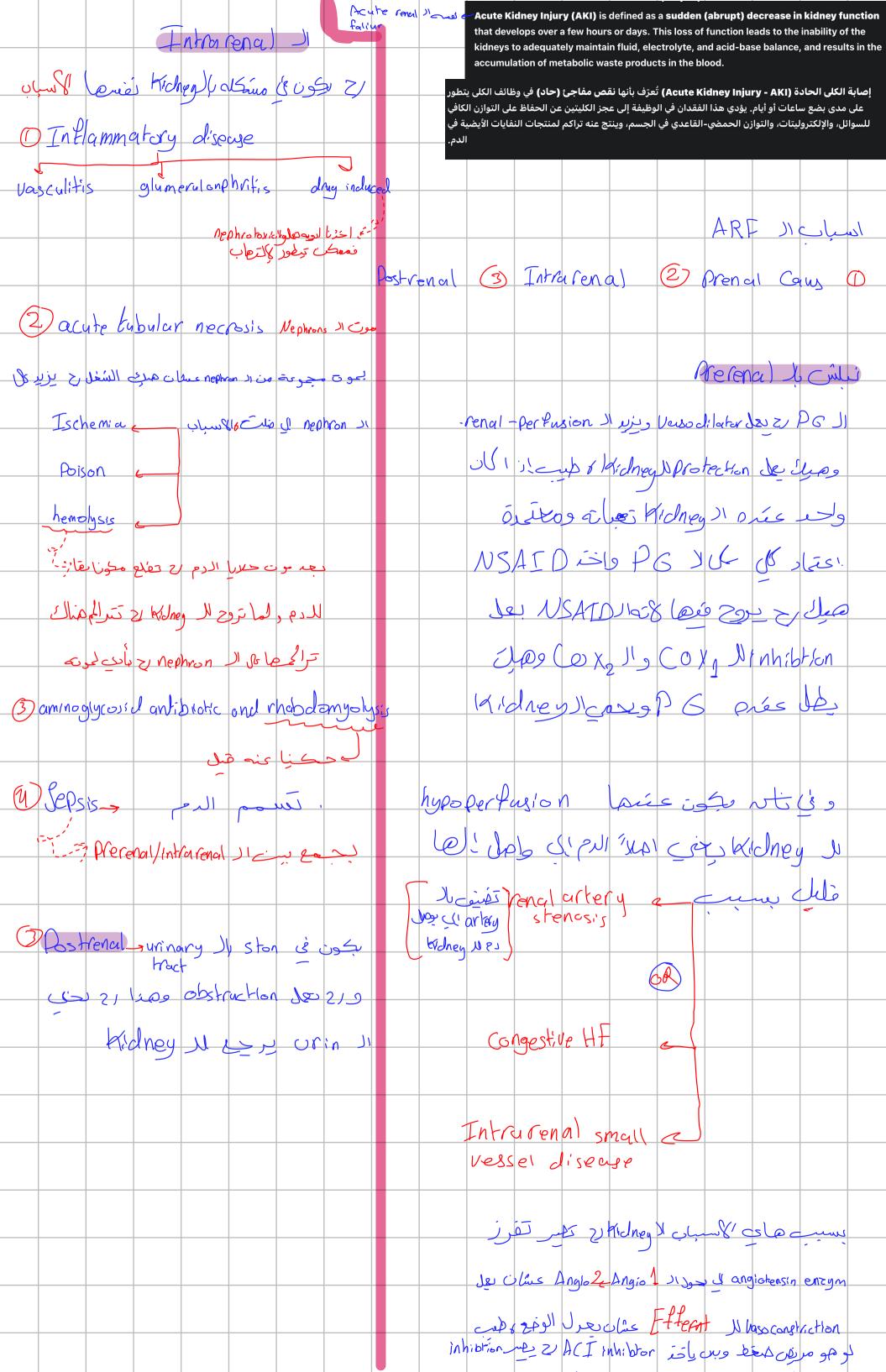
- Common renal diseases include infectious and inflammatory processes to the glomerulus, tubules, and urinary tract, obstructions of normal kidney function, and acute and chronic renal failure.
- بما انجاد وجالمته مین شعاله | rapid deterioration of renal function → accumulation in blood of <u>nitrogenous</u> wastes that would normally be excreted in urine.
- Patient presents with rapidly blood urea nitrogen (BUN) & serum creatinine (SrCr).

