

DR. AMJAAD ZUHIER ALROSAN

LECTURE 8, PART (1): CONTINUE SENSES (HEARING)

Objectives

1. Discuss the nature of sound waves.

2. Discuss The auditory function.

3. Describe The equilibrium pathway.

(Pages 595-607 of the reference).

HEARING AND EQUILIBRIUM

> السمع هو القدرة على إدراك الأصوات.

➤ **Hearing** is the ability to perceive sounds.

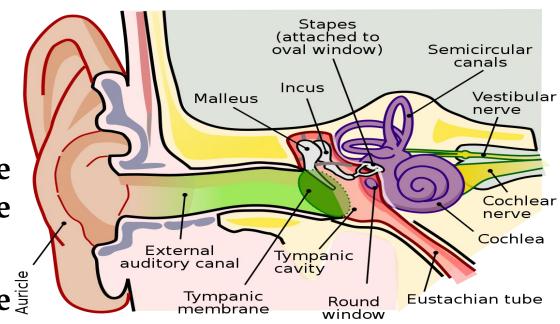
- للأذن مستقبلات حسية بالإضافة إلى مستقبلات للتوازن. > تنقسم الأذن إلى ثلاث مناطق رئيسية:
- > The ear has sensory receptors as well as receptors for equilibrium.
- > The ear is divided into three main regions:
- (1) The <u>external ear</u>, which <u>collects sound waves</u> and <u>channels them</u> inward.
- (2) The middle ear which conveys sound vibrations to the oval window (to make the sound louder). (۲) الأذن الوسطى التي تنقل اهتزازات الصوت إلى النافذة البيضاوية (لجعل الصوت أعلى).
- (3) The in<u>ternal ear</u>, which ho<u>uses the receptors for hearing and</u> equilibrium.

THE NATURE OF SOUND WAVES

يحدث الإدخال على شكل موجات صوتية.

> Input occurs in the form of sound waves.

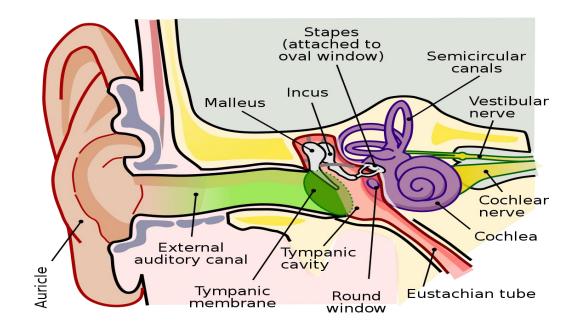
- >الموجات الصوتية (التي تنشأ من جسم مهتز) هي مناطق ضغط مرتفع ومنخفض متناوبة تنتقل في نفس الاتجاه عبر وسط ما (مثل الهواء).
- Sound waves (originate from a vibrating object) are alternating highand low-pressure regions traveling in the same direction through some medium (such as air).


>كلما زادت شدة الاهتزاز (الحجم أو السعة)، ارتفع الصوت. ثقاس شدة الصوت بوحدات تسمى ديسيبل (dB)…

- The larger the intensity (size or amplitude) of the vibration, the louder is the sound. Sound intensity is measured in units called decibels (dB).
- An increase of one decibel represents a tenfold increase in sound intensity.
- The hearing threshold—the point at which an average young adult can just distinguish sound from silence—is defined as 0 dB at 1000 Hz.

>عتبة السمع - وهي النقطة التي يستطيع عندها الشاب البالغ العادي التمييز بين الصوت والصمت - تُعرف بأنها - ديسيبل عند ١٠٠٠ هرتز.

External or outer ear, consisting of:

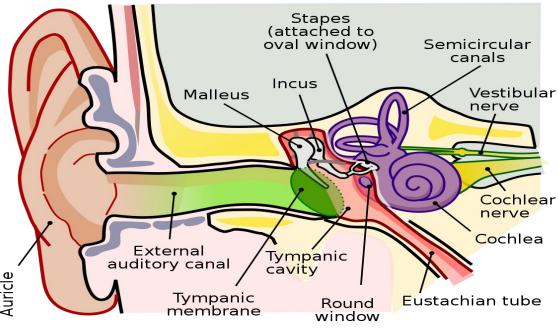

- 1- Auricle. This is the outside part of the ear.
- 2- External auditory canal or tube. This is the tube that connects the outer ear to the inside or middle ear.
- 3- <u>Tympanic membrane (eardrum)</u>. The tympanic membrane divides the external ear from the middle ear.

