Powder flow

Dr. Isra Dmour

Credit: Prof. Nizar Al-Zoubi

by Noor Mansour

Powder flow

Powders are generally considered to be composed of solid particles of the same or different chemical compositions having equivalent diameters less than 1000 μm. 1000 μm.

Importance of free powder flow

- A. Reproducible and uniform filling of tablet dies and capsules, which is necessary for weight uniformity of these dosage forms, requires free flowing of the powder from the feeder.
- B. Uneven powder flow can result in excess entrapped air within powders, which may promote problems (capping and lamination).
- C. Many industrial processes that require powder movement from one location to another (such as mixing, feeding, transfer, and fluidization) are affected by powder flow properties.

النصاف الجنبيات مأمطح اخري

Particle properties

ترابط الجزيات مع بعض خ Adhesion and cohesion

- Cohesive and adhesive forces are composed mainly from: حسادرهم
 - Short range non specific van der Waals forces:


• Increase as particle size decreases and is affected by relative humidity

عوی الستر السلی – Surface tensional forces arising from adsorbed layer of liquid

– Electrostatic forces arising from contact or frictional charging حندسار عالات المعادد المعا

Adesian Porce vo = in adsorbed layer

الشمنات منوز عد بشكل متسام

حنی صیله لہ

NEUTRAL PARTICLE (electrical charge evenly distributed over particle)

PROCESSING AND/OR DRY PARTICLE
MOVEMENT CAUSES POLARIZATION
OF FINE PARTICLES (static electric
forces) grinding, mixing aski equal

+ runsfer)

POLARIZATION CAUSES AGGLOMERATION OF FINE PARTICLES (electrical Flowa billy) charges inducted by one particle on another van der Waals forces)

Figure 22 Effect of electrical forces on fine particles.

4

mel bad flowability all particle size ister to de + Flor we sit al posdervishes Powder properties affecting bulk flow ب تعلق ما عنسلا سد اولس • Fine particles have high surface to mass ratios and are more cohesive (bad flowability). کے ماہ کا جاجا

معيس اقل احتكالع Particle shape Spherical particles have minimum interparticle contact and therefore optimal flow properties. -> Plow - Wegular shape Particle density (True density)

• Dense particles are generally less cohesive than less dense particles of the same size and shape.

-الإعلى كثافة اقل cohesive واحسن flow.

-الإقل كثافة اعلى cohesive واضعف flow.

Powder properties affecting bulk flow

Surface roughness of particles

خشونة السطح

• Rough surface of particles lead to bad flowability of powders. powders.

5 Moisture content

• High moisture content causes increase tensional cohesive forces and reduced flowability.

Flow is الدواعة المستونة والمستونة والمستون

Electrostatic charge

• Electrostatic charge increases cohesion and adhesion and reduces flowability. ح الكفرباء الساعنة يتن به من الكفرباء الساعنة يتن به من الماعنة عنداسا 8 a Juesian

اء س الملقت ع

1- particles 2- Voids

voisi pouder

Mass-Volume relationship for powders

- A powder bed is composed of particles and voids.
- Voids are:

الغرافاى بين الغرافاى بين Interparticulate voids: The air space between individual particles

الحرافات دافل Intraparticulate voids: Those within a single البن تاكي particle العانوين :-

• Open to the external environment

• Closed to the external environment

معيوست دا مل الجنء ومالعا عنية برًا.

بتعتفط بالعواء جوانعا

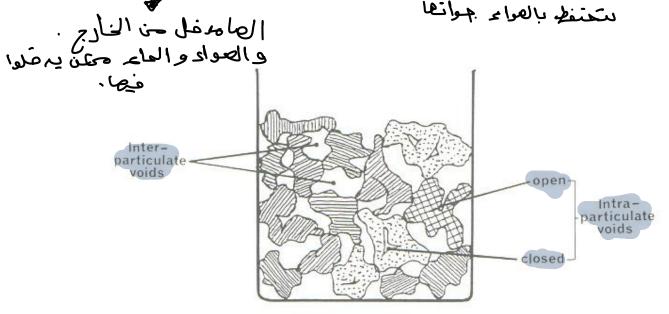


FIG. 4-4. Diagram of various intraparticulate and interparticulate air spaces in a bed of powder.

