

Objectives

1. Discuss histology of cardiac muscle tissue.

2. Discuss action potential and contraction of contractile fibers.

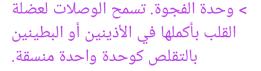
3. Describe electrocardiogram as well as the cardiac cycle.

(Pages 702-718, 720-726of the reference).

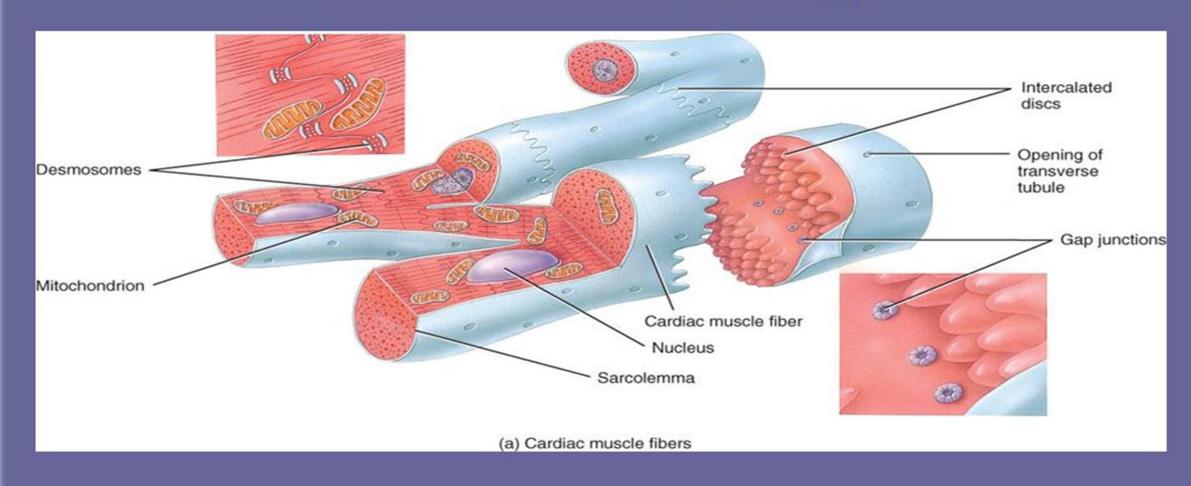
THE CARDIOVASCULAR SYSTEM: THE HEART

يساهم القلب في تحقيق التوازن الداخلي عن طريق ضخ الدم عبر الأوعية الدموية إلى أنسجة الجسم لتوصيل الأكسجين والمغذيات والتخلص من الفضلات.

The **heart contributes to homeostasis** by pumping blood through blood vessels to the tissues of the body to deliver oxygen and nutrients and remove wastes.


The cardiovascular system consists of the blood, the heart, and blood vessels.

 پتكون الجهاز القلبي الوعائي من الدم والقلب والأوعية الدموية.


HISTOLOGY OF CARDIAC MUSCLE TISSUE

مقارنةً بألياف العضلات الهيكلية، تكون ألياف عضلة القلب أقصر طولًا. كما أنها تُظهر تفرّعًا، مما يُعطي كل ألياف عضلة قلبية مظهرًا "متدرجًا".

- ➤ Compared with skeletal muscle fibers, cardiac muscle fibers are shorter in length. They also exhibit branching, which gives individual cardiac muscle fibers a "stair-step" appearance.
- Cardiac muscle fibers connect to neighboring fibers by intercalated discs, which contain desmosomes, which hold the fibers together, and gap junctions, which allow muscle action potentials to conduct from one muscle fiber to its neighbors.
- ➤ Gap unit. junctions allow the entire myocardium of the atria or the ventricles to contract as a single, coordinated.

Cardiac Muscle Histology

 Branching, intercalated discs with gap junctions, involuntary, striated, single central nucleus per cell

✔ النشاط الكهربائي المتأصل والإيقاعي هو سبب نبضات القلب الدائمة.

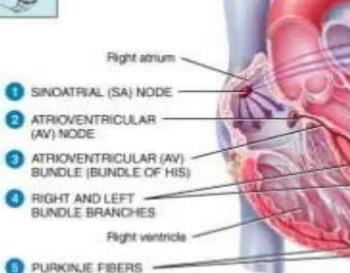
✓ An inherent and rhythmical electrical activity is the reason for the heart's lifelong beat.

مصدر هذا النشاط الكهربائي هو شبكة من ألياف عضلة القلب المتخصصة تُسمى الألياف ذاتية الإيقاع لأنها ذاتية الإثارة.

- ✓ The source of this electrical activity is a network of specialized cardiac muscle fibers called autorhythmic fibers because they are self-excitable.
- ✓ Autorhythmic fibers repeatedly generate action potentials that trigger heart contractions.

تُولِّد الألياف ذاتية الإيقاع بشكل متكرر جهود فعل تُحفز انقباضات القلب. Locations of autorhythmic

4.ألياف طرفية صغيرة تمتد من بندى هيس وتنتشر


Sinoatrial node (SA node) Specialized region in right atrial wall near opening of superior vena cava.

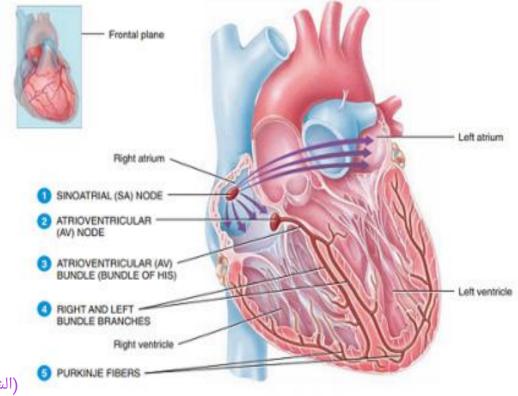
 Atrioventricular node (AV node) Small bundle of specialized cardiac cells located at base of right atrium near septum

Bundle of His (atrioventricular bundle) Cells originate at AV node and enters interventricular septum Divides to form right and left bundle branches which travel down septum, curve around tip of ventricular chambers, travel back toward atria along outer walls

4. • Purkinje fibers قي جميع أنحاء عضلة القلب البطينية Small, terminal fibers that extend from bundle of His and spread throughout ventricular myocardium

2 العقدة الأذينية البطينية (العقدة ا 1.منطقة متخصصة في جدار الأذين الأيمن البطينية) حزمة صغيرة من خلايا القلب بالقرب من فتحة الوريد الأجوف العلوى. المتخصصة الموجودة في قاعدة الأذين الأيمن بالقرب من الحاجز - Frontal plane

(a) Anterior view of frontal section 20.10a


Left ventricle

3. تشأ حزمة من خلاباه (الحزمة الأذينية البطينية) عند العقدة الأذينية البطينية وتدخل الحاجز بين البطينين. وتنقسم لتشكل فروع الحزمة اليمنى واليسرى التي تنتقل إلى أسفل لحاجز، وتنحني حوال طرف الغرف البطينية، وتعود نحو الأذينين على طول الجدران الخارجية

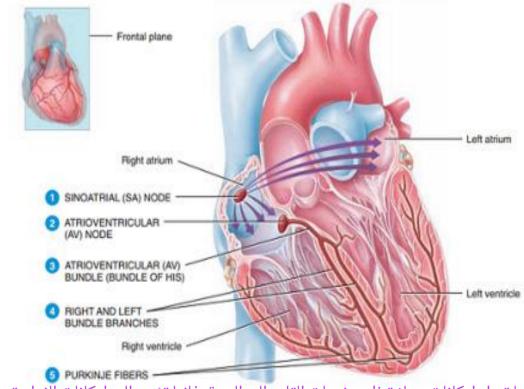
- 1. They act as a pacemaker (electrical excitation that causes contraction of the heart).
- They form the cardiac conduction system.
- 3. Cardiac action potentials propagate through the conduction system in the following sequence:
- Cardiac excitation normally begins in the sinoatrial (SA) node.