* Middle ear (tympanic cavity) , consisting of:

1- العظيمات. ثلاث عظام صغيرة متصلة وتنقل الموجات الصوتية إلى الأذن الداخلية. وتسمى العظام: المطرقة، والسند، والركاب.

- 1- Ossicles. Three small bones that are connected and transmit the sound waves to the inner ear. The bones are called: Malleus, Incus and Stapes. mis
- 2- Eustachian tube. A canal that links the middle ear with the back of the nose. The eustachian tube helps to equalize the pressure in the middle ear. Equalized pressure is needed for the proper transfer of sound waves. The eustachian tube is lined with mucous, just like the inside of the nose and throat.

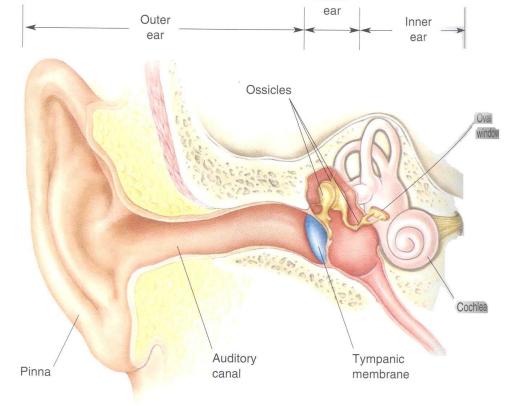
2- قناة استاكيوس . قناة تربط الأذن الوسطى بالجزء الخلفي من الأنف. تساعد قناة استاكيوس على معادلة الضغط في الأذن الوسطى. هناك حاجة إلى ضغط متساوٍ من أجل النقل الصحيح للموجات الصوتية. قناة استاكيوس مبطنة بالمخاط، تمامًا مثل الجزء الداخلي من الأنف والحنجرة.


Inner ear , consisting of:

2- السائل اللمفاوي الداخلي في القناة.
 القوقعة. هذا يحتوي على أعصاب السمع.
 3- الخلايا الشعرية "المستقبلات السمعية".

4- الدهليز. يحتوي هذا على مستقبلات للتوازن.

1- النافذة البيضاوية لقناة القوقعة.

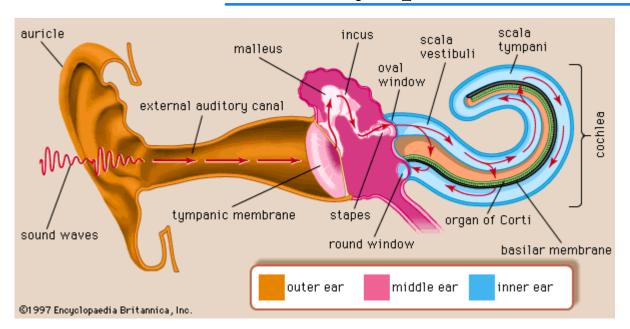

- 1- Oval window of cochlear canal.
- 2- Endolymph fluid in the canal. Cochlea. This contains the nerves for hearing.
- 3- <u>Hair cells</u> "auditory receptors".
- 4- <u>Vestibule</u>. This contains receptors for balance.
- 5- <u>Semicircular canals</u>. This <u>contains</u> receptors for balance.

5- القنوات نصف الدائرية. يحتوي هذا على مستقبلات للتوازن.

The outer ear and canal guide and The tympanic filter sound. membrane and ossicles transmit the vibrations to the cochlea itself; the vibrations enter the **cochlea** via the round window and exit via the round window. As they pass through the endolymph of the scala vestibuli and tympani, sound waves cause the basilar membrane to vibrate. This is the key to auditory function.

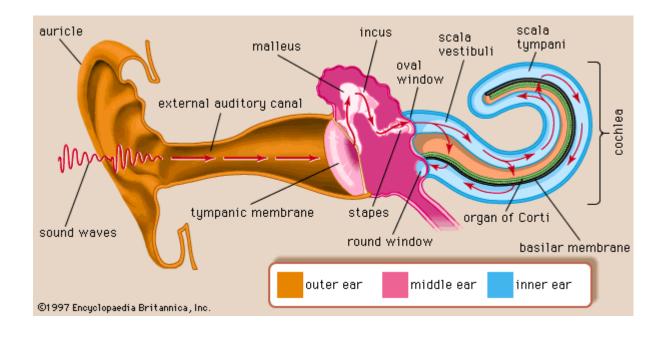
دليل الأذن الخارجية والقناة وتصفية الصوت. ينقل الغشاء الطبلي والعظميات الاهتزازات إلى القوقعة نفسها، وتدخل الاهتزازات إلى القوقعة عبر النافذة المستديرة وتخرج عبر النافذة المستديرة. أثناء مرورها عبر اللمف الباطن من السقالة الدهليزية والطبلة، تتسبب الموجات الصوتية في اهتزاز الغشاء القاعدي. هذا هو مفتاح الوظيفة السمعية.

