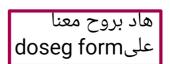
Universal Tests / Criteria : New Drug Substances

d) Impurities:

Impurities in new drug subsances can be classified into the following categories (ICH Q3A):

إذا اثبت انهم

synthesis impurity


ما بنتقلو معنا لل tablet

1. Organic impurities

- Starting materials
- By-products
- Intermediates
- Degradation products
- Reagents, ligands and catalysts

2. Inorganic impurities

- Reagents, ligands and catalysts
- Heavy metals or other residual metals
- Inorganic salts
- Other materials (e.g., filter aids, charcoal)

Universal Tests / Criteria : New Drug Substances

d) Impurities:

3. Residual solvents

Class 1 solvents: Solvents to be avoided

- Known human carcinogens, strongly suspected human carcinogens, and environmental hazards.
- E.g. Benzene, CCl4

Class 2 solvents: Solvents to be limited

- Non-genotoxic animal carcinogens or possible causative agents of other irreversible toxicity such as neurotoxicity or teratogenicity.
- Solvents suspected of other significant but reversible toxicities.
- · E.g. Acetonitrile, Chloroform, Methanol, Dichloromethane, hexane

Class 3 solvents: Solvents with low toxic potential

- Solvents with low toxic potential to man; no health-based exposure limit is needed. Class 3 solvents have permitted daily exposure (PDE)s of 50 mg or more per day.
- E.g. Acetic acid, Ethanol, Ethyl acetate, Dimethyl sulfoxide, Acetone

Universal Tests / Criteria : New Drug products

d) impurities:

- Organic and inorganic impurities (degradation products) and residual solvents are included in this category.
- Organic impurities arising from degradation of the new drug substance and impurities that arise during the manufacturing process for the drug product should be monitored in the new drug product.
- Process impurities from the new drug substance synthesis are normally controlled during drug substance testing, and therefore are not included in the total impurities limit.
- However, when a synthesis impurity is also a degradation product, its level should be monitored and included in the total degradation product limit.

Universal Tests / Criteria : New Drug products

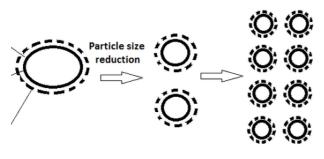
d) impurities:

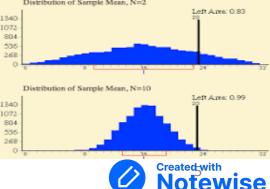
structure is nev

- Acceptance limits should be stated for individual specified degradation products, which may include both identified and unidentified degradation products as appropriate, and total degradation products.
 - When it has been conclusively demonstrated via appropriate analytical methodology, that the drug substance does not degrade in the specific formulation, and under the specific storage conditions proposed in the new drug application:
 - -> degradation product testing may be reduced or eliminated upon approval by the regulatory authorities.

The following tests may be considered on a case by case basis for drug substances.

a) Physicochemical properties:


e.g. pH of an aqueous solution, melting point / range, and refractive index.


b) Particle size:

For some new drug substances intended for use in solid or suspension drug products, particle size can have a significant effect on dissolution rates, bioavailability, and / or stability.

In such instances, procedure for testing of size distribution

and acceptance criteria should be provided.

كيف يأثر susb وممكن يعمل sedimentation وممكن يعمل kicking اذا كان بdusproscopy يأثر على sedimentation وممكن يعمل hygroscopy محبه ولو كان عندي powder كيف رح يتأثر فيه في عندي اشي اسمه particle size محبه للماء اذا كانت particle size صغيره يعني بدها sarfuec area أعلى عشان absorption للماء أعلى فرح تمتص ماء أكثر مقا نه مع particle الأكبر واذا تمتص ماء أكثر رح تأثر على stability

هسا احنا عنا amorphous وفي عنا crysality ونادر نلاقي amorphous بالفارماكوبيا لانه مش stable

بالنسبه لل crystaline A, B, C بدي crystaline B وهدول يختلفون عن بعض ب طيب مثلا انا ما بدي physochemical property ف احتمال يكون bioavailability مختلف فكيف اضمن انه النوع الي طلبته هو نفسه الي وصلني عن طريق تستات تعمل polymorphic forms

c) Polymorphic forms:

In cases where different crystal forms exist which have been shown to affect drug product performance, bioavailability or stability, then the appropriate solid state should be specified.