Etiology

ARF Eacut renal Failure AL CRF = Chronic renal failure &

Prerenal Causes

- Patients who are dependent on prostaglandin-mediated vasodilation to maintain renal perfusion can develop RF simply from ingestion of NSAIDs.
- Patients with renal hypoperfusion (e.g., from renal artery stenosis, congestive heart failure, or intrarenal small vessel disease) who are dependent on angiotensin II-mediated vasoconstriction of efferent renal arterioles to maintain renal perfusion pressure may develop ARF on ingesting **ACE inhibitors**.


Etiology

Intrarenal Causes

- > can be divided into
 - specific inflammatory diseases (e.g., vasculitis, glomerulonephritis, drug-induced injury)
 - **acute tubular necrosis** resulting from many causes (including ischemia, poisons, & hemolysis).
- Tubular damage can commonly be due to aminoglycoside antibiotics & rhabdomyolysis, in which myoglobin, released into bloodstream after crush injury to muscle, precipitates in renal tubules.
- > **Sepsis** is one of the most common causes of acute renal failure combination of prerenal & intrarenal factors.

Postrenal Causes

result in **urinary tract obstruction**, such as renal stones.

Pathogenesis

- All forms of ARF, if untreated, result in **acute tubular necrosis (ATN)**, with sloughing of cells that make up renal tubule.
- ARF may be reversible depending on timing of intervention between onset of initial injury & eventual ATN

اذا ما عالمبت اله ARF مع يتحول (ATA معن الا nephrons ورح ما ما عالمبت الهونة لا علما للعالم العلم الع

[12 Neversible — ARF [الركتورة ركزت مين Peversible — ARF] المكتورة ركزت مين علاحت و مارح على المكل العدل العلم الملك والولم في الرجع لمبيلات و مارح على العدل ال

- Initial symptoms: fatigue & malaise, probably early consequences of loss of ability to excrete water, salt, & wastes via kidneys.
 - Later, more profound S&S of loss of renal water & salt excretory capacity: dyspnea, orthopnea, rales, prominent S3, & peripheral edema.
 - ➤ Altered mental status reflects toxic effect of uremia on brain, with ↑ blood levels of nitrogenous wastes & fixed acids.
 - Clinical manifestations depend on cause & stage of disease at which patient comes to medical attention.
 - Patients with renal hypoperfusion first develop **prerenal azotemia** (†BUN without tubular necrosis), a direct physiologic consequence of UFR.
 - Without treatment, prerenal azotemia may progress to **ATN** often requiring supportive dialysis before adequate renal function is regained.

- ➤ The earliest manifestation of prerenal azotemia is ↑ ratio of BUN to SrCr. Normally 10–15:1, this ratio may ↑ to 20–30:1 in prerenal azotemia, with a normal or **near-normal serum creatinine**.
- Urinalysis:
 - Urine is maximally concentrated (up to 1500 mOsm/L) in prerenal azotemia.
 - However, with progression to acute tubular necrosis, the ability to generate a concentrated urine is largely lost (< than 350 mOsm/L)
 - > granular casts, tubular epithelial cells, & epithelial cell casts are found in ATN.

