Particle Size Reduction

Dr. Isra Dmour

Credit: Prof. Nizar Al-Zoubi

Particle Size Reduction

Other terms used to describe the operation: milling, grinding, crushing, chopping, comminution, micronizing.

during the production of raw material or dosage form

Pre milling -	ميلان نفنف جعد مالماكينة الأملية	
Milling	الطحن العام(تقليل حجم الجزيئات ميكانيكيا)	
Grinding	الطحن بالاحتكاك او الصنفط(للمواد الصلبة)	
Crushing	السحق(كسر القطع الكبيرة الى اجزاء اصغر)	
Chopping	التقطيع(للمواد مثل الاعشاب والجذور)	
Communication	مصطلح عام يشمل كل عمليات تصغير الحجم سواء كانت سحق او طحن او تقطيع	
Micronizing	التصغير الى حجم الميكروميتر او اقل	

﴿ للله العدف من عمليان يَهمض الجعم ؟ ١

Particle Size Reduction

• Objectives of particle size reduction:

بنزيم مدالمudistribution بنزيم

1. Facilitating drug release (dissolution rate)

نطن الحادث قبل وناء كالمحادث و Exposing cells prior to extraction وماء الدراء يومل

3. Reducing the bulk volume of material - For slowing

يسعوك التنزين

3

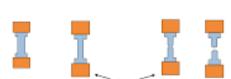
- 4. Facilitating drying
- 5. Helping good mixing
- 6. Increasing adsorption capacity
- 7. Some excipients need to be in very fine powder to do well their function (lubricants, colors)

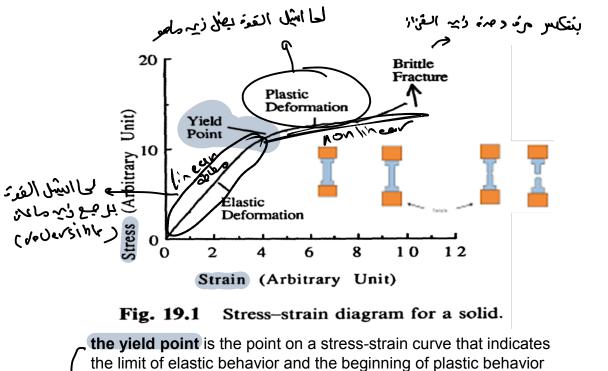
Theory of Size Reduction

Fracture mechanics

• Reduction of the particle size requires application of mechanical stress to the material.

• Materials respond to stress by vielding, with consequent generation of strain.


الي تعرفها القوة كلس الجزيء الماميرة الماميرة Hooke's law. الماميرة


• Stress: force

• **Strain**: deformation or elongation of a solid body due to applying a strs/force

الفرة لما الليلما برجع الزجراني ما عان Elastic: reversible الفرة

• Plastic: permanent, irreversible الزمرة ح الزمرة ح

الماهاعان و العداد على الماهاع) و (۱۱مهاع) و الماهاع) على الماهاع) و الماهاء التحول بين الماهاع الماهاع الماهاع

Theory of Size Reduction

Fracture mechanics

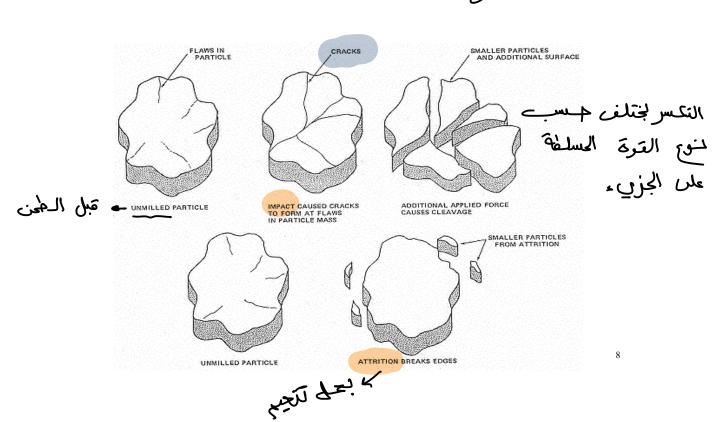
- The initial portion of the stress-strain diagram is <u>linear</u> and is defined by Hooke's law.
- In this portion the deformation is <u>reversible</u> (elastic deformation), i.e. the particle retains its shape if the stress is removed.
- After a certain point (<u>yield point</u>) the relation becomes <u>nonlinear</u> and the deformation becomes irreversible (plastic deformation).