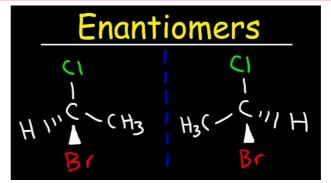
Example: Part of Chloramphenicol monograph in USP

Melting range (741): between 149° and 153°.

Specific rotation (781S): between +17.0° and +20.0°.

Test solution: 50 mg, undried, per mL, in dehydrated alcohol.

Crystallinity (695): meets the requirements.


Bacterial endotoxins (85)—Where Chloramphenicol is intended for use in preparing injectable dosage forms, it contains

d) Tests for chiral new drug substances:

For a drug substance developed as a single enantiomer:

- 1. The identity test(s) should be capable of distinguishing both enantiomers and the racemic mixture.
- 2. An enantioselective determination of the drug substance should be part of the specification.
- 3. Control of the other enantiomer should be considered in the same manner as for other impurities.

- e) Water content: This test is important in cases where the new drug substance is known to be:

 - 2. degraded by moisture
 - 3. is a hydrate.

The acceptance criteria may be justified with data on the effects of hydration or moisture absorption.

In some cases, a Loss on Drying procedure may be considered adequate; however, a detection procedure that is specific for water (e.g., Karl Fischer titration) is preferred.

f) Inorganic impurities:

The need for inclusion of tests and acceptance criteria for inorganic impurities (e.g., catalysts) should be studied during development and based on knowledge of the manufacturing process.

Procedures and acceptance criteria for:

- A. sulfated ash / residue on ignition should follow pharmacopoeial precedents;
- B. other inorganic impurities may be determined by other appropriate procedures, e.g., atomic absorption spectroscopy.

- g) Microbial limits: There may be a need to specify:
 - the total count of aerobic microorganisms 10°
 - the total count of yeasts and molds -> for oral solid 102 colony
 - the absence of specific objectionable bacteria (e.g., Staphylococcus aureus, Escherichia coli, Salmonella, Pseudomonas aeruginosa).
- These should be suitably determined using pharmacopoeial procedures.
- The type of microbial test(s) and acceptance criteria should be based on the
 - 1. nature of the drug substance,
 - method of manufacture,
 - 3. the intended use of the drug product:

sterility testing may be appropriate for drug substances manufactured as sterile

endotoxin testing may be appropriate for drug substances used to formulate an injectable drug product.

رکن مشوهه رعمان سکیب Drug products

Specific Tests / Criteria : New Drug products

- Additional tests and acceptance criteria generally should be included for <u>particular new drug products</u>.
- The ICH guidelines in Q6A presents a <u>representative</u> sample of both the drug products and the types of tests and acceptance criteria which may be appropriate.
- The specific dosage forms addressed include solid oral drug products, liquid oral drug products, and parenterals (small and large volume).
- Application of the concepts in this guideline to other dosage forms is encouraged.

Solid oral drug products:

a) Dissolution:

- The specification for solid oral dosage forms normally includes a test to measure release of drug substance from the drug product.
- immediate-release dosage forms \rightarrow normally Single-point measurements
- extended-release dosage forms \rightarrow multiple time point sampling should be performed
- delayed-release dosage forms \rightarrow two-stage testing (using different media in succession or in parallel, as appropriate). E.g pH: 1.2, 6.8

Solid oral drug products:

a) Dissolution:

- For <u>immediate-release</u> drug products where changes in dissolution rate have been demonstrated to significantly affect bioavailability, it is desirable to <u>develop test conditions</u> which can distinguish batches with unacceptable bioavailability.
- If changes in formulation or process variables significantly affect dissolution and such changes are not controlled by another aspect of the specification, it may also be appropriate to adopt <u>dissolution test conditions</u> which can distinguish these changes.
- Where dissolution significantly affects bioavailability, the acceptance criteria should be set to <u>reject</u> batches with unacceptable bioavailability. Otherwise, test conditions and acceptance criteria should be established which pass clinically acceptable batches

Solid oral drug products:

a) Dissolution:

- For extended-release drug products, in vitro / in vivo correlation (IVIVC) may be used to establish acceptance criteria when human bioavailability data are available for formulations exhibiting different release rates.
- Where such data are not available, and drug release cannot be shown to be independent of in vitro test conditions, then acceptance criteria should be established on the basis of available batch data.
- Normally, the permitted variability in mean release rate at any given time point should not exceed a total numerical difference of +/-10% of the labeled content of drug substance (i.e., a total variability of 20%: a requirement of 50 +/- 10% thus means an acceptable range from 40% to 60%), unless a wider range is supported by a bioequivalency study.