• الأعراض الأولية (Initial Symptoms): تبدأ بالإرهاق (Fatigue) والشعور بالتوعك (Malaise). يُعتقد أن هذا يحدث مبكرًا بسبب فقدان الكلي القدرة على إفراز الماء والأملاح والفضلات بشكل صحيح. الأزوتيمية (Azotemia) تعني ارتفاع مستويات النيتروجين غير البروتيني (مثل اليوريا والكرياتينين) في الدم، وهي • الأعراض المتقدمة (Later Symptoms): تظهر علامات وأعراض (S&S) أكثر وضوحًا لفقدان الكلي القدرة على إخراج الماء والملح، وتشمل: • ضيق التنفس (Dyspnea) • ضيق التنفس الاضطجاعي (Orthopnea) (ضيق التنفس عند الاستلقاء) · الخرخرة (Rales) (أصوات في الرئة بسبب السوائل) • صوت القلب الثالث (Prominent S3) • وذمة محيطية (Peripheral Edema) (تورم في الأطراف) • تغير الحالة العقلية (Altered mental status): يحدث بسبب التأثير السام لـالبولينا (Uremia) على الدماغ، مما يؤدي إلى ارتفاع مستويات فضلات النيتروجين والأحماض الثابتة في الدم. مظهر المرض (Clinical manifestations): يختلف المظهر السريري للمرض بناءً على السبب (Cause) ومرحلة المرض (Stage of disease) عند مراجعة المريض للطبيب. العلاقة بين نقص التروية (Hypoperfusion) وتلف الكلي أزوتيميا ما قبل الكلى (Prerenal azotemia): المرضى الذين يعانون من نقص التروية الكلوية (Renal (hypoperfusion) (نقص تدفق الدم إلى الكلي) يطورون أولاً أزوتيميا ما قبل الكلي. هذا يعني ارتفاع اليوريا في الدم (BUN) بدون حدوث نخر أنبوبي (Tubular necrosis)، وهو نتيجة فسيولوجية مباشرة لانخفاض معدل الترشيح الكبيبي (GFR). · التقدم إلى ATN: إذا لم يتم علاج الأزوتيميا ما قبل الكلي، فقد تتطور إلى النخر الأنبوبي الحاد (ATN). • غالبًا ما تتطلب هذه الحالة غسيل كلى داعم (Supportive dialysis) مؤقتًا حتى تستعيد الكلى وظيفتها الكافية. سرح العمل يدين إلى قبل

ناتجة عن انخفاض تدفق الدم إلى الكلي، وعادة ما تكون قابلة للعكس إذا عُولجت مبكراً. 1. نسبة نيتروجين اليوريا في الدم إلى كرياتينين المصل (BUN to SrCr Ratio) • العلامة المبكرة: أول وأهم مظهر للأزوتيمية قبل الكلوية هو ارتفاع نسبة BUN/SrCr.

• النسبة الطبيعية: تتراوح عادة بين 1:01 إلى 1:15.

• في الأزوتيمية قبل الكلوية: ترتفع هذه النسبة إلى 20:1 إلى 30:1.

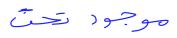
🥸 تشخيص الأزوتيمية قبل الكلوية (Prerenal Azotemia)

• سبب الارتفاع: الكلي تحاول الاحتفاظ بالسوائل في الجسم بسبب نقص التروية الدموية، مما يؤدي إلى زيادة امتصاص اليوريا (BUN) في الأنابيب الكلوية، بينما يبقى الكرياتينين (SrCr) في الدم **طبيعياً أو شبه** 2. تحليل البول (Urinalysis)

يساعد تحليل البول على تقييم وظيفة الأنابيب الكلوية وقدرتها على تركيز البول: أ. في الأزوتيمية قبل الكلوية (Prerenal Azotemia):

• التركيز الأقصى للبول: يكون البول مركزاً إلى أقصى حد (maximally concentrated)، حيث يمكن أن تصل أسموزية البول (Urine Osmolality) إلى 1500 ملكي أسمول/لتر (mOsm/L). • التفسير: هذا يعكس أن الكلي تعمل بجد للحفاظ على السوائل، مما يعني أن الأنابيب الكلوية لا تزال سليمة وظيفياً.

ب. مع تطور الحالة إلى النخر الأنبوبي الحاد (ATN): فقدان القدرة على التركيز: مع تطور حالة نقص التروية إلى ضرر فعلي في الخلايا الكلوية (ATN)، تفقد الكلى بشكل كبير قدرتها على تركيز البول.


• أسموزية البول: تنخفض أسموزية البول بشكل كبير (أقل من 350 مللي أسمول/لتر). • التفسير: هذا يعني أن الخلايا الأنبوبية الكلوية تضررت ولم تعد قادرة على إعادة امتصاص الماء بشكل • ظهور الرواسب والفتائل (Casts): يُلاحظ وجود رواسب خلوية في البول، وهي علامة على تضرر الأنابيب

• خلابا طلائية أنبوبية (tubular epithelial cells). . كن الخلايا الطلائية (epithelial cell casts).

• فتائل حبيبية (granular casts).