مشرح کرر

Theory of Size Reduction

Fracture mechanics

به التكسر يبد أحند نقطة منعف عانت بالهزير



انتشاد الشقوتي

Crack propagation

- Size reduction begins with the opening of any small cracks weakness point that were initially present.
- Flaws (defect)
- Larger particles fracture more readily than small particles as they contain more cracks.

بجا تلفقسًا مهذه عن المسلام المنز لمعان المعلم تسقفات المبر. للمسلم المام في المعارج طافة اعلى للكسو

﴿ العوامل إلى بَمَاثَلُ على تَهِمُعِيلَ عَجِمَ الْجَنْجِي وَ ﴿ عَمَانَ اعْرَفَ عَلَى أَشَرَ الْمَنْ وَايْسَ المَاعِينَةُ المَاسَةِ.

Influence of material properties on size reduction بهنف المواد جمس

Surface hardness (Mohs' scale)

- The hardness of material can be described qualitatively by its position in Mohs' scale.
 - Materials from 1-3 are described as soft
 - Materials from 8-10 are described as hard
- Hardness is related to <u>abrasiveness</u>.
- Hard materials may cause <u>abrasion</u> to the mill.

ل على لهاعانت الحادة لهلبة اكثر عانت عَدرَتُها على للفط الموار الاثمل صلاية اكبر.

بين الإيثان

المان ويكربه

Influence of material properties on size reduction

تهركسية اكادته

Material structure

• Crystalline materials fracture along crystal cleavage planes; noncrystalline materials fracture at random. حابي عشرا بسكل عشواني

• Fibrous materials (e.g. crude drugs) need cutting or chopping action and can not be milled effectively by compression or impact. جماعة جماعة المارة المار

These see in crude drug 11; po

* والمعاهم بتكسر سن عند المنفؤط

Moisture content

Influence of material properties on size reduction خبله وجود المجنئ من برح تراها به الحالي عالمان علية المجابئ عن برح تراها بالمانيك علية بيال ما تشكسر د د جازولام عنه منه المجابع المستكسر عنه منه منه المهة المعادلة بيال ما تشكس

• The presence of more than 5% water hinders comminution and often produces a sticky mass upon milling. موا من المحاء على على على المحاد في المحادث المح

صواد بنلزة بالاجمادة للزوية م

- This is a problem of gummy and resinous materials.

sustem Toxicity and harm dosure Potential of explosion (fine) انفيل

عد عل الحادة اللزجة مع التجميد

amorphous

Effect of size reduction on material properties

low solubility crystalline Milling of material may lead to: العن هان د

- 1. Change of the polymorphic form
- لللبب المهارة 2. Dehydration of hydrates
- 3. Development of amorphous structure
- 4. Damage of thermolabile drugs due to heat heat sensetive involved.
- 5. Development of free static charge معوباء سائنة و عوباء سائنة و

Eustal wind cool farketing is led the die by hear of acheling

الطاقة المحتاجة للصحبر الحزيات

الم معزة بتستيم مراكم من لما قتا المنكسير **Energy requirements**

The most efficient mills utilize as little as 2% of the energy input to fracture particles.

- The rest of energy is lost in: Lost Energy 98%
- ► 1. elastic deformation of unfractured particles
- 2. transport of materials within the milling chamber
 - 3. friction between particles → الاحتكاك بين الجزيئات
 - 4. friction between particles and mill الاحتكاك بين الجزيئات والجهاز
 - 5. heat
 - 6. vibration and noise الاهتزاز والضوضاء

* قوانين لحساب الفاقة المحتاجة للتكسير

Energy requirements Energy > surface

Sur Fase el Per المايسيول على المايسيول على المايسيول على المايسيول على المايسيول على المايسيول على المايسيول الما

positive

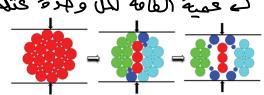
 S_i : the initial surface area,

 S_n : new surface area

 K_R = Rittinger's constant of energy per unit area مقدار المانة للا وصدة مساحة المانة للا وصدة مساحة المانة المانة للا وصدة مساحة المانة ا _ned s

