β-lactamase inhibitors

Dr. Rand Shaheen

Jone by -> Aya Almajali
eggil lesol

β-lactamase inhibitors

- Early attempts to combine β-lactamase inhibitors with penicillins failed
 - Also early attempts to combine penicillin β-lactamase resistant penicillins with wide-spectrum penicillinase sensitive penicillins failed to give synergistic activity
 - Example Methicillin or Oxacillin with Ampicillin or Carbencillin.
 - Reasons are:
 - 1. Failure of lipophilic penicillinase resistant agents to penetrate cell envelopes in Gram negative bacteria
 - 2. Induction of β -lactamases by some penicillinase resistant penicillins.

not mixed together due to 8-

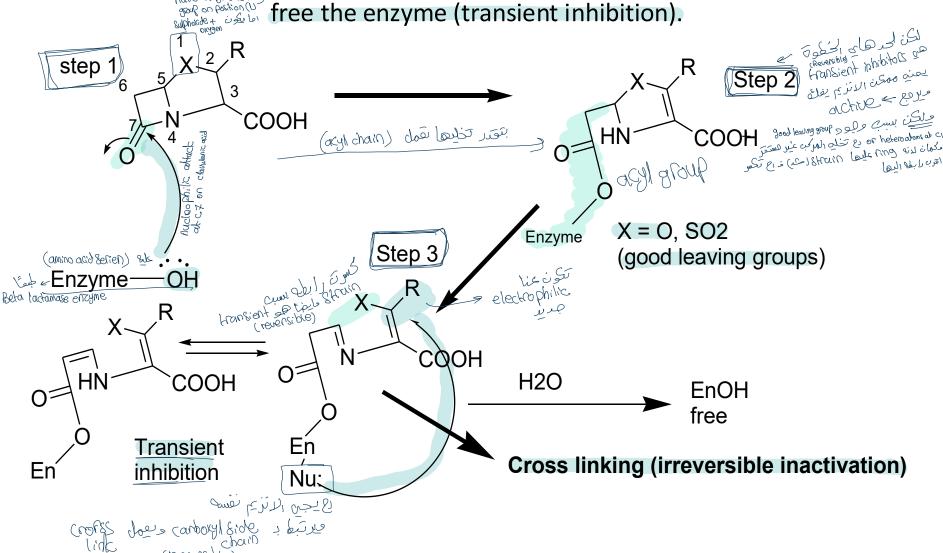
3. The reversible binding of penicillinase-resistant penicillins to β lactamase.. Higher concentration of this substance is needed to inhibit this enzyme.

Mechanism – Based β-lactamase inhibitors

- Examples:
- Clavulanic Acid (Natural): causes potent and progressive inactivation of β-lactamase
- Sulbactam (Synthetic)
- Tazobactam (Synthetic)
- Thienamycins: Natural, inhibit β-lactamases and bind to PBPs
 - Elavulanic acid + Sulbadam + Tazobadam sis class (DB-ladramase Inhibitres
 - Thienamycins + Carbapenicillin s class(1) Beta hadramage (nhibitocs) (MOA + Structures) It believe

Mechanism – Based β-lactamase inhibitors

- Class I inhibitors that have a heteroatom leaving group
 at position 1 (e.g., clavulanic acid and sulbactam) and
 Class II inhibitors that do not (e.g., the carbapenems).
- Unlike competitive inhibitors, which bind reversibly to the enzyme they inhibit, mechanism-based inhibitors react with the enzyme in much the same way that the substrate does. With the -lactamases, an acyl-enzyme intermediate is formed by reaction of the -lactam with an active-site serine hydroxyl group of the enzyme.


MoA of class (1) + class (2)

in class (1)

(S60) good leaving growtates els estes clauwanical el costo nucleophilic attack does 2 Souls als Serine aming us going us going enzyme B-lademase at c7 of clavulanic acid reversible vier transient inhibitors rear Elost clos acyl grouf down 2 che good leving grout sole anni colo free porto élou re justicion circ (Ring Strain) EELS, als in Lie Eigh not Stable Wing & is sient inhibitor musi clas apo baio Enjel de lui misione e siè e does nucleophilic hos Elicitis elicitophilic lie (menerible) upo crosslintage

growd leaving group at CI sopo pro crimical = lober limit does & elas (2) of lot group at CI sopon group) as lite transient inhibition do not dien cross link lie men & lo Carban group) as lite of the ladamase son with les (7+6) with les colos en lite of the ladamase son with les ladamases.