بقدر استغني عن dissolution بحاله وحده ويعتبر disintegration كافي لما يكون rapid dissolve وبعتبره هيك اذا)80% من الدواء ذاب او صار له release تماما خلال 15 دقيقه ضمن pH 1.2,6.8. هل هاد الشرط كافي اعتبره physiological pH. لا...... ولازم يكون الدواء الي داخل tablet high Soluble على physiological pH وهاي تكون لو أخذت maximum dose وذوبتها ب 250 مل من الماء يذوب تماما اذا تحقق هدول الشرطين ما بكون بحاجه dissolution

Solid oral drug products: b) Disintegration:

عنا disintegration يعتبر disintegration يعتبر adjusted dispulses وخص نص tablets and capsules لازم تنحل البودره تبعهم قبل ما يصير dissolution

- For rapidly dissolving (dissolution >80% in 15 minutes at pH 1.2, 4.0 and 6.8) products containing drugs which are highly soluble throughout the physiological range (dose/solubility volume < 250 mL from pH 1.2 to 6.8), disintegration may be substituted for dissolution.
- Disintegration testing is most appropriate when a relationship to dissolution has been established or when disintegration is shown to be more discriminating than dissolution.
- In such cases dissolution testing <u>may not</u> be necessary.
- It is expected that development information will be provided to support the <u>robustness of the formulation</u> and manufacturing process with respect to the selection of dissolution vs. disintegration testing.

Solid oral drug products:

c) Hardness/friability:

- It is normally appropriate to perform hardness and/or friability testing as an in-process control → normally not necessary to include these attributes in the specification.
- If the characteristics of hardness and friability have a critical impact on drug product quality (e.g., chewable tablets), acceptance criteria should be included in the specification.

Solid oral drug products:

d) Uniformity of dosage units:

- This term includes
 - the mass of the dosage form
 - the content of the active substance in the dosage form
- A pharmacopoeial procedure should be used.
- In general, the specification should include one or the other but not both.
- If appropriate, these tests may be performed in-process; however, the acceptance criteria should be included in the specification.

Solid oral drug products:

d) Uniformity of dosage units:

<905> UNIFORMITY OF DOSAGE UNITS (USP monograph)

Table 1. Application of Content Uniformity (CU) and Weight Variation (WV) Tests for Dosage Forms

Val	iacion (vvv)	lests for Dosay	ge roinis	
			Dose & Ratio of Drug Substance	
			≥25 mg	<25 mg
			and	or
Dosage Form	Туре	Subtype	≥25%	<25%
Tablets	Uncoated		WV	CU
	Coated	Film	WV	CU
		Others	CU	CU
Capsules	Hard		WV	CU
	Soft	Suspension, emulsion,		
		or gel	CU	CU
		Solutions	WV	WV
	Single compo- nent		wv	wv
Solids in single-unit containers	Multiple compo- nents	Solution freeze- dried in final con- tainer	w	w
		Others	CU	CU
containers and into soft cap- sules+			Cre	atedy .W.V
Others			O Ñ	otewis

Solid oral drug products:

e) Water content:

- A test for water content should be included when appropriate.
- The acceptance criteria may be justified with data on the effects of hydration or water absorption on the drug product.
- A detection procedure which is specific for water (e.g., Karl Fischer titration) is preferred.

Solid oral drug products:

f) Microbial limits:

- Acceptance criteria should be set for:
 - the total count of aerobic microorganisms,
 - the total count of yeasts and molds,
 - the absence of specific objectionable bacteria (e.g., Staphylococcus aureus, Escherichia coli, Salmonella, Pseudomonas aeruginosa).
- These should be determined using **pharmacopoeial procedures**, and at a sampling frequency or time point in manufacture which is justified by data and experience.
- The type of microbial test(s) and acceptance criteria should be based on the
 - 1. nature of the drug substance,
 - 2. method of manufacture,
 - 3. the intended use of the drug product:

Solid oral drug products:

f) Microbial limits:

- In general, it is advisable to test the drug product unless:
 - 1. its components are tested before manufacture and
 - 2. the manufacturing process is known, through validation studies, not to carry a significant risk of microbial contamination or proliferation.
- ➤ With acceptable scientific justification, it should be possible to propose <u>no microbial limit testing for solid oral dosage</u> forms. Why???