200 Energy adjameter

Energy requirements


Kick's theory danchalis

$$E = K_K \log \frac{d_i}{d_n} \qquad \text{ for simple}$$

 d_i : the initial particle diameter,

 d_n : new particle diameter

 K_K = Kick's constant of energy per unit mass ω حمیة الطاقة لكل وجمرة عند

seti glameten

* عقللا عَيهِ عَن بعش اله

Energy requirements

Bond's theory

$$E = 2k_B \left[\frac{1}{d_n} - \frac{1}{d_i} \right] \quad \text{Positive}$$

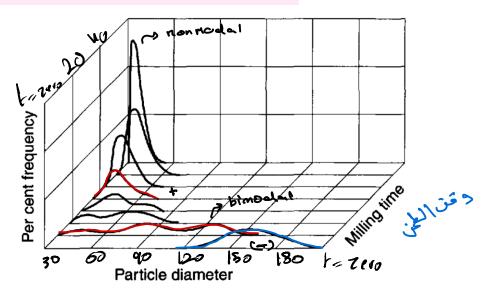
 K_B : Bond's work index, جمع عبي الحادة إلى عبي الحادث الحادث

 d_i : the initial particle diameter,

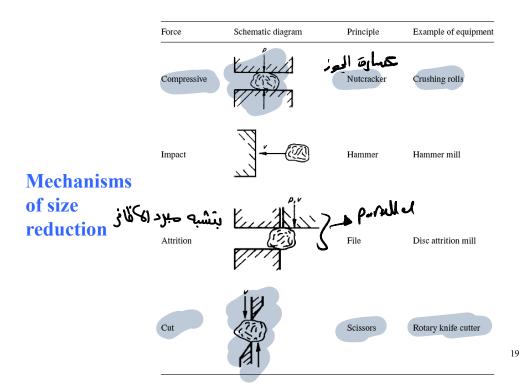
 d_n : new particle diameter

م تأثير اللين على توزيع الحجم

Influence of milling on size distribution


- As milling progresses, the mean particle size decreases, and a material with <u>initially</u> a <u>monomodal</u> size distribution develops a <u>bimodal</u> size distribution.
- The primary component gradually decreases in weight and the secondary component increases in weight.
 - Continued milling tends to eliminate the primary component to give a positively skewed (log normal) distribution with narrow size range.
 - Milling rate follows <u>first order kinetics</u>

بعتد على اللحبة على مازادت عمية اكنيات بتزيد مرعة العجنا


في البداية ، المادة ممكن تكون monomodal (كل الجزيئات تقريباً نفس الحجم) مع التكسير تبدأ تظهر bomodal distribution (مجموعة صغيرة من الجزيئات الكبيرة واخرى صغيرة) ، مع استرار الطحن ، الجزيئات الكبيرة تقل تدريجياً ويصبح التوزيع log normal (منحرف ايجابي) بحجم متقارب اكثر.

17

Fig. 11.2 Changes in particle size distributions with increased milling time.

Mechanisms of size reduction

• There are four different mechanisms of size reduction:

سفات مادة a) Cutting The material (particle) is cut by means of sharp blades or knives.

Mechanisms of size reduction

المسم ينعن لهوية حفاية من جسم حفرل بسوعة المريضية سطح ثابت c) Impact -

The particle is hit by an object moving at high speed, or a moving object Hammen mill strikes a stationary surface.

الأمكاك D) Attrition

This involves breaking down of the material by rubbing between two surfaces that are moving relative (parallel) to each other. Pall will, Colloid will

م سرح انع ای مااله

Size reduction methods

A mill consists of three basic parts:

1) Feed chute الفية إلى بن فل خااكادة الفية الفيادة ا

2) Grinding part نعله العن المناد الم بعل عمله العن العناد المناسكة ال

3) Discharge chute

المنابع ا

- The manner (way and rate) in which an operator feeds a mill affects the product.
- In most cases the grinding effect is a combination of different mechanisms.

erinding effect is a communation or discourse with the first of the first part of the first of the state of t

21

به معارضه العللم عبد عالما نعلي معاده المعادم المعادم المعادة عبد المعادة عبد المعادة عبد المعادة عبد المعادة معادة عبد المعادة عبد المعادة عبد المعادة المعادة عبد المعادة ا

Size reduction methods large amount of powden and

لنجط تدابحتا

- There are two ways of feeding: choke feeding and free feeding.
- In open-circuit milling, the operation is carried out so that the material is reduced to a certain size by passing it once through the المادة تتومن الطاهونة حثة وأمهء فقل mill -
- In closed-circuit milling, the discharge from the milling is passed through a classifier and the over-size particles are returned to the المادة تر عبر عام الما على عبر العلم الكراء عبر العلم الكرام الما من والقطع الكيوتي عبر العلم الما عبر الما عبر العلم الما عبر الما عب