Figure 20.10 The conduction system of the heart. Autorhythmic fibers in the SA node, located in the right atrial wall (a), act as the heart's pacemaker, initiating cardiac action potentials (b) that cause contraction of the heart's chambers.

The conduction system ensures that the chambers of the heart contract in a coordinated manner.

(a) Anterior view of frontal section

 ينتشر عمل القلب من خلال نظام التوصيل بالتسلسل التالي: تبدأ الإثارة القلبية عادة في العقدة الجيبية الأذينية (SA). 1. تعمل بمثابة جهاز تنظيم ضربات القلب. (الشكل الكهربائي 20.10 نظام التوصيل للقلب. الإثارة التلقائية التي تسبب عمل القلب).


لا تتمتع خلايا العقدة SA بإمكانية استراحة مستقرة. وبدلاً من ذلك، فإنها تزيل الاستقطاب بشكل

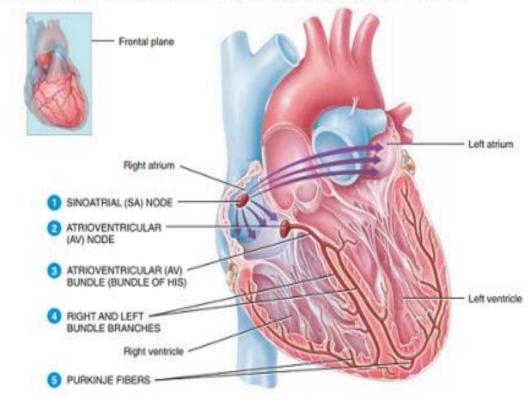
متكرر لتصل إلى العتبة تلقائيًا. إمكانات جهاز تنظيم ضربات القلب لإزالة الاستقطاب التلقائي.

- SA node cells do not have a stable resting potential. Rather, they repeatedly depolarize to threshold spontaneously. The spontaneous depolarization is a pacemaker potential.
- When the pacemaker potential reaches threshold, it triggers an action potential. Each action potential from the SA node propagates throughout both atria via gap junctions in the intercalated discs of atrial muscle fibers. Following the action potential, the two atria contract

Figure 20.10 The conduction system of the heart. Autorhythmic fibers in the SA node, located in the right atrial wall (a), act as the heart's pacemaker, initiating cardiac action potentials (b) that cause contraction of the heart's chambers.

The conduction system ensures that the chambers of the heart contract in a coordinated manner.

at <u>the same time.</u> عندما تصل إمكانات جهاز تنظيم ضربات القلب إلى العتبة، فإنها تؤدي إلى إمكانات الفعل. تنتشر كل إمكانية عمل من العقدة الجيبية الأذينية في جميع مربات القلب إلى العتبة، فإنها تؤدي إلى إمكانات الفعل. تنتشر كل إمكانية عمل من العقدة الجيبية الأذينية في جميع العصلات الفعل، ينقبض الأذينيان في نفس الوقت.


• من خلال التوصيل على طول ألياف العضلات الأذينية، يصل جهد الفعل إلى العقدة الأذينية البطينية (AV).

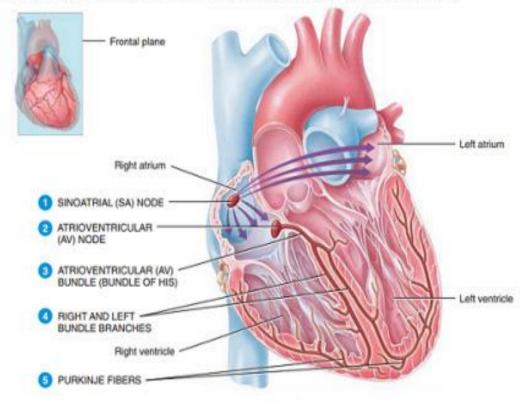
- By conducting along atrial muscle fibers, the action potential reaches the atrioventricular (AV) node.
- At the AV node, the action potential slows considerably as a result of various differences in cell structure in the AV node. This delay provides time for the atria to empty their blood into the ventricles.

في العقدة الأذينية البطينية، يتباطأ جهد الفعل بشكل ملحوظ نتيجةً لاختلافات مختلفة في بنية الخلايا في العقدة الأذينية البطينية. يوفر هذا التأخير وقتًا للأذينين لتفريغ دمهما في البطينين.

Figure 20.10 The conduction system of the heart. Autorhythmic fibers in the SA node, located in the right atrial wall (a), act as the heart's pacemaker, initiating cardiac action potentials (b) that cause contraction of the heart's chambers.

The conduction system ensures that the chambers of the heart contract in a coordinated manner.

(a) Anterior view of frontal section

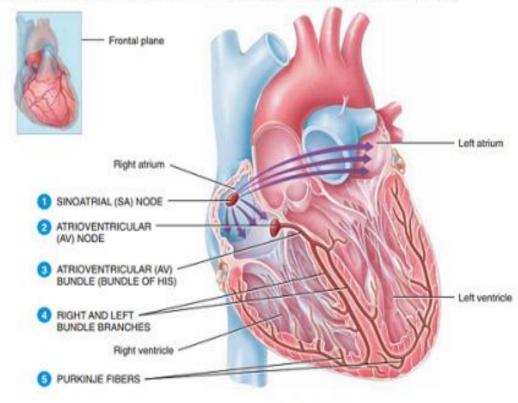

من العقدة الأذينية البطينية، يدخل جهد الفعل إلى الحزمة الأذينية البطينية (AV). هذه الحزمة هي الموقع الوحيد الذي يمكن أن تنتقل فيه جهود الفعل من الأذينين إلى البطينين.

- From the AV node, the action potential enters the atrioventricular (AV) bundle. This bundle is the only site where action potentials can conduct from the atria to the ventricles.
- After propagating through the AV bundle, the action potential enters both the right and left bundle branches.

بعد الانتشار عبر حزمة AV، تدخل إمكانات الإجراء إلى فرعي الحزمة اليمنى واليسرى.