USP 2012

Table 1. Acceptance Criteria for Microbiological Quality of Nonsterile Dosage Forms

اايام التعقيم اخخ 🚮

Table 1. Acceptance Criteria for Microbiological Quality of Nonsterile Dosage Forms				
Route of Administration		Total Aerobic Microbial Count (cfu/g or cfu/mL)	Total Combined Yeasts/Molds Count (cfu/g or cfu/mL)	Specified Microorganism(s)
Nonaqueous preparations for oral use		103	10 ²	Absence of Escherichia coli (1 g or 1 mL)
Aqueous preparations for oral use		102	101	Absence of Escherichia coli (1 g or 1 mL)
Rectal use		103	10 ²	
Oromucosal use		10 ²	101	Absence of Staphylococcus aureus (1 g or 1 mL)
				Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
Gingival use		10 ²	10¹	Absence of Staphylococcus aureus (1 g or 1 mL)
_				Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
Cutaneous use		102	101	Absence of Staphylococcus aureus (1 g or 1 mL)
				Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
Nasal use		102	101	Absence of Staphylococcus aureus (1 g or 1 mL)
				Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
Auricular use		10 ²	10¹	Absence of Staphylococcus aureus (1 g or 1 mL)
				Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
Vaginal use		10 ²	101	Absence of <i>Pseudomonas aeruginosa</i> (1 g or 1 mL)
				Absence of Staphylococcus aureus (1 g or 1 mL)
				Absence of Candida albicans (1 g or 1 mL)
Transdermal patches (limits for one patch including adhesive layer and backing)		102	101	Absence of Staphylococcus aureus (1 patch)
				Absence of Pseudomonas aeruginosa (1 patch)
Inhalation use (special requirements ap-		10 ²	10¹	Absence of Staphylococcus aureus (1 g or 1 mL)
ply to liquid preparation tion)				Absence of Pseudomonas aeruginosa (1 g or
				Absence of bile-tolerant Gram-negative bacteria (1 g or 1 mL)

Oral liquids:

One or more of the following specific tests will normally be applicable to oral liquids and to powders intended for reconstitution as oral liquids.

a) pH: Acceptance criteria for pH should be provided where applicable and the proposed range justified.

Oral liquids:

b) Uniformity of dosage units

In general, the specification should include weight variation or content uniformity test but not both.

If dispensing equipment (such as medicine droppers or dropper tips for bottles) is an integral part of the packaging, this equipment should be used to measure the dose. Otherwise, a standard volume measure should be used.

If appropriate, tests may be performed inprocess; however, the acceptance criteria should be included in the specification.

For powders for reconstitution, uniformity of mass testing is generally considered acceptable.

Oral liquids:

c) Microbial limits

- Skip testing may be an appropriate approach where permissible.
- With acceptable scientific justification, it may be possible to propose no microbial limit testing for powders intended for reconstitution as oral liquids.
- Acceptance criteria should be set for:
 - 1. the total count of aerobic microorganisms,
 - 2. the total count of yeasts and molds,
 - 3. the absence of specific objectionable bacteria (e.g., Staphylococcus aureus, Escherichia coli, Salmonella, Pseudomonas aeruginosa).

Oral liquids:

d) Antimicrobial preservative content:

Acceptance criteria for preservative content should be established for oral liquids needing an antimicrobial preservative.

The lowest specified concentration of antimicrobial preservative should be demonstrated to be effective in controlling microorganisms by using a pharmacopoeial

antimicrobial preservative effectiveness test.