الكلوبة:

Chronic Renal Failure (CRF)

Clinical Presentation

- in addition to those observed in ARF:
- Osteodystrophy,
- > Neuropathy,
- Bilateral small kidneys by abdominal x-ray film or ultrasonography,
- Anemia

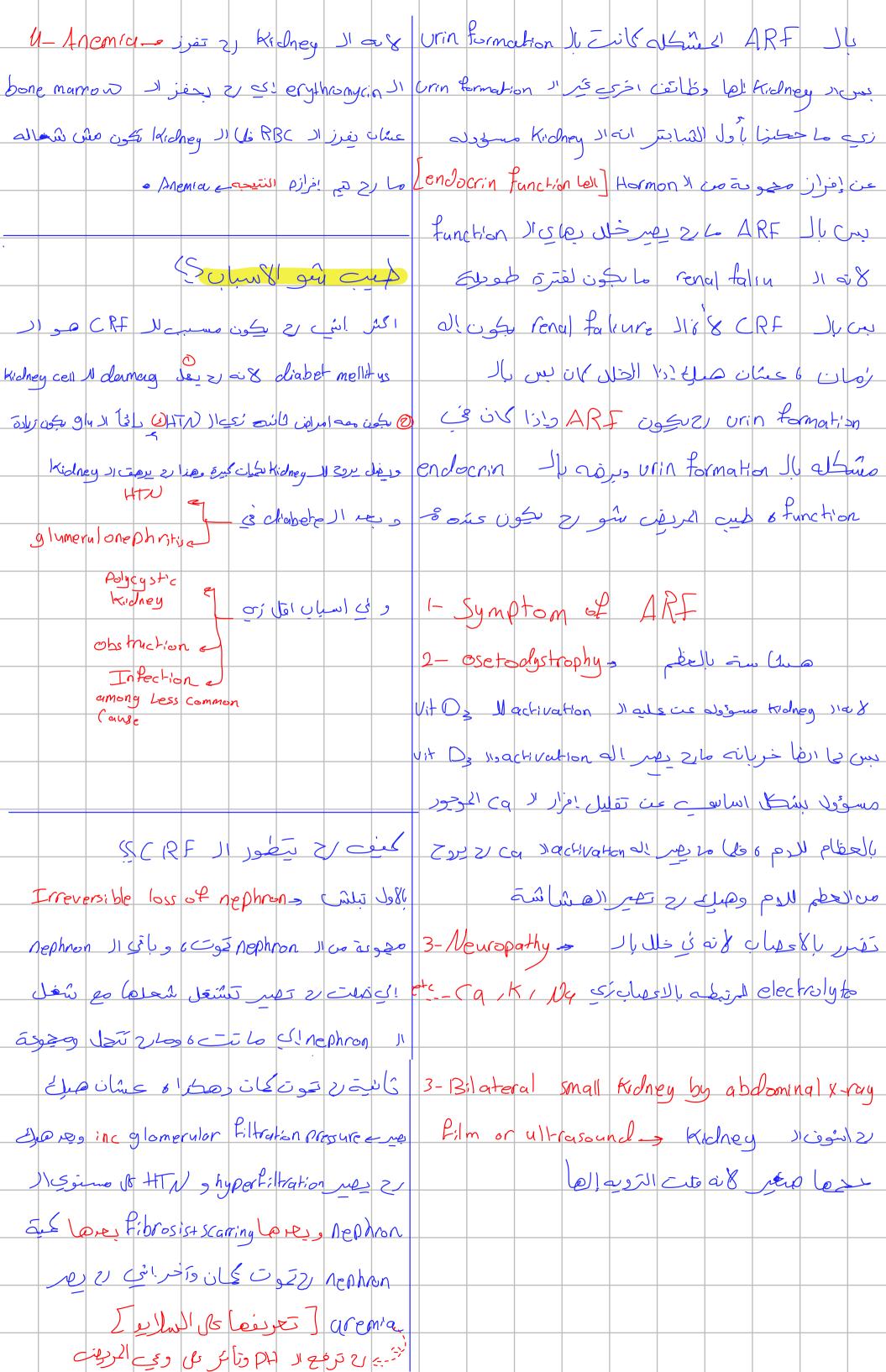
Etiology

- The most common cause of CRF is **diabetes mellitus**, followed closely by hypertension & glomerulonephritis.
- Polycystic kidney disease, obstruction, & infection are among the less common causes