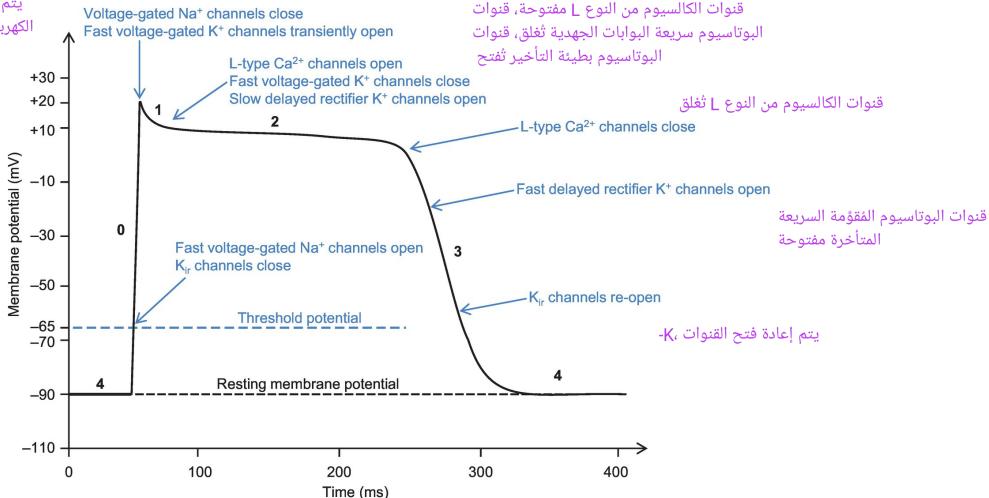
Figure 20.10 The conduction system of the heart. Autorhythmic fibers in the SA node, located in the right atrial wall (a), act as the heart's pacemaker, initiating cardiac action potentials (b) that cause contraction of the heart's chambers.

The conduction system ensures that the chambers of the heart contract in a coordinated manner.



• Finally, the large-diameter Purkinje fibers rapidly conduct the action potential beginning at the apex of the heart upward to the remainder of the ventricular myocardium. Then the ventricles contract, pushing the blood upward toward the semilunar valves.

أخيرًا، تقوم ألياف بوركينجي ذات القطر الكبير بتوصيل جهد الفعل بسرعة بدءًا من قمة القلب صعودًا إلى بقية عضلة القلب البطينية. ثم ينقبض البطينان، ويدفعان الدم إلى أعلى باتجاه الصمامات الهلالية.

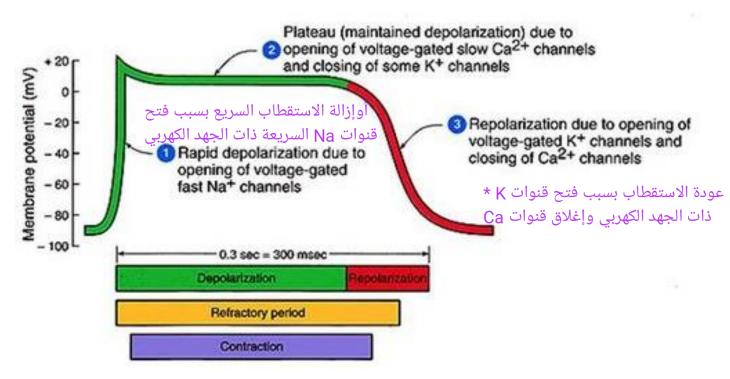

Figure 20.10 The conduction system of the heart. Autorhythmic fibers in the SA node, located in the right atrial wall (a), act as the heart's pacemaker, initiating cardiac action potentials (b) that cause contraction of the heart's chambers.

The conduction system ensures that the chambers of the heart contract in a coordinated manner.

(a) Anterior view of frontal section

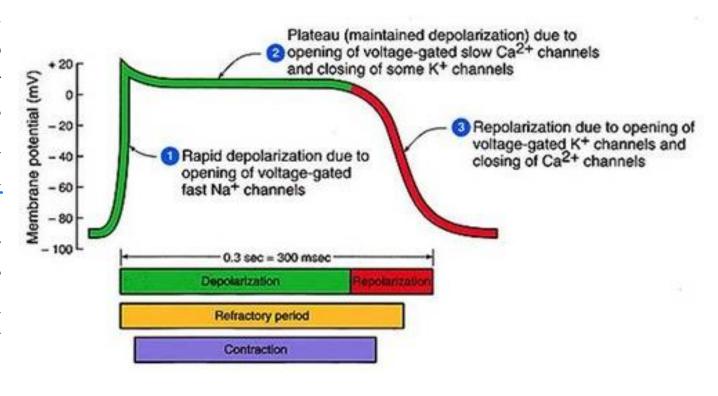
يتم إغلاق قنوات Na ذات بوابات الجهد الكهربي، ويتم فتح قنوات *K دات بوابات الجهد السريع بشكل عابر

قنوات Na ذات الجهد الكهربي السريع تفتح 3K، وتغلق القنوات

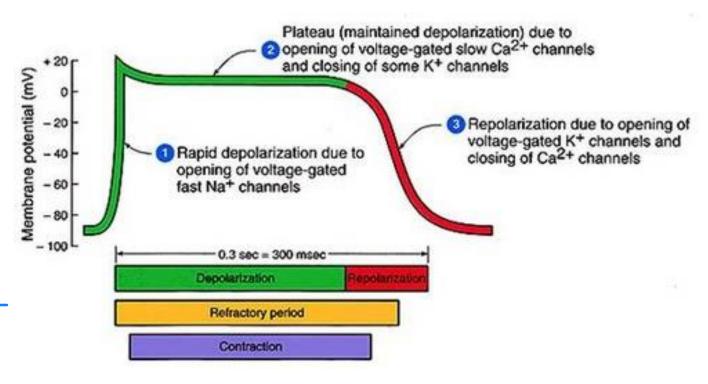

Depolarization: Unlike

autorhythmic fibers, contractile fibers have a stable resting membrane potential that is close to -90 mV. When a contractile fiber is brought to threshold by an action potential from neighboring fibers, its voltage-gated fast Na ion channels open. Inflow of Na ions down the electrochemical gradient produces rapid depolarization. Within few milliseconds, the fast Na ion channels automatically inactivate

and Na ions inflow decreases.


وفي غضون بضعة أجزاء من الثانية، يتم تعطيل قنوات أيونات الصوديوم. الصوديوم السريعة تلقائيًا ويقل تدفق أيونات الصوديوم.

+Ca2 بسبب فتح قنوات +Ca2 هضبة (إزالة استقطاب مستمرة) بسبب فتح قنوات K البطيئة ذات البوابات الجهدية وإغلاق بعض قنوات


* إزالة الاستقطاب: على عكس الألياف ذاتية الإيقاع ،تتمتع الألياف المتقلصة بإمكانية غشاء استراحة مستقرة تقترب من -90 مللي فولت. عندما يتم إحضار ألياف مقلصة إلى العتبة بواسطة جهد الفعل من الألياف المجاورة، تنفتح قنوات أيون الصوديوم السريعة ذات البوابات الفولتية. يؤدي تدفق أيونات الصوديوم إلى أسفل التدرج الكهروكيميائي إلى إزالة الاستقطاب السريع.

* Plateau: A period of maintained depolarization. It is due in part to opening of voltage-gated slow **channels** in the calcium ions sarcolemma. The increased calcium ions concentration in the cytosol ultimately **triggers** contraction. Several different types of voltagegated potassium ions channels are also found in the sarcolemma of a contractile fiber (calcium ions inflow just balances potassium ions outflow).