Mechanism of inactivation Class Jinhibitors the acyl-enzyme intermediate formed when a mechanism-based inhibitor is attacked by the enzyme is diverted by tautomerism to a more stable imine form that hydrolyzes more slowly to eventually free the enzyme (transient inhibition)

class (2) , class(1) èm control

Differences in

Figure 8.4 • Mechanism-based inhibition of β -lactamases.

Class I β-lactamase inhibitors

- Inhibitors include: Clavulinic acid and sulbactam, it contains a good leaving heteroatom at the 5-membered rings.
- This type can lead to irreversible inhibition. and coss
- Used with Ampicillin and Amoxicillin.

Products is class (1) Clavulanate potassium

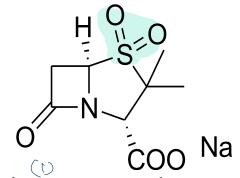
Not pind 6

- Relacularie acid skrutures &

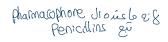
- not have acyl group in C6

- on C1 have an oxygen

- Side chain is ethyl alcahol


- not have pharmacopher for activity

- not active for antibiotics &


(Binding protein raphola) Tollow Ishop &

- Clavulanate potassium
- Antibiotic from Streptomyces clavuligeris
- Very week antibacterial activity
 - Potent inhibitor of β-lactamases produced by
 - Staph. Aureus and Gram negative bacteria
 - Combined with Amoxicillin for oral administration to treat skin, respiratory, ear, UTI infections Augmentin®
 - Oral bioavailability is similar to Amoxicillin
 - Clavulinic acid is acid stable

Products Sulfoxide Sulbactam not give orally + synthetics

- Synthetic sulfone
- Potent inhibitor of β-lactamases produced by Staph aureus and
 many Gram negative bacteria
- Week antibacterial activity

- Improves and potentiates the activity of Ampicillin and Carbencillins against Staph aureus (β-lactamases producing) and members of Enterobacteracia family, Pagagnosa we steamed a series from the land and Carbence and the land and Carbence and Carbence and Carbence against Staph aureus (β-lactamases producing) and members of Enterobacteracia family, Pagagnosa we steamed a series from the land and Carbence and Carbence against Staph aureus (β-lactamases producing) and members of Enterobacteracia family, Pagagnosa we steamed a series from the lactamase and potentiates the activity of Ampicillin and Carbence against Staph aureus (β-lactamases producing) and members of Enterobacteracia family, Pagagnosa we steamed a series from the lactamase and potential and the lactamase and potential activity of Enterobacteracia family.
- It does not, however, synergize with either carbenicillin or ticarcillin against *P. aeruginosa* strains resistant to these agents. Failure of sulbactam to penetrate the cell envelope is a possible explanation for the lack of synergy.
- Failure to penetrate cell envelop may be the reason
- Used parentrally

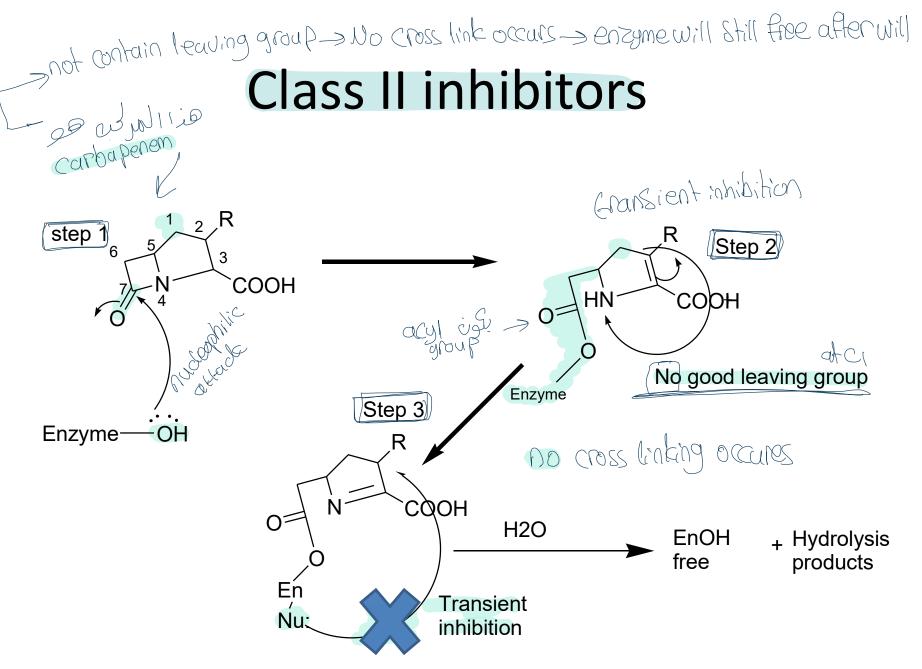
Products

Sulbactams qui struture unei Tazobactam

- Synthetic sulfone
- More Potent inhibitor of β-lactamases than Sulbactam
- Week antibacterial activity

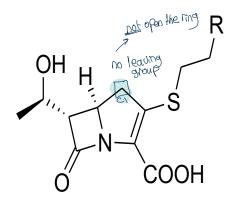
Tazobactam is available in fixed-dose, injectable combinations with piperacillin, a broad-spectrum penicillin consisting of an 8:1 ratio of piperacillin sodium to tazobactam sodium by weight and marketed under the trade name Zosyn®.