Pathogenesis

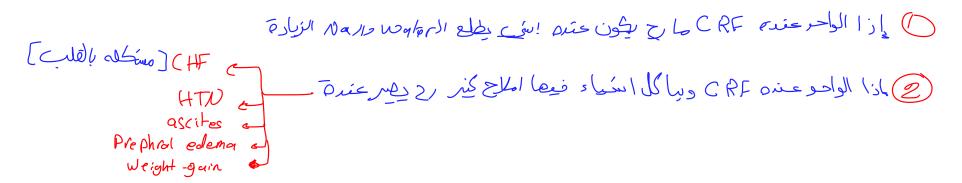
Uremia is a severe clinical condition that arises when the kidneys are no longer able to adequately filter waste products from the blood, causing these toxins—including urea and creatinine—to build up to dangerous levels. The term "uremia" literally means "urine in the blood." @ +1

Development of Chronic Renal Failure


- Irreversible loss of nephrons \rightarrow > functional burden is borne by fewer nephrons $\rightarrow \uparrow$ glomerular filtration pressure & hyperfiltration ("hypertension" at level of nephron) → fibrosis & scarring (glomerular sclerosis) \rightarrow the rate of nephron destruction & loss $\uparrow \rightarrow$ uremia
- In CRF there is combination of toxic effects of:
- (1) retained products normally excreted by kidneys (e.g., nitrogencontaining products of protein metabolism)

(1) ↓ in basal body temperature (perhaps because of ↓ Na+-K+

ATPase activity) ما يزيد ال معالم عدم عليه عليه عليه عليه عليه المعلى ا


(2) | lipoprotein lipase activity with accelerated atherosclerosis.

ال علي المعنى ال

Na+ Balance & Volume Status

- Some degree of Na+ & water excess, reflecting loss of renal route of salt & water excretion.
- وزنه بزید من السوائل های peripheral edema, & weight gain.
 - Excessive water ingestion contributes to hyponatremia.

K+ Balance

- Hyperkalemia is a serious problem especially when GFR ↓ below 5 mL/min → aldosterone-mediated K+ transport in distal tubule ↑ in compensatory fashion.
 - Treatment with K+-sparing diuretics, ACE inhibitors, or β blockers—drugs that may impair aldosterone-mediated K+ transport—can, therefore, precipitate dangerous **hyperkalemia** in a patient with CRF.
- CRF patients are at > risk of hyperkalemia in the face of sudden loads of K+ from either endogenous sources (e.g., hemolysis, infection, trauma) or exogenous sources (e.g., stored blood, K+-rich foods, or K+-containing medications).

Metabolic Acidosis

- □ ↓ capacity to excrete acid & generate buffers
- □ Can usually be corrected with 20–30 mmol (2–3 g) of sodium bicarbonate by mouth daily.

us le v hypertralemiq é ai la Kt Nies celà sté mes en CRF Il · Acidosis crisul Dijie za men Elevilie (hyperKalenea) ai & Acidosis prie res cibros ¿Les 1x+ excreal-in la vi V é, L'u Aldesteran Acidol eles of sto (mo Kidney) [Tues set als] Company fashoion is 2/ Kidney) bicarbonat scibuffer so 6 FR(5) Joseph Carlo phospharte cos 2 Aldesteron Winhibtion de la col Sil Acidosis II albino 1012/ Ht bestjosting 6 FR 45 pris of nothing hemolysis hemolysis signal genous son Houman Stored as blood as kt containing a ر' ک medication

ره کا بعادی علی عدایی کی کردانه برای کا کردانه کردانه

bone resorption come soul est the Ca sinister bone u

Mineral & Bone

- □ Several disorders of phosphate, Ca2+, & bone metabolism
- □ Key factors:

Free C+ 11 de 1

- (1) ↓ absorption of Ca2+ from gut,
- (2) overproduction of PTH, Paralhyroid hormon
- (3) disordered vitamin D metabolism,
- (4) chronic metabolic acidosis \rightarrow enhanced bone resorption. The acidosis

 \rightarrow further depletion of bone Ca2+ \rightarrow osteomalacia & osteoporosis of CRF

in BD

Cardiovascular & Pulmonary Abnormalities

- □ CHF & pulmonary edema are most commonly due to volume & salt overload.
- ☐ HTN is a common finding, usually on the basis of fluid & Na⁺ overload.