الهضبة: فترة من استمرار إزالة الاستقطاب. ويرجع ذلك جزئيًا إلى فتح قنوات أيونات الكالسيوم البطيئة ذات الجهد الكهربي في غمد الليف العضلي. يؤدي زيادة تركيز أيونات الكالسيوم في العصارة الخلوية في النهاية إلى الانكماش. تم العثور أيضًا على عدة أنواع مختلفة من قنوات أيونات البوتاسيوم ذات الجهد الكهربي في غمد الألياف المقلصة (تدفق أيونات الكالسيوم يوازن فقط تدفق أيونات الخارج).

* Repolarization: After a delay (which is particularly prolonged in cardiac muscle), additional voltagegated potassium ions channels open. Outflow of potassium ions restores the negative resting membrane potential (-90 mV). At the same time, the calcium channels the sarcolemma and the sarcoplasmic reticulum are closing, which also contributes to repolarization.

إعادة الاستقطاب: بعد التأخير (الذي يطول بشكل خاص في عضلة القلب)، يتم فتح قنوات أيونات البوتاسيوم الإضافية ذات الجهد الكهربي. يستعيد تدفق أيونات البوتاسيوم إمكانات غشاء الراحة السلبية (-90 مللي فولت). في الوقت نفسه، يتم إغلاق قنوات الكالسيوم في غمد الليف العضلي والشبكة الهيولية العضلية، مما يساهم أيضًا في إعادة الاستقطاب.

- The **mechanism of contraction** is <u>similar</u> in cardiac and skeletal muscle:
- * The electrical activity (action potential) leads to the mechanical response (contraction) after a short delay.
- As calcium concentration rises inside a contractile fiber, calcium ion binds to the regulatory protein troponin, which allows the actin and myosin filaments to begin sliding past one another, and tension starts to develop.
- * Substances that alter the movement of calcium ions through slow calcium ions channels influence the **strength of heart contractions**. Epinephrine, for example, increases contraction force by enhancing calcium ions flow into the cytosol.
- In muscle, the refractory period is the time interval during which a second contraction cannot be triggered. The refractory period of a cardiac muscle fiber lasts longer than the contraction itself. As a result, another contraction cannot begin until relaxation is well under way. Their pumping function depends on alternating contraction (when they eject blood) and relaxation (when they refill).

إمكانات العمل وتقلص الألياف المنقبضة

آلية الانقباض متشابهة في عضلة القلب و العضلات الهيكليه:

* يؤدي النشاط الكهربائي (جهد الفعل) إلى الاستجابة الميكانيكية (الانكماش) بعد تأخير قصير.

مع ارتفاع تركيز الكالسيوم داخل الألياف الانقباضية، يرتبط أيون الكالسيوم ببروتين التروبونين المنظم، مما يسمح لخيوط الأكتين والميوسين بالانزلاق فوق بعضها البعض، ويبدأ التوتر بالظهور.

المواد التي تغير حركة أيونات الكالسيوم عبر قنوات أيونات الكالسيوم البطيئة تؤثر على قوة نقباضات القلب. على سبيل المثال، يزيد الإبينفرين من قوة الانكماش عن طريق تعزيز تدفق أيونات الكالسيوم إلى العصارة الخلوية.

في العضلات، فترة المقاومة هي الفترة الزمنية التي لا يمكن خلالها تحفيز انقباض ثانِ تستمر فترة المقاومة لألياف عضلة القلب لفترة أطول من الانقباض نفسه. ونتيجة لذلك، لا يمكن أن يبدأ انقباض آخر إلا بعد اكتمال الاسترخاء. تعتمد وظيفة ضخها على التناوب بين الانقباض (عند ضخ الدم) والاسترخاء (عند إعادة التعبئة).

ATP PRODUCTION IN CARDIAC MUSCLE

In contrast to skeletal muscle, cardiac muscle produces little of the ATP it needs by anaerobic cellular respiration.
 وعلى النقيض من العضلات الهيكلية، تنتج عضلة القلب القليل من الـATP الذي تحتاجه عن طريق التنفس الخلوي اللاهوائي.

• Cardiac muscle fibers use several fuels to power mitochondrial ATP production. In a person at rest, the heart's ATP comes mainly from oxidation of fatty acids (60%) and glucose (35%), with smaller contributions from lactic acid, amino acids, and ketone bodies. During exercise, the heart's use of lactic acid, produced by actively contracting

احفظوهم هاى المصادر

Acetyl-CoA

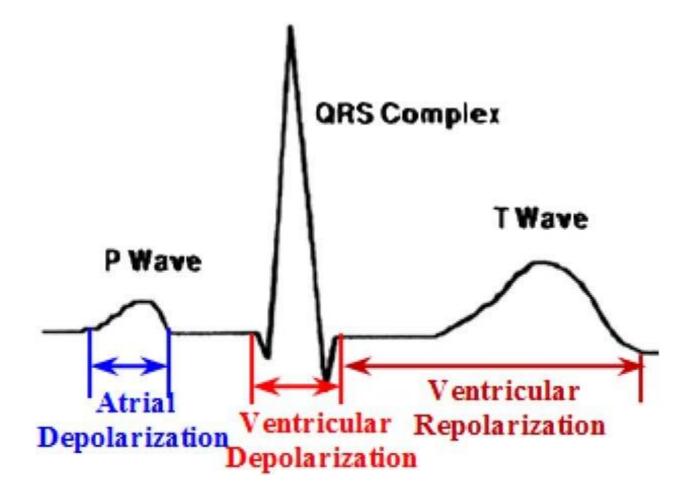
Triglycerides/ , fatty acids

Ketone bodies

Glucose

Lactate

Amino acids


skeletal muscles, rises.

تستخدم ألياف عضلة القلب أنواعًا مختلفة من الوقود لتشغيل إنتاج ATP في الميتوكوندريا. في حالة الراحة، يأتي ATP في القلب بشكل رئيسي من أكسدة الأحماض الدهنية (60%) والجلوكوز (35%)، مع مساهمات أقل من حمض اللاكتيك والأحماض الأمينية والأجسام الكيتونية. أثناء التمرين، يرتفع استخدام القلب لحمض اللاكتيك، الناتج عن الانقباض النشط للعضلات الهيكلية.

- As action potentials propagate through the heart, they generate electrical currents that can be detected at the surface of the body. An electrocardiogram, abbreviated either ECG or EKG (from the German word Elektrokardiogram), is a recording of these electrical signals.
- The instrument used to record the changes is an electrocardiograph.
- By comparing these records with one another and with normal records, it is possible to determine:
- (1) if the conducting pathway is abnormal.
- (2) if the heart is enlarged.
- (3) if certain regions of the heart are damaged.
- (4) the cause of chest pain.

(1) ما إذا كان المسار الموصل غير طبيعي. (2) ما إذا كان القلب متضخمًا. (3) ما إذا كانت مناطق معينة من القلب متضررة. (4) سبب ألم الصدر. عند انتشار جهد الفعل عبر القلب، فإنه يُولِّد تيارات كهربائية يُمكن رصدها على سطح الجسم. يُعرِّف تخطيط كهربية القلب، ويُختصر إما ECG أو EKG (من الكلمة الألمانية Elektrokardiogram)، بأنه تسجيل لهذه الإشارات الكهربائية. الجهاز المُستخدم لتسجيل التغيرات هو جهاز تخطيط كهربية القلب.