> The following events are involved in hearing:

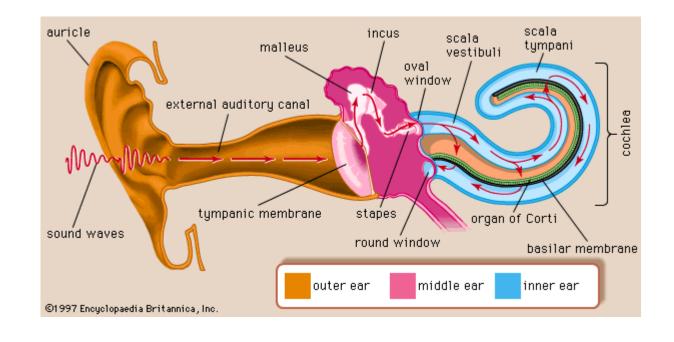

يوجه الصيوان الموجات الصوتية إلى القناة السمعية الخارجية.

The auricle directs sound waves into the external auditory canal.

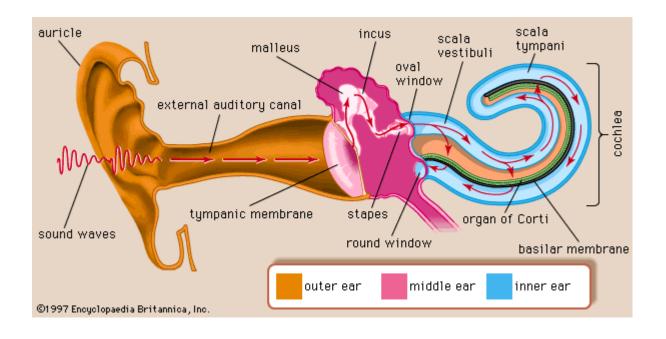
2. When **sound waves** strike the **tympanic membrane**, the alternating waves of high and low pressure in the air **cause the tympanic membrane to vibrate**


back and forth.

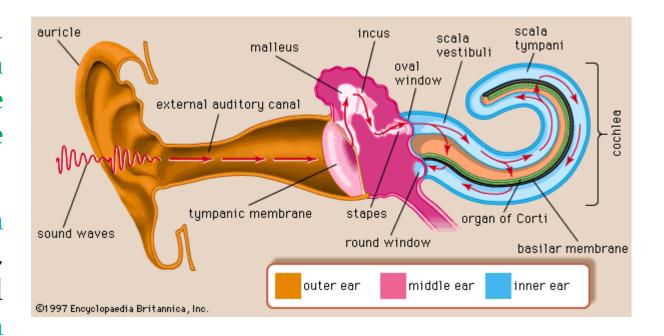
2. عندما تصطدم الموجات الصوتية بغشاء الطبلة، تتسبب الموجات المتناوبة من الضغط العالي والمنخفض في الهواء في اهتزاز غشاء الطبلة ذهابًا وإيابًا.


تتصل المنطقة المركزية لغشاء الطبلة بالمطرقة، التي تهتز مع غشاء الطبلة. ينتقل هذا الاهتزاز من المطرقة إلى السندان ثم إلى الركاب.

3. The central area of the tympanic membrane connects to the malleus, which vibrates along with the tympanic membrane. This vibration is transmitted from the malleus to the incus and then to the stapes.

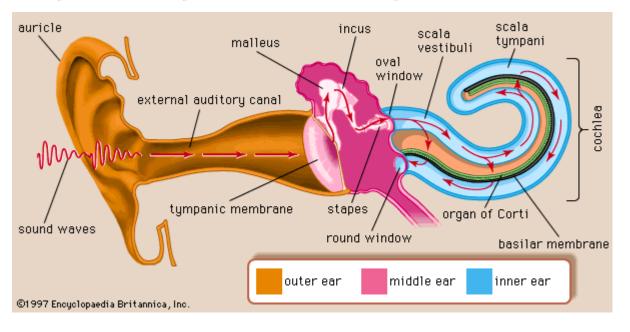

عندما تتحرك عظمة الركاب (الصفيحة القدمية بيضاوية الشكل (النافذة البيضاوية)) ذهابًا وإيابًا، تكون الاهتزازات عند النافذة البيضاوية أقوى بحوالي 20 مرة من اهتزازات غشاء الطبلة (تنقل بكفاءة الاهتزازات الصغيرة المنتشرة على مساحة سطح كبيرة (غشاء الطبلة) إلى اهتزازات أكبر على سطح أصغر (النافذة البيضاوية).