Hyperreninemia (↓ renal perfusion triggers failing kidney to overproduce renin →↑ elevate systemic BP.

angio 2 □ ↑ cardiovascular risk remains the leading cause of mortality in this

population (MI, stroke, & peripheral vascular disease).

Water 1 Wate

Cardiovascular risk factors: HTN, hyperlipidemia, glucose intolerance, chronic \(\tau \) cardiac output, & valvular & myocardial calcification due to \(\tau \) Ca²⁺ x PO₄³⁻ product

Hematologic Abnormalities

- Normochromic, normocytic anemia, with hematocrits typically in the range of 20–25%, is a consistent feature.
 - Lack of production of erythropoietin (mainly)
 - Bone marrow suppressive effects of uremic poisons
 - Bone marrow fibrosis due to ↑ blood PTH
- □ Abnormal hemostasis (↑ bruising, ↑ blood loss at surgery, ↑ incidence of spontaneous GI & cerebrovascular hemorrhage.
- □ ↑ susceptibility to infections, due to leukocyte suppression by uremic toxins.
- Acidosis, hyperglycemia, malnutrition, & hyperosmolality also contribute to immunosuppression.
- ☐ Invasiveness of dialysis & use of immunosuppressive drugs in renal transplant patients also contribute.

Endocrine and Metabolic Abnormalities

- □ Women have low estrogen levels → amenorrhea & inability to carry pregnancy to term.
- □ Low testosterone levels, impotence, oligospermia are common findings in men
- ↑ half-life of insulin → stabilizing effect on diabetic patients whose blood glucose was previously difficult to control.

Dermatologic Abnormalities

- □ Pallor because of anemia,
- ☐ Hematomas as a result of clotting abnormalities,
- □ Pruritus & excoriations as a result of Ca²⁺ deposits from secondary hyperparathyroidism.

الاضطرابات الصماوية والميتابولية (low estrogen levels) يؤدي إلى انقطاع الطمث (low estrogen levels) يؤدي إلى انقطاع الطمث (low estrogen levels) يؤدي إلى انقطاع الطمث (amenorrhea) وعدم القدرة على إكمال الحمل. لدى الرجال: انخفاض مستويات هرمون التستوستيرون (low testosterone levels) يؤدي إلى الضعف (oligospermia) وقلة النطاف (impotence). تأثير الأنسولين (Insulin): زيادة نصف عمر الأنسولين (half-life of insulin) في الدم. هذا له تأثير مثبت (stabilizing effect) على مرضى السكري الذين كان من الصعب سابقاً التحكم في مستويات السكر في الدم لديهم (أي أنهم قد يحتاجون جرعات أقل من الأنسولين).	هذه المشاكل ناتجة عن تراكم السموم اليوريمية وفشل الكلى في إنتاج الهرمونات الضرو فقر الدم السوي الكريات، سوي الحجم (hematocrits) عادة في حدود (hematocrits) عادة في حدود (hematocrits) عادة في السبب الرئيسي: نقص إنتاج هرمون الإريثروبويتين (Lack of production of erythropoietin) حدود 20-25%. السبب الرئيسي: نقص إنتاج هرمون الإريثروبويتين ولحفز نخاع العظم على إنتاج خلايا الدم الحمراء. وهو الهرمون الذي تنتجه الكلى ويحفز نخاع العظم على إنتاج خلايا الدم الحمراء. أسباب أخرى: تأثير السموم اليوريمية المثبط على نخاع العظم، والتليف في نخاع العظم الناتج عن ارتفاع ولا المساموم اليوريمية المثبط على نخاع العظم، والتليف في نخاع العظم الناتج عن ارتفاع على بحدث زيادة في وقت النزف (pth النقل الدموية الدموية الدموية الدموية الدموية اليوريمية. وزيادة في حدوث الكدمات (bruising)، والنزف التلقائي نيودي إلى زيادة خطر النزيف أثناء الجراحة، وزيادة في حدوث الكدمات (bruising)، والنزف التلقائي والجهاز الهضمي والأوعية الدموية الدماغية. Susceptibility to infections) والبية بالعدوى (leukocyte suppression) تتبجة للسموم اليوريمية. والديماض (hyperglycemia) مكر الدم (hyperglycemia)، وسوء التناضحية (hyperglycemia)، وشط في هذا التثبيط.	
(Dermatologic Abnormalities) الخطرابات الجلدي. (Pallor) المذكورة . (anemia) المذكورة . (Pallor) المذكورة . (Hematomas) المذكورة الدم (clotting abnormalities) المذكورة الدم (Pruritus and excoriations) المنقأ . حكة وجروح جلدية (Pruritus and excoriations): - حكة وجروح جلدية (Pruritus and excoriations) هي عرض شائع ومزعج . الحكة الشديدة (Pruritus) هي عرض شائع ومزعج . حدث الجروح (excoriations) نتيجة الحك المستمر، وتكون بسبب ترسبات الكالسيوم (excoriations) الناتجة عن فرط نشاط الغدة الدرقية الثانوي (execondary hyperparathyroidism) وهو اضطراب شائع في الفشل الكلوي.		
	S. July Su	