مهم نعرف کل وحدہ شو بتمثل

> عند قراءة مخطط كهربية القلب، يمكن أن يوفر حجم الموجات دلائل على وجود تشوهات.

- 1. Larger P waves indicate enlargement of an atrium.

قد تشير موجة Q المتضخمة إلى احتشاء عضلة القلب..

2. An enlarged Q wave may indicate a myocardial infarction.

3. تشير موجة R المتضخمة عمومًا إلى

- 3. An enlarged R wave generally indicates enlarged ventricles. تضخم البطينين
- 4. The **T** wave is flatter than normal when the heart muscle is receiving insufficient oxygen—as, for example, in coronary artery disease. The T wave may be elevated in hyperkalaemia (high blood K ions level).

يتضمن تحليل تخطيط كهربية القلب أيضًا قياس الفترات الزمنية بين الموجات، والتي تُسمى فترات أو مقاطع.

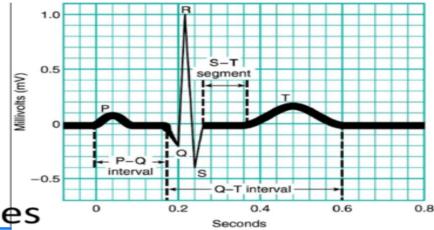
- Analysis of an ECG also involves measuring the time spans between waves, which are called intervals or segments.
- P-Q interval is the time from the beginning of the P wave to the فاصل P-Q هو الوقت من beginning of the QRS complex. It represents the conduction time from the <u>beginning of atrial excitation</u> to the <u>beginning of</u> ventricular excitation. الإثارة الأذينية إلى بداية
 - The S–T segment, which begins at the end of the S wave and ends at the beginning of the T wave, represents the time when the ventricular contractile fibers are depolarized during the plateau phase of the action potential.

وقت التوصيل من بداية الإثارة البطينية.

• The Q-T interval extends from the start of the QRS complex to the end of the T wave. It is the time <u>from the beginning of ventricular depolarization</u> to the end of ventricular repolarization.

تمتد فترة Q-T من بداية مركب QRS إلى نهاية الموجة T. وهي الفترة من بداية استقطاب البطين إلى نهاية إعادة استقطاب البطين.

The Electrocardiogram


The major deflections and intervals in a normal

ECG include:

• موجة P – إزالة الاستقطاب الأذيني P wave - atrial depolarization

الوقت الذي يستغرقه الركلة الأذينية لملء البطينين

P-Q interval - time it takes for • الفاصل الزمني P-Q the atrial kick to fill the ventricles

 QRS wave - ventricular depolarization and atrial repolarization

موجة QRS - إزالة الاستقطاب البطيني وإعادة الاستقطاب الأذيني

 S-T segment - time it takes to empty the ventricles before they repolarize (the T wave)

المقطع S-T - الوقت الذي يستغرقه تفريغ البطينين قبل إعادة استقطابهما (الموجة T)

CORRELATION OF ECG WAVES WITH ATRIAL AND VENTRICULAR SYSTOLE

- The term systole refers to the phase of contraction.
- The phase of relaxation is diastole.
- The ECG waves predict the timing of atrial and ventricular systole and diastole.
- * As the atrial contractile fibers depolarize, the P wave appears in the ECG.
- After the P wave begins, the atria contract (atrial systole).
- The action potential propagates rapidly again after entering the AV bundle. About 0.2 sec after onset of the P wave, it has propagated through the bundle branches, Purkinje fibers, and the entire ventricular myocardium.
- Contraction of ventricular contractile fibers (ventricular systole) begins shortly after the QRS complex appears and continues during the S–T segment.
- * Repolarization of ventricular contractile fibers produces the T wave in the ECG about after the onset of the P wave.
- Shortly after the T wave begins, the ventricles start to relax (ventricular diastole). Ventricular repolarization is complete and ventricular contractile fibers are relaxed.

ارتباط موجات تخطيط القلب بالانقباض الأذيني والبطيني

يشير مصطلح "انقباض" إلى مرحلة الانقباض. مرحلة الاسترخاء هي "انبساط".

تتنبأ موجات تخطيط القلب بتوقيت الانقباض والانبساط الأذيني والبطيني

. ومع زوال استقطاب الألياف الأذينية المنقبضة، تظهر الموجة P في مخطط كهربية القلب (ECG).

بعد بدء الموجة P، ينقبض الأذينان (الانقباض الأذيني).

تنتشر إمكانات الإجراء بسرعة مرة أخرى بعد الدخول إلى حزمة AV. بعد حوالي 0.2 ثانية من بداية الموجة P، إذا انتشرت عبر فروع الحزمة وألياف بوركنجي وعضلة القلب البطينية بأكملها.

يبدأ تقلص الألياف البطينية المقلصة (الانقباض البطيني) بعد وقت قصير من ظهور مركب QRS ويستمر خلال المقطع T-S.

ودي إعادة استقطاب الألياف الانقباضية البطينية إلى ظهور الموجة T في تخطيط كهربية القلب بعد بداية الموجة P تقريبًا.

* بعد وقت قصير من بدء الموجة T، يبدأ البطينين بالاسترخاء (الانبساط البطيني). اكتملت عودة الاستقطاب البطيني واسترخت الألياف الانقباضية البطينية.

THE CARDIAC CYCLE: PRESSURE AND VOLUME CHANGES DURING THE CARDIAC CYCLE

Atrial Systole:

يؤدي استقطاب الأذين إلى انقباض أذيني.

دورة القلب: تغيرات الضغط والحجم أثناء دورة القلب

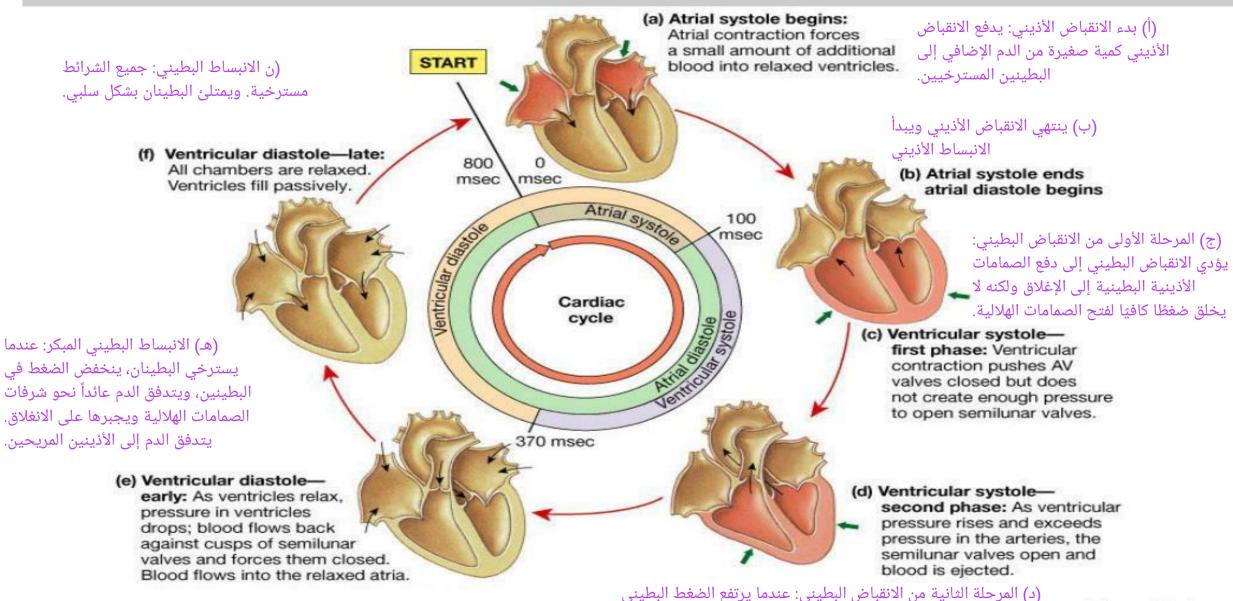
- Atrial depolarization causes a<u>trial systole</u>.
- The ventricles are relaxed (The end of atrial systole is also the end of ventricular diastole (relaxation).