4. As the stapes (oval-shaped footplate (oval window)) moves back and forth, the vibrations at the oval window are about 20 times more vigorous than those of the tympanic membrane (efficiently transmit small vibrations spread over a large surface area (the tympanic membrane) into larger vibrations at a smaller surface (the oval window)).

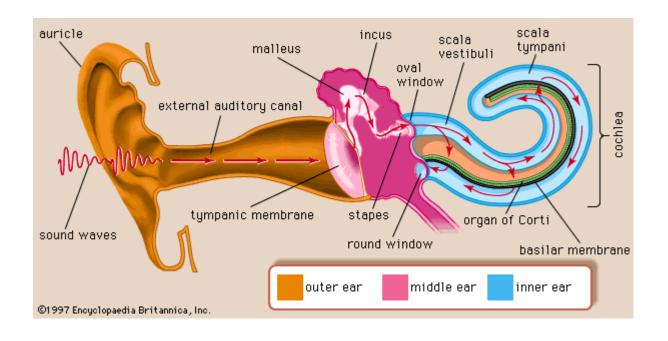

حركة الركاب عند النافذة البيضاوية تُنشئ موجات ضغط سائل في اللمف المحيطي للقوقعة. عندما تنتفخ النافذة البيضاوية للداخل، فإنها تضغط على اللمف المحيطي للسلم الدهليزي.

5. The movement of the stapes at the oval window sets up fluid pressure waves in the perilymph of the cochlea. As the oval window bulges inward, it pushes on the perilymph of the scala vestibuli.

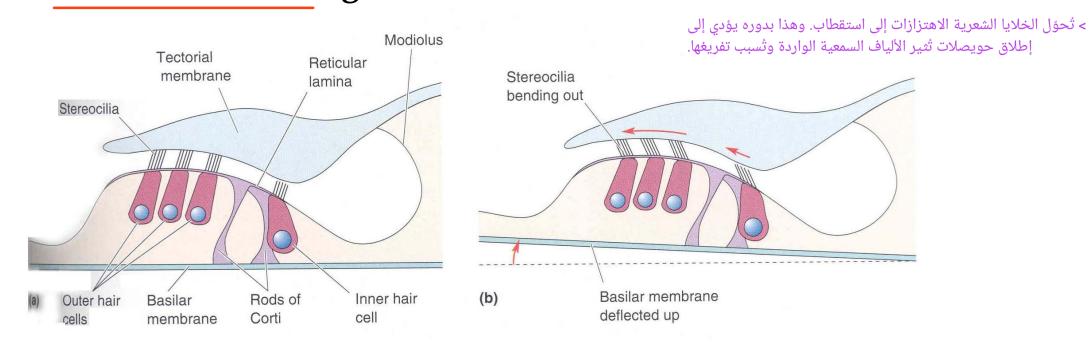
تنتقل موجات الضغط من سلم الدهليزي إلى سلم الطبلة، ثم إلى النافذة المستديرة، مما يؤدي إلى بروزها للخارج في الأذن الوسطى.


- 6. Pressure waves are transmitted from the scala vestibuli to the scala tympani and eventually to the round window, causing it to bulge outward into the middle ear.
- 7. The pressure waves travel through the perilymph of the scala vestibuli, then the vestibular membrane, and then move into the endolymph inside the cochlear duct.

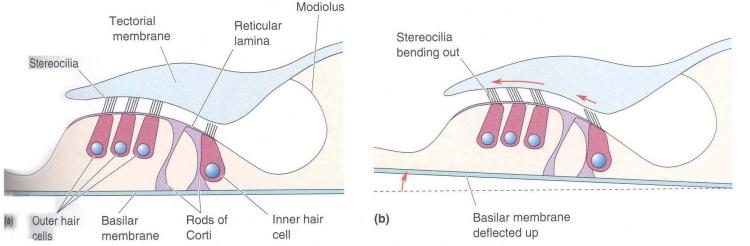
تنتقل موجات الضغط عبر اللمف المحيطي للسلم الدهليزي، ثم الغشاء الدهليزي، ثم تنتقل إلى اللمف الداخلي داخل القناة القوقعية.