- Used in combination with piperacillin for the treatment of appendicitis, postpartum endometritis, pelvic inflamatory disease, skin infections, and pneumonia.
- Note: don't forget that if we have MSRA, we can't use these inhibitors, why? Because MRSA is resistant to penicillins because it modifies transpeptidase itself.


المعادة المادع أعمله المادع أعمله المادع أعمله المادع أعمله المادع أعمله المادع أعمله المادع المادع

﴿ زَمَانَ بِالْحَرِقِ الْحَالَمُ لِلْمُ الْمُعَلَّمُ وَالْكَانِيةُ صَارَعْيَ قَلَةً فِي الْمُعَلَّمُ الْحَدِيثَ فَكَانَ لَائِمَ يَخْلُوا الْمِعْنَافَاتَ عَنَى مِسِم الْمَرِيفِينَ لَقَرَةَ طَوْلِيةَ لِيَتَغِيْوا يعطوه جَنَّةً متكرية عِكَانَ يعطوا الله flobenea: كَانَ يعطوا الله (Anbibods) هو ينافس الهوين ويعطوه عنه (Anhibids) على ال exoetian على الهوين

probenecid


- Note: penicilling has carboxylic acid, so it becomes carboxylate in plasma, so tightly bound to plasma proteins (because albumin's charge is positive)
- also penicillins are candidate for renal secretion by anionic pump (which pumps carboxylic acids in the
- urine), that's why sometimes they add probenecid (adjuvant contains carboxylic acid) to compete with penicillin on the pump, so probenecid reduces elimination rate of penicillin and penicillin remains longer in the body.


Class II inhibitors

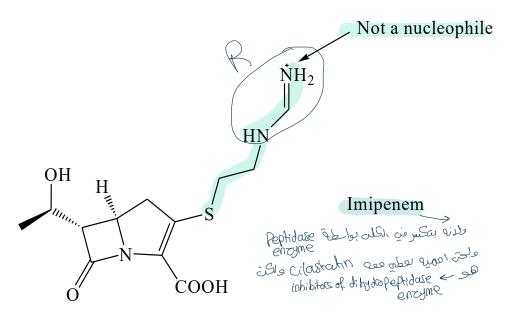
- This class include Carbapenams, Imipenem
- Both have β-lactamase inhibition activity and antibacterial activity. 2

$$R = NH_2$$
 Thienamycin

Carbapenems Thienamycin

 $R = NH_2$ Thienamycin

R = NHCH=NH imipenem


- Thienamycin solated from "Streptomyces cattleya"
- No (S atom) at position 1
- Double bond at C2-C3 (The double bond in the bicyclic structure creates considerable ring strain and increases the reactivity of the lactam to ring opening reactions.
- S & Cystamine side chain at C2
 - Simple alcohol side chain at position 6
 - Stereochemistry is 5R:6S:8S
 - They have two strained rings which decrease the chemical stability as well as acid stability. An unfortunate property of thienamycin is its chemical instability in solution. It is more susceptible to hydrolysis in both acidic and alkaline solutions
 - Optimum stability pH_6-7 (7)
 - Have broad spectrum activity.

لكنه بتكس بسركة

Thienamycin properties:

- - Very potent β -lactamase inhibitor
- Outstanding spectrum of activity that covers gram +ve, gram -ve bacteria (including pseudomonas aeruginosa), aerobic and anaerobic bacteria.
- Note: antibiotics that work on anaerobic bacteria is limited due to its high resistance.
- Orally inactive.

Carbapenems Imipenem – Cilastatin

Imipenem is indicated for the treatment of a wide variety of bacterial infections of the skin and tissues, lower respiratory tract, bones and joints, and genitourinary tract, as well as of septicemia and endocarditis caused by lactamase—producing strains of susceptible bacteria

Carbapenems Imipenem – Cilastatin

- Chemically more stable than Thienamycin
- Cilastatin is inhibitor of (dehydropeptidase-1) brokdown of impenem Cilastatin give enzymatic stability for Imipenem

 Take = 1 hour (chart)
- $T_{1/2} = 1$ hour (short) due to renel secretion of penicillin
- Imipenem is extraordinary wide-spectrum antibacterial agent It is an inhibitor of -lactamases from certain Gramnegative bacteria resistant to other -lactam antibiotics (e.g., P. aeruginosa, S.marcescens, and Enterobacter spp.).
- Some Pseudomonas spp. are resistant, such as P. maltophilia and P. cepacia, as are some methicillin-resistant staphylococci. Imipenem is effective against nonlactamase-producing strains of these and additional bacterial species, but other less expensive and equally effective antibiotics are preferred for the treatment of infections caused by these organisms.