البطينان في حالة استرخاء (نهاية الانقباض الأذيني هي أيضًا نهاية الانبساط البطيني (الاسترخاء)).

Ventricular Systole:

ينقبض البطينان.

- The ventricles are contracting.
- At the same time, the atria are relaxed.


في الوقت نفسه، تسترخي الأذينتان.

Relaxation Period:

يسترخي الأذين والبطينان.

- The atria and the ventricles are both relaxed.
- Ventricular repolarization causes ventricular diastole. يؤدي استقطاب البطين إلى انبساط البطين.

Figure 20.16 Phases of the Cardiac Cycle

ويتجاوز الضغط في الشرايين، تنفتح الصمامات السينيلونية ويخرج الدم.

Figure 20.16

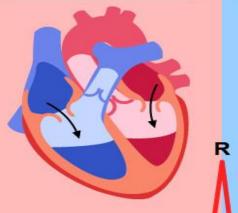
PHASES OF THE CARDIAC CYCLE

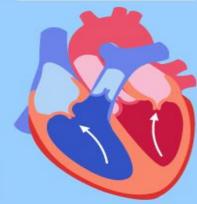
Atriole systole begins

Atrial contraction forces blood into ventricles

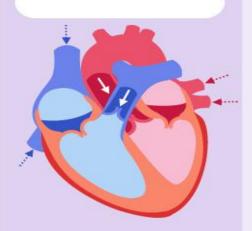
Ventricular contraction pushes AV valves closed

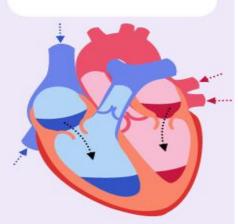
Ventricular systole (second phase)


Semilunar valves open and blood is ejected


Ventricular diastole (early)

Semilunar valves close and blood flows into atria

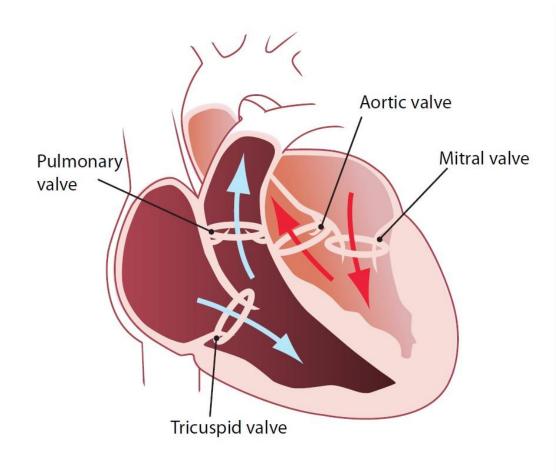

Ventricular diastole (late)

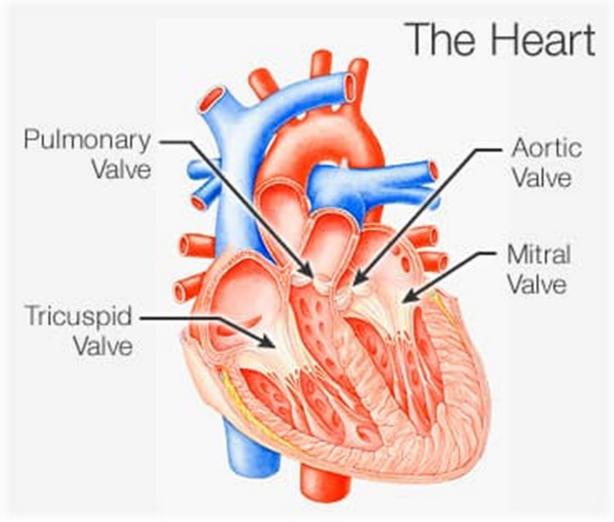

Chambers relax and blood fills ventricles passively

P-Wave Atria depolarization

Atrial Atrial Diastole Systole

QRS Complex Ventricle depolarization T - Wave Ventricular repolarization


Atrial Diastole


Ventricular Diastole

Ventricular Systole

Ventricular Diastole

HEART VALVES

HEART SOUNDS

التسمع، وهو عملية الاستماع إلى الأصوات داخل الجسم، يُجرِّي عادةً باستخدام سماعة الطبيب ٥

- Auscultation, the act of listening to sounds within the body, is usually done with a stethoscope.
 خلال کل دورة قلبیة، هناك أربعة أصوات للقلب، ولكن في القلب الطبیعي فقط صوتا القلب الأول والثاني (2\$ و\$2) يكونان عاليين بما يكفي لسماعهما من خلال سماعة الطبيب.
- O During each cardiac cycle, there are four heart sounds, but in a normal heart only the first and second heart sounds (S1 and S2) are loud enough to be heard through a stethoscope.

 الصوت الأول (S1)، والذي يمكن وصفه بأنه صوت اللّب، أعلى وأطول قليلاً من الصوت الثاني. يحدث الاتال المالة ا
- o The first sound (S1), which can be described as <u>a lubb sound</u>, is louder and a bit longer than the second sound. S1 is caused by blood turbulence associated with closure of the AV valves soon after ventricular systole begins.
- الصوت الثاني (S2)، وهو أقصر وليس بصوت عالٍ مثل الأول، يمكن وصفه بأنه صوت مزدوج. يحدث S2 بسبب اضطراب الدم المرتبط بإغلاق الصمامات الهلالية (الأبهرية والرئوية) في بداية الانبساط البطيني.

 The second sound (S2), which is shorter and not as loud as the first, can be described

 as a dupp sound S2 is caused by blood turbulonce associated closure of the
 - as a <u>dupp sound</u>. S2 is caused by blood turbulence associated closure of the semilunar (aortic and pulmonary) valves valves at the beginning of ventricular diastole.