هاي كثير مهمه هسا كيف نحددshelf life من خلال نضل نتبع كل سنه من خلال stability لحتى نوصل لنقطه ممكن يزيد stability او ينزل assay وهاد يكون shelf life طيب سؤال هل فش حدا بقيس assay of preservative هسا assay تبعه مسموح ينزل كثير بس هاد يتم تحديده اذا زاد نسبه micro يعني فشل ينزل كثير بس هاد يتم تحديده اذا واد نسبه preservative فشل يعملو اشي ليحددو rang الي يكون عليه antimicrobial preservative effective وبعمل antimicrobial preservative effective

Oral liquids:

d) Antimicrobial preservative content:

- normally performed at release → Under certain circumstances, in-process instead of release testing → however, the acceptance criteria should remain part of the specification.
- Antimicrobial preservative effectiveness should be demonstrated:
 - during development,
 - during scale up, and
 - throughout the shelf-life.

Oral liquids:

e) Antioxidant preservative content:

- Release testing for antioxidant content should normally be performed.
- Under certain circumstances, where justified by developmental and stability data,
 - shelf-life testing may be unnecessary,
 - in-process testing instead of release testing → the acceptance criteria should remain part of the specification.

Specific Tests / Criteria : New Drug products Oral liquids:

f) Extractables:

- Tests and acceptance criteria for extractables from the container/closure system components (e.g., rubber stopper, cap liner, plastic bottle, etc.) are considered appropriate for oral solutions packaged in:
 - non-glass systems
 - glass containers with non-glass closures.

Package material المواد الي تطلع من formula على formula (بس ما بوصلها) اذا كانت (Extractables are compoused that can be extracted from the container closure system when in the presence of a solvent."

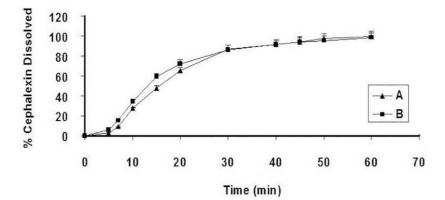
Oral liquids:

f) Extractables:

- Generally, where development and stability data show evidence that extractables are consistently below acceptable and safe levels, elimination of this test can normally be accepted.
- This should be reinvestigated if the container/closure system or formulation changes.

Oral liquids:

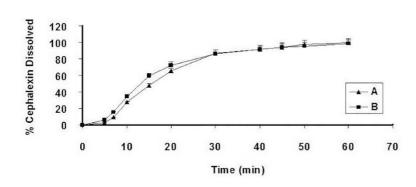
g) Alcohol content:


- Where it is declared quantitatively on the label in accordance with pertinent regulations, the alcohol content should be specified.
- It may be assayed or calculated.

Oral liquids:

h) Dissolution:

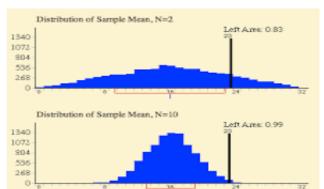
- In addition to the attributes recommended immediately above, it may be appropriate (e.g., insoluble drug substance) to include dissolution testing and acceptance criteria for:
 - oral suspensions
 - dry powder products for resuspension.
- The testing apparatus, media, and conditions should be pharmacopoeial, if possible, or otherwise justified.



Oral liquids:

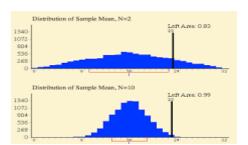
h) Dissolution:

- Single-point measurements are normally considered suitable for immediate-release dosage forms.
- Multiple-point sampling, at appropriate intervals, should be performed for modified-release dosage forms.
- Acceptance criteria should take into account the dissolution profiles of the batches that showed


acceptable performance in vivo.

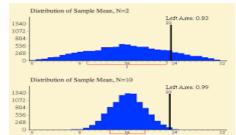
Oral liquids:

i) Particle size distribution:


- Quantitative acceptance criteria and a procedure for determination of particle size distribution may be appropriate for oral suspensions.
- performed at release → in-process test when justified by product development data.

Oral liquids:

i) Particle size distribution:


- If these products have been demonstrated during development to have consistently rapid drug release characteristics, exclusion of a particle size distribution test from the specification may be proposed.
- Particle size distribution testing may also be proposed in place of dissolution testing; justification should be provided.
- Developmental data should be considered when determining the need for either a dissolution procedure or a particle size distribution procedure.

Oral liquids:

i) Particle size distribution:

- The acceptance criteria should include acceptable particle size distribution in terms of the percent of total particles in given size ranges. The mean, upper, and / or lower particle size limits should be well defined.
- The potential for particle growth should be investigated during product development; the acceptance criteria should take the results of these studies into account.