Carbapenems Imipenem – Cilastatin

- β-lactamases resistant and class II inhibitor
- Imipenem Cilastatin are available as sterile powder for injection, in solution its stable for 4 hours at 25 C
- Synergestic action with <u>Aminoglycosides</u>, but chemically incompatible

Positive so negative charged Lol Lie lo 2)

Penicilins (negative charged)

Aminogiyaside (Positive charged)

Chemical incompatible lie me e)

Imipenem is:

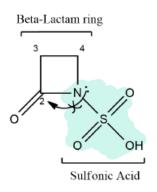
عَلَى فَأُولُ فَاصِهُ فَنَحَقَّهُ لَا لا عَلَمْ فَاصِهُ

- A **reserved** antibiotic, outstanding in spectrum, parenterally administered and stable under neutral conditions.
- Imipenem has very short half-life (1 hour), because it has carboxylic acid which makes it candidate for active secretion and because it's unstable.
- So imipenem is coadministered with cilastatin (that contains COOH in its structure), so increases the duration of imipenem remaining in the body and protects the kidneys from toxic metabolites of imipenem.
- Note: reserved antibiotic means that these antibiotics which are broad spectrum can
- be only available at hospitals due to resistance issues.

NEWER CARBAPENEMS

- The extended spectrum of antibacterial activity associated with the carbapenems together with their resistance to inactivation by most -lactamases make this class of –lactams an attractive target for drug development.
- In the design of new carbapenems, structural variations are being investigated
- with the objective of developing analogs with advantages
- over imipenem.

- ver imipenem. منامة المعلى عن عدانه عوم على عدانه عوم على المعلى عن المعلى الم 1. catalyzed by DHP-I, Canbapanem June 12 jil
- stability to bacterial metallo--lactamases ("carbapenemases") that hydrolyze 2. imipenem, activity against MRSA. Resistance i say low s'il ao e'ul
- increased potency against *P. aeruginosa*, especially imipenem-resistant strains. Enhanced pharmacokinetic properties, such as oral bioavailability and a longer 3.
- 4. duration of action, have heretofore received little emphasis in carbapenem analog design.


NEWER CARBAPENEMS

Refer to your book to read more about these • compunds

Biapenem

Single Ring Monobactams

- Monobactams –by their name- contain β-Lactam ring only without any other cycle, and as we said previously that β-Lactam ring is too stable here because the pair of electrons on nitrogen are in resonance with the carbonyl, so to decrease the stability, monobactam have a sulfonic acid at the nitrogen.
 - Which means that the β -Lactam ring has been destabilized by the sulfonic acid which
 - takes away the electrons, and this will prevent the resonance to occur sulfonic acid destabilize the β-Lactam ring-

Monobactam (without bind with Edfone group)

Responsive where so is sold with Edfone group)

Not stable is so white, Resonance of single

-mono bactam (Stable)
-mono bactam with (\$2000) = not 8table

- Monobactams:
- 1- Sulfazecin
- 2- Aztreonam
- 3- Tigemonam
- Sulfazecin is a natural monobactam, at carbon #3 there is dipeptide

 Alanine with glutamic acid- and methoxy, attached to the
 monobactam

Sulfazecin is:

- Orally inactive
- Chemically unstable (because of the protonation at the methoxy so it becomes a good leaving

Sulfazecin Not Stuble

2-Aztreonam (Smixed between months that the cepholosporme

Aztreonam is an: لعمامة المي الم المواهدة ونا عماله ما المعتوا لهذا 8

- Acid stable (but still not orally available)
- Used to treat local GI tract infections
- β-Lactamase resistant
- Gram negative antibacterial agent (only gram negative, not gram positive)
- because Aztreonam is too hydrophilic) have an effect on E.coli, and no effect
- on pseudomonas aeruginosa, streptococcus and staphylococcus. Not effect

3- Tigemonam

- Tigomonam is: (ephologisme Ji Quini vid
- 2 β-Lactamase resistant
- its spectrum of activity is the same as Aztreonam (against Gram –ve only except Pseudomonas)
- Orally stable(due to the hydrophilicity which is balanced here)