عادة لا يكون الصوت مرتفعًا بما يكفي لسماعه، ويكون صوت S3 بسبب اضطراب الدم أثناء الامتلاء البطيني السريع، ويعود صوت S4 إلى اضطراب الدم أثناء الانقباض الأذيني

Normally not loud enough to be heard, <u>S3</u> is due to blood turbulence during <u>rapid</u> ventricular filling, and <u>S4</u> is due to blood turbulence during <u>atrial systole</u>

Heart sounds

هذا ملخص

التسمع - الاستماع إلى صوت القلب عبر سماعة الطبيب. أربعة أصوات للقلب.

- Auscultation listening to heart sound via stethoscope
- Four heart sounds
 - S₁ "lubb" caused by the closing of the AV valves
 - S₂ "dupp" caused by the closing of the semilunar valves
 - S₃ a faint sound associated with blood flowing into the ventricles
 - S₄ another faint sound associated with atrial contraction

CARDIAC OUTPUT

هو حجم الدم المُقذوف من البطين الأيسر (او البطين الأيمن) إلى الشريان (Cardio output (CO) وهو حجم الدم الذي يُقذف من (SV) الأورطي (أو الجذع الرئوي) كل دقيقة. يُساوي حجم النبضة :وهو عدد ضربات القلب في الدقيقة ،(HR) البطين خلال كل انقباضة، مضروبًا في معدل ضربات القلب

- → CO (mL/min)= SV (mL/beat) X HR (beats/min)
 - Cardiac reserve is the difference between a person's maximum cardiac output and cardiac output at rest. The average person has a cardiac reserve of four or five times the resting value.

REGULATION OF STROKE VOLUME

يضخ القلب السليم الدم الذي دخل حجراته خلال الانبساط السابق.

• A healthy heart will pump out the blood that entered its chambers during the previous diastole.

- Three factors regulate stroke volume and ensure that the left and right ventricles pump equal volumes of blood: (1) preload, the degree of stretch on the heart before it contracts; (2) contractility, the forcefulness of contraction of individual ventricular muscle fibers; and (3) afterload, the pressure that must be exceeded before ejection of blood from the ventricles can occur.
 - هناك ثلاثة عوامل تنظم حجم السكتة الدماغية وتضمن أن البطينين الأيسر والأيمن يضخان كميات متساوية من الدم: (1)
 - التحميل المسبق، ودرجة تمدد القلب قبل أن ينقبض، (2) الانقباض، وقوة تقلص ألياف العضلات البطينية الفردية، و (3) التحميل اللاحق، وهو الضغط الذي يجب تجاوزه قبل إخراج الدم من البطينين.

PRELOAD: EFFECT OF STRETCHING

• Within limits, the more the heart fills with blood during diastole, the greater the force of contraction during systole. This relationship is known as the Frank–Starling law of the heart.

| Example | Frank | Fra

• The preload is proportional to the <u>end-diastolic volume (EDV)</u>, (the volume of blood that fills the ventricles at the end of diastole). Normally, the greater the EDV, the more forceful the next contraction.

| CEDV | (EDV) | (CEDV) |

• Two key factors determine EDV: (1) the duration of ventricular diastole and (2) venous return, the volume of blood returning to the right ventricle.

CONTRACTILITY

انقباض عضلة القلب، قوة الانقباض عند أي حمل مسبق مُحدد.

■ Myocardial contractility, the strength of contraction at any given preload.

□ Substances that <u>increase contractility</u> are **positive inotropic agents** (**promote calcium ions inflow during cardiac action potentials**), those that <u>decrease contractility</u> are **negative inotropic agents** (**reducing calcium ions inflow**).

المواد التي تزيد من الانقباض هي عوامل مؤثرة في التقلص العضلي (تعزز تدفق أيونات الكالسيوم أثناء جهد الفعل القلبي)، وتلك التي تقلل من الانقباض هي عوامل مؤثرة في التقلص العضلي سلبية (تقلل تدفق أيونات الكالسيوم).

AFTERLOAD

يبدأ ضخ الدم من القلب عندما يتجاوز الضغط في البطين الأيمن الضغط في الجذع الرئوي، وعندما يتجاوز الضغط في البطين الأيسر الضغط في الشريان الأورطي.

• Ejection of blood from the heart begins when pressure in the right ventricle exceeds the pressure in the pulmonary trunk, and when the pressure in the left ventricle exceeds the pressure in the aorta.

• At that point, the higher pressure in the ventricles causes blood to push the semilunar valves open. The pressure that must be overcome before a semilunar valve can open is termed the afterload.

عند هذه النقطة، يدفع الضغط المرتفع في البطينين الدم إلى فتح الصمامات الهلالية. يُطلق على الضغط الذي يجب التغلب عليه قبل أن ينفتح الصمام الهلالي اسم الحمل اللاحق.

• Conditions that can increase afterload include hypertension (elevated blood pressure) and narrowing of arteries by atherosclerosis.

REGULATION OF HEART RATE

التنظيم الذاتي لمعدل ضربات القلب:

ينشأ تنظيم الجهاز العصبي للقلب في مركز القلب والأوعية الدموية في النخاع المستطيل. يقوم مركز القلب والأوعية الدموية بعد ذلك بتوجيه المخرجات المناسبة عن طريق زيادة أو تقليل تواتر النبضات العصبية في كل من الفروع الودية والباراسمبثاوية للجهاز العصبي المستقل.

• Autonomic Regulation of Heart Rate:

- * Nervous system regulation of the heart originates in the cardiovascular center in the medulla oblongata. The cardiovascular center then directs appropriate output by increasing or decreasing the frequency of nerve impulses in both the sympathetic and parasympathetic branches of the ANS.
- * <u>Proprioceptors</u> that are <u>monitoring</u> the position of limbs and muscles send nerve impulses at an increased frequency to the cardiovascular center. والعضلات نبضات عصبية بتردد متزايد إلى المركز القلبي الوعائي.
- ❖ Proprioceptor input is a major stimulus for the quick rise in heart rate that occurs at the onset of physical activity.

 ثعد مدخل المستقبلات الحسية العميقة حافزًا رئيسيًا للارتفاع السريع في معدل ضربات القلب الذي يحدث عند بدء النشاط البدني.
- * Other sensory receptors that provide input to the cardiovascular center include chemoreceptors, which monitor the stretching of major arteries and veins caused by the pressure of the blood flowing through them. Important baroreceptors located in the arch of the aorta and in the carotid arteries.