Treatment of chronic renal failure

- In situations of chronic renal failure, aggressive therapeutic approaches based on **dialysis** and **transplantation** have enabled prolonged survival of what was once a terminal condition
- Variations in dialysis techniques have made this process more available and convenient and, with the implementation of powerful immunosuppressive drugs, widespread renal transplantation is now limited only by the availability of appropriate donor organs.

```
يلخص هذا النص كيف حولت التطورات الطبية الفشل الكلوي المزمن من حالة ميؤوس منها إلى حالة يمكن التعليض معها لفترة طويلة.

• التقدم العلاجي: في حالات الفشل الكلوي المزمن، أتاحت الأساليب العلاجية القوية، المتمثلة في غسيل الكلى (dialysis) وزراعة الكلى (transplantation)، إطالة بقاء المرضى على قيد الحياة.

• دور غسيل الكلى: أدت التنوعات والتحسينات في تقنيات غسيل الكلى إلى جعل هذه العملية أكثر سهولة وتوفراً.

وتوفراً.

دور زراعة الكلى: أدى إدخال أدوية مثبطة للمناعة قوية إلى جعل زراعة الكلى واسعة الانتشار ومقبولة طبياً.

القيود الحالية: العقبة الرئيسية المتبقية أمام انتشار زراعة الكلى هي فقط توافر الأعضاء المانحة (onor) المناسبة.

باختصار: بفضل الغسيل والزراعة، لم يعد الفشل الكلوي المزمن حكماً نهائياً، وأصبح توفر الأعضاء هو التحدي الأكبر للزراعة.
```

CASE STUDY 24-1

A 52-year-old man with a history of AIDS, hypertension, diabetes mellitus, and alcohol abuse was found unconscious in his home by his roommate. In the emergency department, he was hypotensive (103/60), febrile (T = 101°), and unresponsive. CT scan of the abdomen showed cholecystitis and gallstones. Laboratory data is listed below. (Case developed by Cynthia Batangan Santos, MD, Pathology Resident, Hartford Hospital Department of Pathology and Laboratory Medicine, Hartford, CT. Modified and printed with permission.)

The patient was diagnosed with acute renal failure. He was given IV fluids; BUN fell to 68 mg/dL and creatinine to 2.2 mg/dL. The patient's blood culture report was positive for *E. coli*. He was treated with tobramycin and cefepime. The patient contin

ued to deteriorate and died 5 days after admission. Cause of death was multiorgan failure secondary to AIDS, sepsis, and alcoholic cirrhosis.

رح انزل حلعم بملف لحال

Questions

- 1. What is the significance of the patient's elevated CK? Explain why the doctor ordered a CKMB and troponin level. What can you conclude about the patient's cardiac status?
- 2. What is the cause of his acute renal failure?
- 3. What is the significance of the patient's large urine hemoglobin?
- 4. How would you interpret this patient's liver function tests considering his clinical history?