Oral liquids:

j) Redispersibility:

- For oral suspensions which settle on storage (produce sediment), acceptance criteria for redispersibility may be appropriate.
- The procedure (mechanical or manual) should be indicated. Shaking may be an appropriate procedure.

Oral liquids:

k) Rheological properties:

• For relatively viscous solutions or suspensions, it may be appropriate to include rheological properties (viscosity/specific gravity) in the specification.


I) Reconstitution time:

 Acceptance criteria for reconstitution time should be provided for dry powder products which require reconstitution.

m) Water content:

• For oral products requiring reconstitution, a test and acceptance criterion for water content should be proposed when appropriate.

Parenteral Drug Products:

- a) Uniformity of dosage units
- b) pH: Acceptance criteria for pH should be provided where applicable and the proposed range justified.
- c) Sterility: All parenteral products should have a test procedure and acceptance criterion for evaluation of sterility. Where data generated during development and validation justify parametric release, this approach may be proposed for terminally sterilized drug products.
- d) Endotoxins/Pyrogens: A test procedure and acceptance criterion for endotoxins, using a procedure such as the limulus amoebocyte lysate test, should be included in the specification.
- Pyrogenicity testing may be proposed as an alternative to endotoxin testing where justified.

Parenteral Drug Products:

e) Particulate matter: Parenteral products should have appropriate acceptance criteria for particulate matter.

This will normally include acceptance criteria for:

- 1. visible particulates and / or clarity of solution,
- 2. for sub-visible particulates as appropriate.

f) Water content:

For <u>non-aqueous</u> parenterals, and for parenteral products for reconstitution, a test procedure and acceptance criterion for water content should be proposed when appropriate.

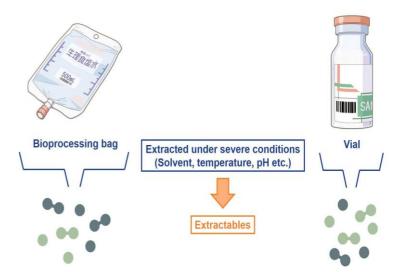
Loss on drying (LOD) is generally considered sufficient for parenteral products, if the effect of absorbed moisture vs. water of hydration has been adequately characterized during development.

In certain cases a more specific procedure (e.g., Karl Fischer titration) may be preferred.

Parenteral Drug Products:

g) Antimicrobial preservative content:

- For parenteral products needing an antimicrobial preservative (e.g. multidose vials).
- The lowest specified concentration of antimicrobial preservative should be demonstrated to be effective in controlling microorganisms by using a pharmacopoeial antimicrobial preservative effectiveness test.



Parenteral Drug Products:

i) Extractables:

- Control of extractables from container/closure systems is considered significantly more important for parenteral products than for oral liquids.
- However, where development and stability data show evidence that extractables are consistently below the levels that are demonstrated to be acceptable and safe, elimination of this test can normally be accepted.
- This should be <u>reinvestigated</u> if the container/closure system or formulation <u>changes</u>.

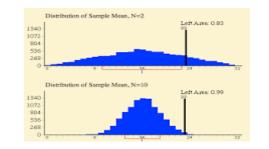
Parenteral Drug Products:

j) Functionality testing of delivery systems:

- Parenteral formulations packaged in pre-filled syringes, autoinjector cartridges, or the equivalent should have test procedures and acceptance criteria related to the <u>functionality</u> of the delivery system (e.g.inj. volume).
- Under <u>certain</u> circumstances these tests may be performed <u>in-process</u>.
- Data generated during product development may be sufficient to justify skip lot testing or elimination of some or all attributes from the specification.

Parenteral Drug Products:

k) Osmolarity: When the tonicity of a product is declared in its labeling, appropriate control of its osmolarity should be performed.


I) Particle size distribution:

Quantitative acceptance criteria and a procedure for determination of particle size distribution may be appropriate for injectable suspensions.

Particle size distribution testing may also be proposed in place of dissolution testing, when development studies demonstrate that particle size is the primary factor influencing dissolution; justification should be provided.

Practi-Powder Vial**

- m) Redispersibility: similarly to oral liquids
- n) Reconstitution time: similarly to oral liquids