حجم المادة فقط (بدون الفراغات): True volume

حجم الجزيئات مع الفراغات Granular volume: intraparticulate

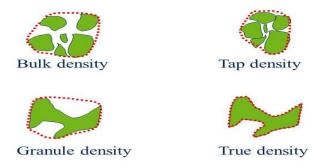
(particles, voids سواء inter) هو اكبر واحد ويشمل حجم كل شي:Bulk volume

Mass-Volume relationship for powders

Three interpretation of powder volume may be proposed:

The true volume (V_t) : The total volume of the solid particles, which excludes all space greater than molecular dimension.

The bulk volume (V_b): The total volume occupied by the entire powder mass (i.e. particles and <u>interparticulate</u> and <u>interparticulate</u> voids)


particle density

Logranuland

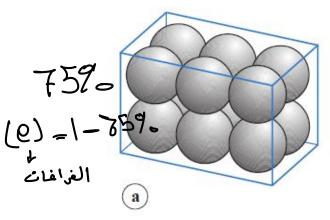
The different types of densities a) bulk density b) tapped density c) particle density d) true density

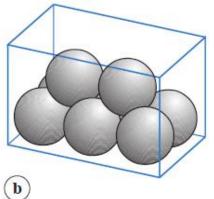
Mass-Volume relationship for powders

- True density = mass / true volume
- Granular density = mass / granular volume
- Bulk density = mass / bulk volume

Packing geometry

- The apparent volume (or density) of a powder can be changed by rearrangement of the packing geometry of particles (by vibration for example).
- Packing geometry can be characterized by:

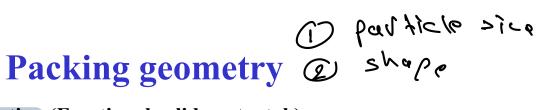

Bulk density


- It is the mass of powder occupying a known volume. البودرة إلى بتقل مبع معبير
- A powder can have many different bulk densities depending on the way in which the particles are packed. خسنه هنانه العبيات. خاني العبيات.
- However, a high bulk density value does not necessarily imply a close-packed low-porosity bed, as bulk density is directly proportional to true density.

الم المولود عن الألاء لله لله من عبالعا العدد الم ي مناها العدد المورد المورد

حيبي ملد يلعب لمكسالنه

% 65


(a) Cubic packing.

(b) Rhombohedral packing.

Different geometric packings of spherical particles

للسة البودرة بدون الفراغان

13

Packing fraction (Fractional solid content, k)

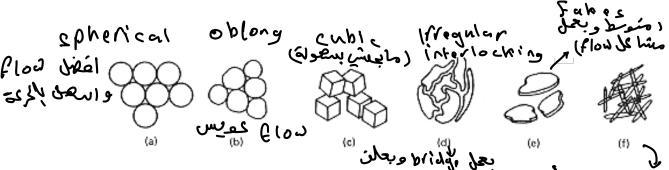
It is the bulk density divided by true density of the solid.

$$K = \frac{\text{True volume}}{\text{Bulk volume}} = \frac{\text{Bulk density}}{\text{True density}}$$

الفرائار

Porosity (Fractional void content, e)

Porosity (e) =
$$1 - K$$


• Porosity represents the fractional void content of a powder bed.

الفراغات بين الحبيبات الكبيرة رح تعبيها fine particles ويصير closer packing.

Factors affecting packing geometry

- 1) Particle size and size distribution
- Void spaces between coarse particles may be filled with <u>fine</u> particles in a powder with a wide size range, resulting in closer packing.
- 2) Particle shape and textures الي شكلها كروي بتنزل وتتراص بسهولة، اما الغير منتظمة بتعلق
- Arches within the powder bed will be formed more readily through the interlocking of non-isometric, highly textured particles
- شحنات كهربائية ممكن تخلي الحبيبات تلتصق او تتنافر ،بتأثر بال packing 🌙 packing (1
- The presence of electrostatic forces can promote closer particle packing
- 4) Handling and processing conditions
- The way in which a powder has been handled prior to flow or packing affects the type of packing geometry

اذا هزينا البودرة رح تتراص اكثر ،واذا سكبناها بسرعة بتكون اقل تراص.