8. The **pressure waves** in the endolymph cause the basilar membrane to vibrate, which moves the hair cells of the spiral organ against the tectorial membrane. This leads bending of the stereocilia and ultimately to the generation of nerve impulses in first-order neurons in cochlear nerve fibers.

تتسبب موجات الضغط في اللمف الداخلي في اهتزاز الغشاء القاعدي، مما يحرك الخلايا الشعرية للعضو الحلزوني ضد الغشاء السقفي. يؤدي هذا إلى انحناء الأهداب المجسمة، وفي النهاية إلى توليد نبضات عصبية في الخلايا العصبية من الدرجة الأولى في ألياف العصب القوقعي.



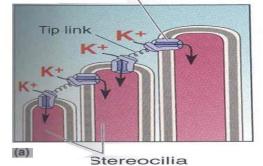
تتسبب الموجات الصوتية ذات الترددات المختلفة في اهتزاز مناطق معينة من الغشاء القاعدي بشكل أكثر شدة من المناطق الأخرى.

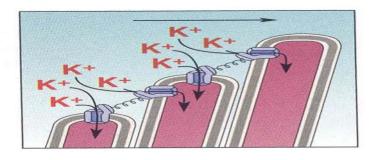

9. Sound waves of various frequencies cause certain regions of the basilar membrane to vibrate more intensely than other regions.

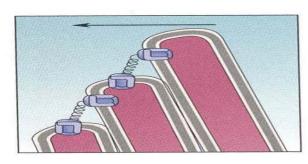
➤ Hair cells transduce vibrations into depolarization. This in turn leads to vesicular release that excites auditory afferent fibers and causes them to discharge.

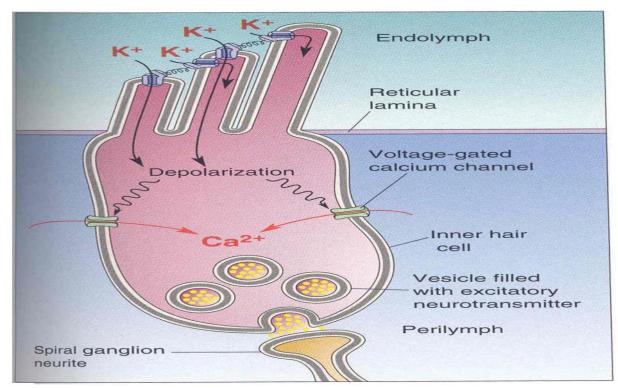
Hair cells are firmly attached to the basilar membrane and therefore move up and down with it as it vibrates. The "hairs" or cilia of these cells are attached to a tectorial membrane; this membrane is fixed- it does not vibrate in response to sound. So, as you can imagine, when the basilar membrane moves upward, the cilia will be bent. This is the first step in the transduction process.

> ترتبط الخلايا الشعرية بقوة بالغشاء القاعدي، وبالتالي تتحرك معه لأعلى ولأسفل أثناء اهتزازه. ترتبط "شعيرات" هذه الخلايا، أو أهدابها، بغشاء سقفي، وهو غشاء ثابت لا يهتز استجابةً للصوت. لذا، كما يمكنك أن تتخيل، عندما يتحرك الغشاء القاعدي لأعلى، تنحني الأهداب. هذه هي الخطوة الأولى في عملية النقل.

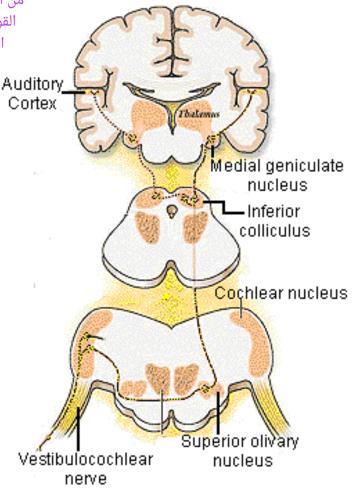

> عندما تنحني الأهداب في اتجاه واحد، فإنها تتسبب في فرط استقطاب الخلية الشعرية، بينما يؤدي الانحناء في الاتجاه المعاكس إلى إزالة الاستقطاب.


➤ When the <u>cilia</u> bend in one d<u>irection it causes</u> the h<u>air cell</u> to hyperpolarize; bending in the opposite direction causes depolarization.


This effect is due to the mechanical coupling of the cilia to K+ channels at their tips. The depolarization (K+ enter the hair cell cytosol and produce a depolarizing receptor potential) causes Ca2+ entry and the fusion of vesicles and release of glutamate from hair cells. This cause excitation and spiking of the auditory afferent fibers.