Drugs of Abuse: Serum Ethanol	Negative: 84 mg/dL	Urinalysis: Hemoglobin WBC RBC	Large: 4 hpf (0–4) 2 hpf (0–4)
CK	3308 U/L (24–204)	BUN	71 mg/dL (8–21)
CKMB	15 ng/mL (0-7.5)	Creatinine	4.1 mg/dL (0.9–1.5)
CKMB rel. index	0.5 (0–4)	ALP	443 U/L (45–122)
Troponin T	<0.01 ng/mL (0-0.4)	AST	305 U/L (9-45)
pH	7.50	ALT	78 U/L (8–63)
PCO ₂	27 mm Hg	GGT	724 U/L (11–50)
Total CO ₂	15 mmol/L	Total bilirubin	2.7 mg/dL (0.2-1.0)
	Sicks was a construction	Direct bilirubin	2.4 mg/dL (0-0.2)

CASE STUDY 24-2

A 45-year-old man presented to the hospital with alcohol withdrawal. After drinking a pint of brandy daily for the past 5–6 years, he decided to stop drinking 4 days ago. He experienced tremors and then visual and auditory hallucinations. On arrival at the hospital, he was diaphoretic and tachycardic, with a pulse rate of 102. His chemistry results are shown below.

Na ⁺	130 mmol/L	Total protein	7.1 g/dL
K ⁺	3.7 mmol/L	Albumin	3.7 g/dL
Cl-	90 mmol/L	ALP	63 U/L
CO ₂	20 mmol/L	AST	42 U/L
BUN	81 mg/dL	ALT	16 U/L
Creatinine	4.0 mg/dL	GGT	131 U/L
Magnesium	1.4 mg/dL	CK	591 U/L
Alcohol	Negative	Total bilirubin	0.5 mg/dL

Medical history included arthritis, hypertension, depression, and alcoholism. He had been taking an anti-inflammatory medication for arthritis and an antidepressant. Overnight, he became agitated and required increasing doses of a benzodiazepine, together with physical restraints for behavior control. The next morning, he was transferred to the ICU where he was evaluated for acute renal failure. The patient was rehydrated and his arthritis and antidepressant medications were withheld. Lab test results are listed below:

Na ⁺	139 mmol/L	Creatinine	1.4 mg/dL
K ⁺	3.5 mmol/L	CK	1626 U/L
Cl-	107 mmol/L	CKMB	3.4 ng/mL
CO2	23 mmol/L	Relative index	0.2
BUN	16 mg/dL		

Ouestions

- 1. Is the patient still in acute renal failure?
- 2. What was the cause of his acute renal failure?
- 3. Why has the patient's electrolyte status improved?
- 4. Why is his CK highly elevated?

CASE STUDY 24-3

A 78-year-old woman with a history of hypertension, aortic thoracic graft, and esophageal reflux disease complained of fever (100°) and weakness. She had been treated 3 weeks before at the hospital for a urinary tract infection. She was admitted to the hospital for a diagnostic workup and transfusion. Her laboratory results are listed below:

Na ⁺	129 mmol/L	Hct	25.6%
K ⁺	3.7 mmol/L	Hgb	8.5 g/dL
Cl-	97 mmol/L	WBC	9,700
CO ₂	19 mmol/L		
BUN	52 mg/dL		
Creatinine	3.2 mg/dL	10000000	

Urine culture was positive for *Citrobacter*. Urinalysis results are listed below:

Color	Hazy/yellow	
Specific gravity	1.015	
pH ************************************	5	
Blood	Large	
Protein	2+	
Glucose	Negative	

Ketones	Negative
Nitrates	Negative
RBC	>25
WBC	1–4
Casts	Granular, 1–4

The patient's renal function continued to decline, and she was put on hemodialysis. A renal biopsy was performed that showed end-stage crescent glomerulonephritis. Two days later, the patient suffered a perforated duodenal ulcer that required surgery and blood transfusion. Subsequently, she developed coagulopathy and liver failure. Her condition continued to deteriorate in the next few days, and she died following removal of life support.

Ouestions

- Looking at the urinalysis, what is the significance of the 2+ protein and >25 RBCs?
- 2. What is the most likely cause of glomerulonephritis?
- 3. Why was the patient put on hemodialysis?

Case History 10

A male aged 35 presenting with loin pain has a serum creatinine of 150 µmol/l. A 24-hour urine of 2160 ml is collected and found to have a creatinine concentration of 7.5 mmol/l.

 Calculate the creatinine clearance and comment on the results.

An error in the timed collection was subsequently reported by the nursing staff, and the collection time was reported to be 17 hours.

 How does this affect the result and its interpretation?