General particle shapes and their effect on power flow.

- (a) Spherical particles normally flows easily,
- (b) oblong shapes with smooth edges normally flows easily
- ,(c) equidimensionally shaped sharp edges such as cubes does not flow as readily as (a) or (b),
- (d) Irregularly shaped interlocking particles normally shows poor flow and easily bridges,
- (e) irregularly shaped two-dimensional particles such as flakes normally shows fair flow and may cause bridges,
- (f) Fibrous particles very poor flow, and bridges easily. Bridging refers to the stoppage of powder flow as a result of particles which have formed a semirigid or rigid structure within the powder bulk.

blockage a bridge Ja

coarse partieles ou fine particles

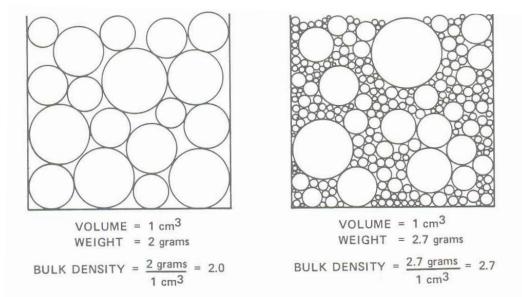
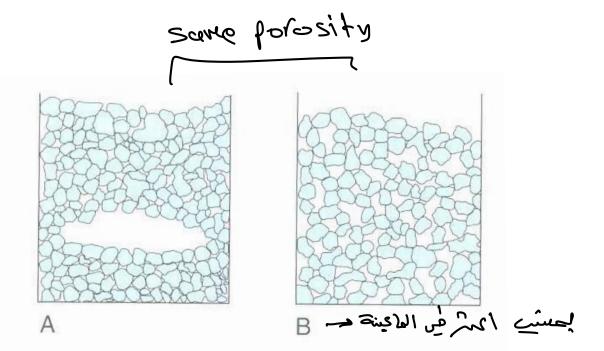
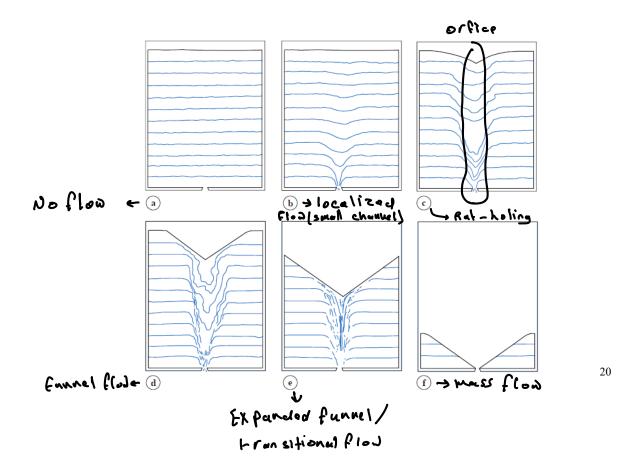



Figure 24 Effects of particle size distribution on the bulk density of a powder.

Fig. 13.6 Two equidimensional powders having the same porosity but different packing geometries.


Flow rate through an orifice

• There are many manufacturing processes of pharmaceutical solid dosage forms that require the powder flow through the opening in a hopper or bin used to feed powder to tableting machine, capsule- filling machine, sachet-filling machines ...

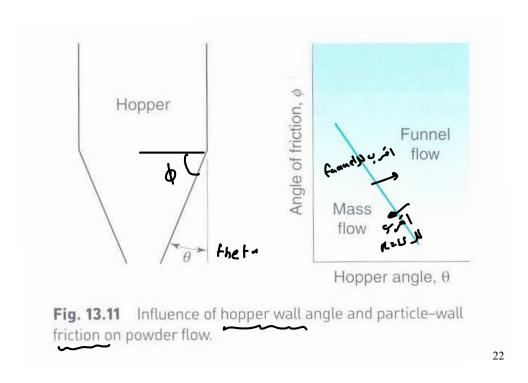
في تصنيع solid dosage forms مثلtablets and capsules لازم powder ينزل من الهوبر او bin بشكل منتظم عبر فتحة (orifice) لتغذية:

- 1.Machine
- 2. Capsule-filling machine

3. Sachet-filling machine

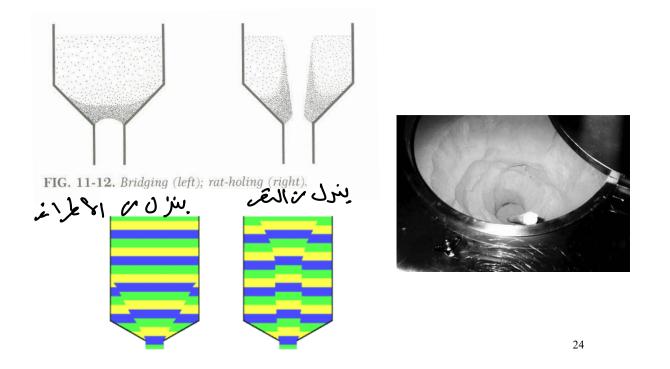
10

Flow rate through an orifice


- This flow through orifices is affected by:
- 1. Orifice diameter

طرہ ہے

- Flow rate is proportional to orifice diameter
- 2. Hopper width (فيخ عفه محدد) تحساد
- 3. Adhesion to the walls of hopper
- 4. Head size orfice well solidas
- This is the height of powder bed above the orifice
- 5. Hopper wall angle

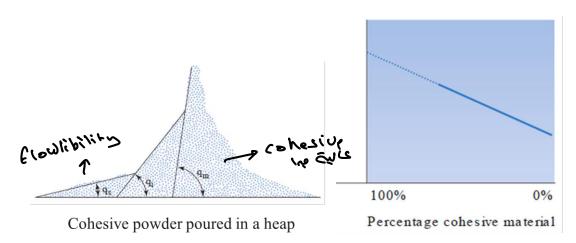

Zunce

• As the angle decreases, flow rate increases

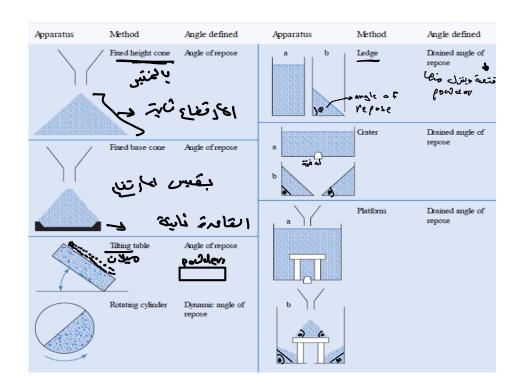
mass flow with in July fume flow (a) (b)

Fig. 13.12 (a) Mass flow hopper. (b) Funnel flow hopper. 23

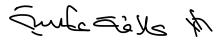
Odicect - ibslesion (D) 1/2 direct - ibslesion


Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive properties)

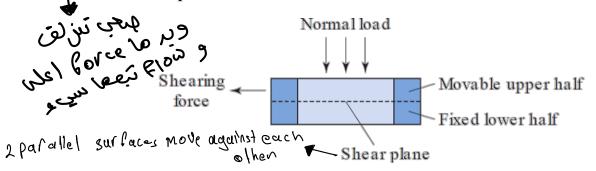

1) Angle of repose (Indirect Method)

- It represents the balance between frictional/cohesive forces and gravitational force
- Therefore, it describes interparticle cohesion and it is an indirect method for estimating powder flowability.
- There are different methods for determination of angle of repose which may produce different values.
- The high values indicate bad flow properties.


low flow = very cohesive = of = inc = 915

Determination of angle of repose for very cohesive powders.

2/21 9 2 V 21 Sep

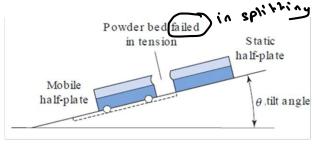

Angle of repose	Type of flow		
(degrees)			
25–30	Excellent flowbility		
31–35	Good		
36–40	Fair (flow aid not needed)		
	Passable (may hang up, flow aid might		
41–45	be needed)		
46–55	Poor (agitation or vibration needed)		
56–65	Very poor		
V			
ohesi V	28		

Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive properties)

2) Shear strength determination

• Cohesion can be defined as stress (force per unit area) necessary to shear the powder bed under conditions of zero normal load


Diagrammatic representation of Jenike shear cell.