> يعود هذا التأثير إلى الاقتران الميكانيكي للأهداب بقنوات البوتاسيوم عند أطرافها. يؤدي إزالة الاستقطاب (دخول أيون الروعاسيوم إلى سيتوسول الخلية الشعرية وإنتاج جهد مستقبل مزيل للاستقطاب) إلى دخول أيون الكالسيوم (Ca²) واندماج الحويصلات وإطلاق الغلوتامات من الخلايا الشعرية. هذا يسبب إثارة ونبضات حادة في الألياف السمعية الواردة.

Mechanically gated potassium channel

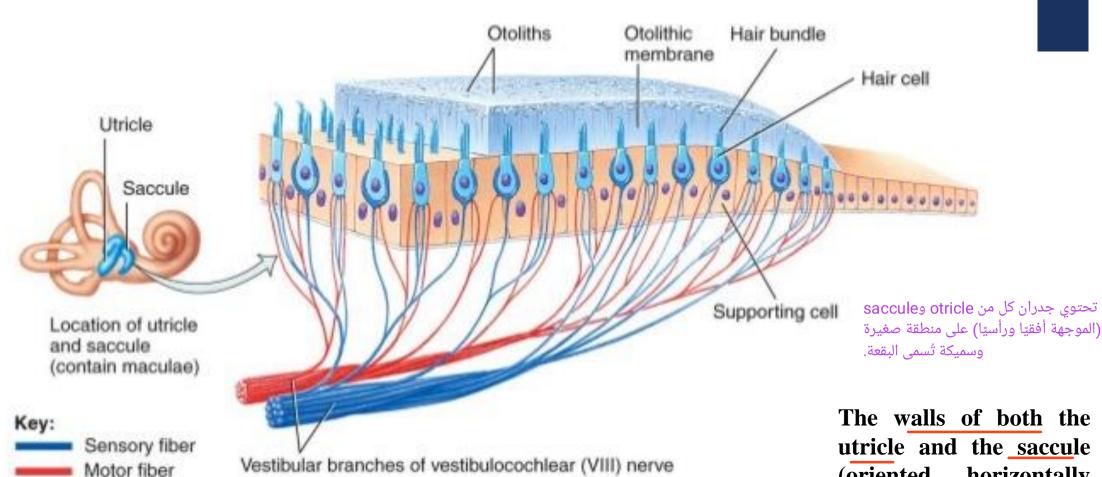


From hair cells of the والقشرة الدماغية (المنطقة السمعية الأولية). auditory cochlea, information is conveyed along the cochlear branch of the vestibulocochlear (VIII) nerve and then to the brain stem (cochlear nucleus is in the medulla oblongata), thalamus, and cerebral cortex (primary auditory area).

من الخلايا الشعرية للقوقعة، يتم نقل المعلومات السمعية على طول فرع. القوقعة الصناعية للعصب الدهليزي القوقعي (السابع) ومن ثم إلى جذع الدماغ (توجد نواة القوقعة الصناعية في النخاع المستطيل)، والمهاد،

Note that this pathway is **bilateral** unlike contralateral somatosensory pathway. This makes sense since sound always reaches both ears.

> * لاحظ أن هذا المسار ثنائي الجانب على عكس المسار المقابل المسار الحسى الجسدى. وهذا منطقى لأن الصوت يصل دائمًا إلى كلتا الأذنين.


PHYSIOLOGY OF EQUILIBRIUM

- There are <u>two types</u> of equilibrium or balance:
- پشیر التوازن الثابت إلى الحفاظ على موضع
 الجسم (الرأس بشكل أساسي) بالنسبة لقوة الجاذبية.
- > Static equilibrium refers to the maintenance of the position of the body (mainly the head) relative to the force of gravity.
- Dynamic equilibrium is the maintenance of body position (mainly the head) in response to sudden movements such as rotational acceleration or deacceleration.

تسمى الأجهزة المستقبلة للتوازن بالجهاز الدهليزي، وتشمل هذه القنوات الكييس والقريبة والقنوات نصف الدائرية (موجهة في ثلاثة أبعاد مختلفة، تحتوي على سائل اللمف الباطن، والذي يؤدي تحركه إلى ثني الشعرات وبالتالي إنتاج AP وإرساله إلى الدماغ).

• The receptor organs for equilibrium are called the vestibular apparatus; these include the saccule, utricle, and semicircular ducts (oriented in three different dimensions, containing endolymph fluid, which its moving leads to bend the hairs and thus produce AP and send it to the brain).