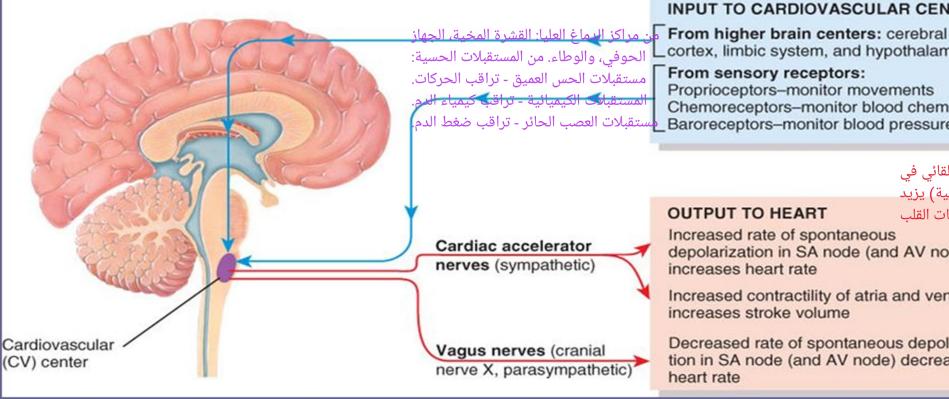
REGULATION OF HEART RATE

- Autonomic Regulation of Heart Rate:
- * Through the sympathetic cardiac accelerator nerves: In SA (and AV) node fibers, norepinephrine speeds the rate of spontaneous depolarization so that these pacemakers fire impulses more rapidly and heart rate increases; in contractile fibers throughout the atria and ventricles, norepinephrine enhances calcium ions entry through the voltage-gated slow calcium ions channels, thereby increasing

* من خلال الأعصاب نظيرة الودية، تصل النبضات إلى القلب عبر العصب المبهم الأيمن والأيسر. X) الأعصاب: تنتهي المحاور العصبية المبهمة في العقدة الجيبية الأذينية، والعقدة الألياف داتية الألياف الأستيل كولين، الذي يُقلل معدل ضربات القلب عن طريق إبطاء معدل إزالة الاستقطاب التلقائي في الألياف داتية المبهمة يُعصب عضلة البطين، فإن التغيرات في النشاط الباراسمبثاوي لها تأثير ضئيل على انقباض البطينين.

* Through Parasympathetic nerve impulses reach the heart via the right and left vagus (X) nerves: Vagal axons terminate in the SA node, AV node, and atrial myocardium. They release acetylcholine, which decreases heart rate by slowing the rate of spontaneous depolarization in autorhythmic fibers. As only a few vagal fibers innervate ventricular muscle, changes in parasympathetic activity have little effect on contractility of the ventricles.

* من خلال نبضات العصب السمبتاوي تصل إلى القلب عبر العصب المبهم الأيمن والأيسر (X): تنتهي المحاور المبهمة في العقدة الجيبية الأذينية والعقدة الأذينية والبطينية وعضلة القلب عن طريق إبطاء معدل إزالة الاستقطاب التلقائي في الألياف ذاتية النظم. نظرًا لأن عددًا قليلاً فقط من القلب الأذينية. إنها تطلق الأسيتيل كولين، الذي يقلل معدل ضربات القلب عن طريق إبطاء معدل إزالة الاستقطاب التلقيرات في نشاط الجهاز السمبتاوي لها تأثير ضئيل على انقباض البطينين.


CHEMICAL REGULATION OF HEART RATE

الهرمونات: يعزز الإبينفرين والنورإبينفرين (من نخاع الغدة الكظرية) فعالية ضخ القلب. تؤثر هذه الهرمونات على ألياف عضلة القلب بنفس الطريقة التي يؤثر بها النورإبينفرين الذي تفرزه أعصاب تسريع القلب، فهي تزيد من معدل ضربات القلب وانقباضها. إحدى علامات فرط نشاط الغدة الدرقية (فرط هرمون الغدة الدرقية) هي عدم انتظام دقات القلب، وهو ارتفاع معدل ضربات القلب أثناء الراحة.

- 1. Hormones: Epinephrine and norepinephrine (from the adrenal medullae) enhance the heart's pumping effectiveness. These hormones affect cardiac muscle fibers in much the same way as does norepinephrine released by cardiac accelerator nerves—they increase both heart rate and contractility. One sign of hyperthyroidism (excessive thyroid hormone) is tachycardia, an elevated resting heart rate.
- 2. Cations.: Given that differences between intracellular and extracellular concentrations of several cations (for example, sodium and potassium ions) are crucial for the production of action potentials in all nerve and muscle fibers. Elevated blood levels of potassium ions or sodium ions decrease heart rate and contractility. Excess sodium ions blocks calcium inflow during cardiac action potentials, thereby decreasing the force of contraction, whereas excess potassium ions blocks generation of action potentials. A moderate increase in interstitial (and thus intracellular) calcium ions level speeds heart rate and strengthens the heartbeat.

2 الكاتيونات.: نظرًا لأن الاختلافات بين تركيزات العديد من الكاتيونات داخل الخلايا وخارجها (على سبيل المثال، أيونات الصوديوم والبوتاسيوم) تعتبر حاسمة لإنتاج جهود الفعل في جميع الألياف العصبية والعضلية. يؤدي ارتفاع مستويات أيونات البوتاسيوم أو أيونات الصوديوم في الدم إلى انخفاض معدل ضربات القلب وانقباضها. تمنع أيونات الصوديوم الزائدة تمنع توليد جهود الفعل. تؤدي الزيادة المعتدلة في مستوى أيونات الكالسيوم الخلالي (وبالتالي داخل الخلايا) إلى تسريع معدل ضربات القلب وتقوية ضربات القلب.

Regulation of Heart Rate

INPUT TO CARDIOVASCULAR CENTER

cortex, limbic system, and hypothalamus

From sensory receptors:

Proprioceptors-monitor movements Chemoreceptors-monitor blood chemistry Baroreceptors-monitor blood pressure

OUTPUT TO HEART

معدل ضربات القلب

زيادة معدل إزالة الاستقطاب التلقائي في لعقدة SAÀ (والعقدة الأذينية البطينية) يزيد

Increased rate of spontaneous depolarization in SA node (and AV node) increases heart rate

Increased contractility of atria and ventricles increases stroke volume

Decreased rate of spontaneous depolarization in SA node (and AV node) decreases heart rate

زيادة انقباض الأذيني والبطينين تزيد م حجم النبضة

لجيبية الأذينية (والعقدة الأذينية البطينية) يقلل من معدل ضربات القلب

OTHER FACTORS IN HEART RATE REGULATION

 Age, gender, physical fitness, and body temperature also influence resting heart rate.

يؤثر العمر والجنس واللياقة البدنية ودرجة حرارة الجسم أيضًا على معدل ضربات القلب أثناء الراحة.

• A physically fit person may even exhibit bradycardia, a resting heart rate under 50 beats/min.

قد يُعاني الشخص السليم بدنيًا من بطء القلب، أي معدل ضربات قلب أقل من ٥٠ نبضة/دقيقة أثناء الراحة.

• During surgical repair of certain heart abnormalities, it is helpful to slow a patient's heart rate by hypothermia, in which the person's body is deliberately cooled to a low core temperature.

الناء الإصلاح الجراحي لبعض لشوهات القلب، من المفيد إبطاء معدل ضربات قلب المريض عن طريق خفض درجة حرارة الجسم، حيث يتم تبريد جسم الشخص عمدًا إلى درجة حرارة منخفضة.

HELP FOR FAILING HEARTS

زراعة القلب هي استبدال قلب متضرر بشدة بقلب طبيعي من متبرع ميت دماغيًا أو متوفى حديثًا.

 Cardiac transplantation is the replacement of a severely damaged heart with a normal heart from a brain-dead or recently deceased donor.

• Cardiac transplants are performed on patients with end-stage heart failure or severe coronary artery disease.

تُجرى عمليات زراعة القلب للمرضى الذين يعانون من قصور القلب في مرحلته النهائية أو مرض الشريان التاجي الحاد.

THANK YOU

AMJADZ@HU.EDU.JO