29

Characterization of powder flow

Indirect methods (Measurement of adhesive/cohesive properties)

القوة هي الشر عشان تشوف قديش به المشعل عشان المشر عشان كشوف قديش به المشاف من الشرك عشان المشرك من المستعمل عشان المستعمل المس The powder bed is caused to fail in tension by splitting.

Diagrammatic representation of tilting table method.

$$\sigma_{t} = \frac{Mg\sin\theta}{A \text{ area}}$$

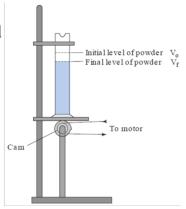
Equation for calculation of tensile strength

Characterization of powder flow

Indirect methods

4) Bulk density measurement (% compressibility and Hausner's ratio)

% compressibility =
$$\frac{D_f - D_0}{D_f} \times 100 = \frac{V_0 - V_f}{V_0} \times 100$$


Hausner's ratio =
$$\frac{D_f}{D_0} = \frac{V_0}{V_f}$$

 D_f = Final bulk density (tapped density)

 D_0 = initial bulk density

 V_f = Final bulk volume (tapped volume)

 V_0 = initial bulk volume

Mechanical tapping device

31

1 réel

·19 200		- Ju	
73	Compressibility index (%)	Type of flow	Hausner ratio
	(Carr's index)		
	1–10	Excellent	1.00-1.11
	11–15	Good	1.12-1.18
	16–20	Fair	1.19-1.25
	21–25	Passable	1.26–1.34
	26–31	Poor	1.35–1.45
	32–37	Very poor	1.46–1.59
	>38	Very, very poor	>1.60

Characterization of powder flow

Indirect methods

5) Critical orifice diameter

- Critical orifice diameter is a measure of powder cohesion and arch strength.
- The smallest orifice diameter through which powder can flow مع ادا کهنیفت ا عنه بعد ادا کهنیفت ا عنه بعد ادا کهنیفت ا

33

picect

Characterization of powder flow

Direct methods

1) Hopper flow rate

• The mass of a powder discharged from a hopper is divided by the time taken for the powder to discharge.

2) Recording flowmeter

• The powder is allowed to discharge onto a balance and the increase of powder mass with time is recorded.

* leined lin de line *

Approaches for improvement of powder flow size 14

milling, grandation Alteration of particle size and size distribution

• Coarse particles are less cohesive and therefore are flowing better than fine particles.

Alteration of particle shape or texture

- Spherical particles have better flowability than irregular particles.
- Particles with smooth surface have better flowability النه لا جيله براد particles with rough surface.
- Particles with suitable shape can be obtained by spray drying or by controlling crystallization process.

less cohesique Coarse mor cousine firefartien

Approaches for improvement of powder flow

Alteration of surface forces

Electrostatic charges and high moisture content decrease the flowability.

Formulation additives (flow promoters)

• Glidants decrease cohesive and adhesive forces.

Alteration of process conditions ا مُسْن بِي المالكة المالكة

- Use of vibration-assisted or agitated hoppers
- Use of force feeders

zail powderzażej)

36

16 Chowielis

Plowability imp

Flow activators

- Flow activators (enhancers, promoters) improve the flowability of powders by reducing adhesion and cohesion.
- They are referred to as glidants.

• Some of them have anti-adherent and lubricant properties.

• Commonly used glidants include talc, maize starch, colloidal silicon dioxide and magnesium stearate.

37

Mechanisms of action of flow activators بخمسن ۱۱۵۵ مین طریع و شخلات به عیف در المالات ا

Glidants improve flowability by one or more of the following mechanisms:

- 1. They make the surface of the particles more smooth.
- 2. They reduce electrostatic charges.
- 3. They interfere with the cohesion or adhesion due to adsorbed moisture layer