Hearing and Equilibrium

(a) Overall structure of section of macula

The walls of both the utricle and the saccule (oriented horizontally and vertically) contain a small, thickened region called a macula.

PHYSIOLOGY OF EQUILIBRIUM

- The two maculae (plural), which are perpendicular to one another, are the receptors for static equilibrium.
 البقعتان (الجمع)، المتعامدتان على بعضهما
- The maculae consist of two kinds of cells: hair cells (containing stereocilia), which are the sensory receptors, and supporting cells.
- The movement of stereocilia (bending in one direction) initiates depolarizing receptor potentials. However, bending in the opposite direction closes the transduction channels and produces hyperpolarization.

PHYSIOLOGY OF EQUILIBRIUM

> تعمل القنوات الهلالية الثلاث (التي تحتوي على مجموعة من الخلايا الشعرية والخلايا الداعمة) بتوازن ديناميكي.

- The three <u>semicircular ducts</u> (containing a group of hair cells and supporting cells) function in dynamic equilibrium.
- When you move your head, the attached semicircular ducts and hair cells move with it. As the moving hair cells drag along the stationary endolymph, the hair bundles bend. Bending of the hair bundles produces receptor potentials. In turn, the receptor potentials lead to nerve impulses that pass along the vestibular branch of the vestibulocochlear (VIII) nerve.

> عند تحريك رأسك، تتحرك القنوات نصف الدائرية المتصلة والخلايا الشعرية معه. عندما تسحب الخلايا الشعرية المتحركة على طول اللمف الداخلي الثابت، تنحني حزم الشعر. ينتج عن انحناء حزم الشعر جهود مستقبلية. بدورها، تؤدي جهود المستقبلات إلى نبضات عصبية تمر على طول الفرع الدهليزي للعصب الدهليزي القوقعي (VII).

How the macula functions in relation to gravity

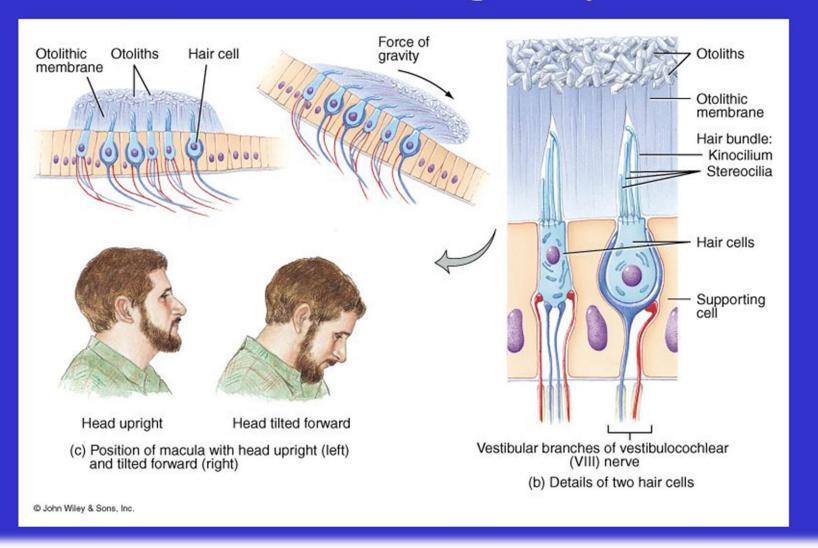
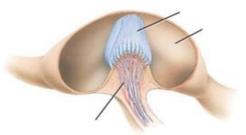


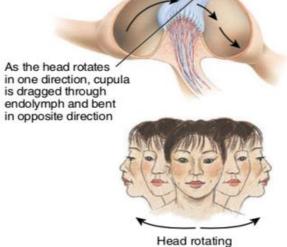
FIGURE 17.26 Location and structure of the semicircular ducts of the right ear. Both first-order sensory neurons (blue) and efferent neurons (red) synapse with the hair cells. The ampullary nerves are branches of the vestibular division of the vestibulocochlear (VIII) nerve.

of each semicircular duct contains a crista that is covered by a The Hair bundle Hair cell Location of ampullae Supporting cell of semicircular ducts (contain cristae)


Key:

Sensory fiber

Efferent fiber


الشكل 17.26 موقع وبنية القنوات نصف الدائرية للأذن اليمنى. تتشابك كل من الخلايا العصبية الحسية من الدرجة الأولى (الأزرق) والخلايا العصبية الصادرة (الحمراء) مع خلايا الشعر. الأعصاب الأمبولية هي فروع للقسم الدهليزي للعصب الدهليزي القوقعي

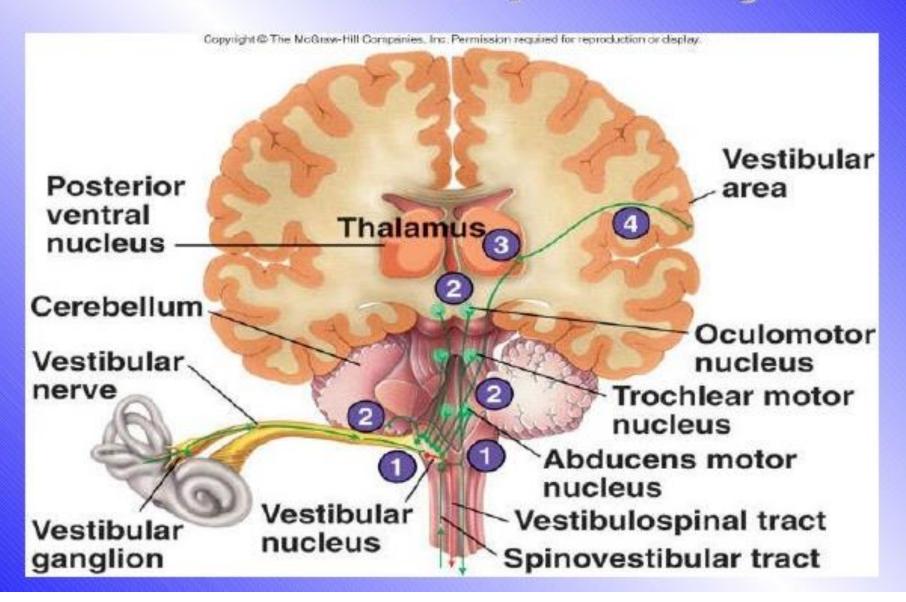
Head in still position

THE EQUILIBRIUM PATHWAY

- From hair cells of the semicircular ducts, utricle, and saccule, vestibular information is conveyed along the vestibular branch of the vestibulocochlear (VIII) nerve and then to the brain stem, cerebellum, thalamus, and cerebral cortex.
- 1. Bending of hair bundles of the hair cells in the semicircular ducts, utricle, or saccule causes the release of a neurotransmitter (probably glutamate), which generates nerve impulses in the sensory neurons that innervate the hair cells.
- The <u>cell bodies of sensory neurons</u> are <u>located</u> in the <u>vestibular ganglia</u>. Nerve impulses pass along the axons of these neurons, which form the <u>vestibular branch</u> of the <u>vestibulocochlear</u> (VIII) nerve.
- 3. Most of these axons synapse with sensory neurons in vestibular nuclei, the major integrating centers for equilibrium, in the medulla oblongata and pons.
- 4. The vestibular nuclei also receive input from the eyes and proprioceptors, especially proprioceptors in the neck and limb muscles that indicate the position of the head and limbs.
- 5. The **remaining axons enter the cerebellum** through the inferior cerebellar peduncles.

> من الخلايا الشعرية للقنوات نصف الدائرية والقريبة والكيس، يتم نقل المعلومات الدهليزية على طول الفرع الدهليزي للعصب الدهليزي القوقعي (الثامن) ومن ثم إلى جذع الدماغ والمخيخ والمهاد والقشرة الدماغية.

1. يؤدي انحناء حزم الشعر في الخلايا الشعرية في القنوات الهلالية، أو القريبة، أو الكييس، إلى إطلاق ناقل عصبي (ربما يكون الغلوتامات)، والذي يُولِّد نبضات عصبية في الخلايا العصبية الحسية التي تُعصب الخلايا الشعرية.


2. تقع أجسام الخلايا العصبية الحسية في العقد الدهليزية. تمر النبضات العصبية على طول محاور (VIII). هذه الخلايا العصبية، والتي تُشكّل الفرع الدهليزي من العضلة الدهليزية القوقعية (VIII).

3. تتشابك معظم هذه المحاور مع الخلايا العصبية الحسية في النوى الدهليزية،وهي مراكز التكامل الرئيسية للتوازن، في النخاع المستطيل والجسر.

4. تستقبل النوى الدهليزية أيضًا مُدخلات من العينين ومستقبلات الحس العميق، وخاصةً مستقبلات الحس العميق في عضلات الرقبة والأطراف التي تُشير إلى موضع الرأس والأطراف.

5. تدخل المحاور المتبقية إلى المخيخ من خلال السويقات المخيخية السفلية.

Vestibular pathways

THANK YOU

AMJADZ@HU.EDU.JO