· closed-circuit milling is most valuable in reduction to fine and ultrafine size. — "ब्रिक्ती केंप्रिक्ष अ कंद्रांध على ما عانت صلوة لع تفل معرفة

العن كي ما توجل ل مع أو المنفر

بطمن عیات اکبر حب open

x leb gali

Cutting methods

Cutter mill

عذة الادخال

- Principle of operation: It consists of a feed, a series of knives attached to a rotor which act against a series of knives attached to the mill casing, and a screen fitted in the base which control the particle size نعطم بعدم الحاليات إلى بدما تعلى من العالم العالم
- Uses:

Coarse degree of size reduction of dried granulations

· Grinding of crude drugs such as roots and barks before extraction Fibers should

الاستخدامات:

تصغير حجم الحبيبات الجافة (granules) قبل ضغطها على شكل اقراص.

طحن crude drug (الادوية الخام) مثل الجذور او القشور قبل الاستخلاص.

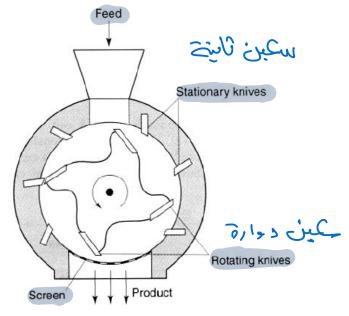
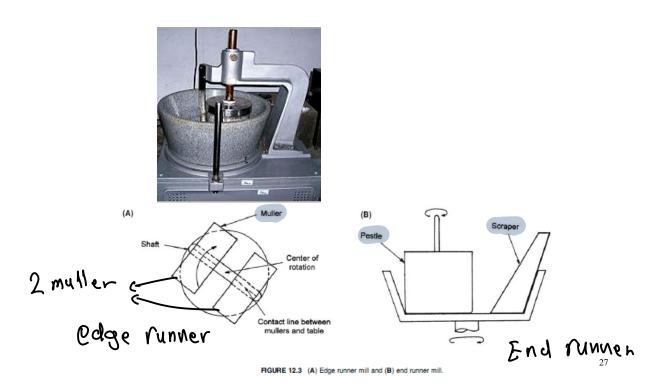


Fig. 11.6 Cutter mill.

25

Compression methods عليلفا، تاييت تناوبه ا

- Size reduction by compression can be carried out on a small scale by pestle and mortar. على نَهَا مَا مُعَالِي اللهُ عَلَى اللّهُ عَلَى اللهُ عَلِي عَلَى اللهُ عَلَى اللهُ عَلَى اللهُ عَلَى اللهُ عَلَى عَلَى ع
- End runner and edge runner mills are mechanized forms of mortar and pestle-type compression. على نفاق اكبر

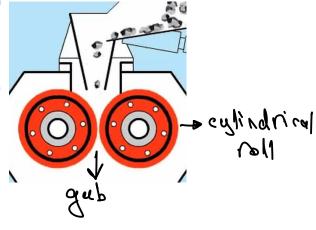


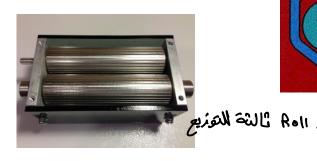
السطوانة بتلف

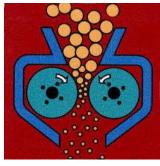
. الا مدار الا منتسة و المرابعة من ونو على الم

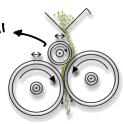
Compression methods

Roller mills


Roller mills use two cylindrical rolls, mounted horizontally, and rotating about their longitudinal axis


rotated بس تدخل العادة بيع.

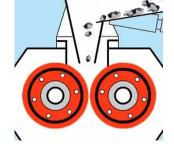

One of the rolls is driven بعدة من العام وتبطة بعائر من العام والمنابع بتعولا نشيجة المحتملات في المنابع المحتملات المنابع المنابع المحتملات المنابع المحتملات المنابع المحتملات المنابع المن by friction material is drawn through the gap between the rolls.


Compression and attrition

مسب العسافة: عن من المناقة الليمانة المناقة المناق continue + open

Roller mill (compression method)

29

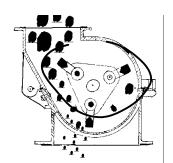

Roller mills

Compression methods بتحكم بالمطلوب العجم المطلوب

The gap between the rolls can be adjusted to control the degree of size reduction. ميثقا عيينا والإلماء المناث عنائل بناريم المناثل المناثلة عنائلة عنائلة

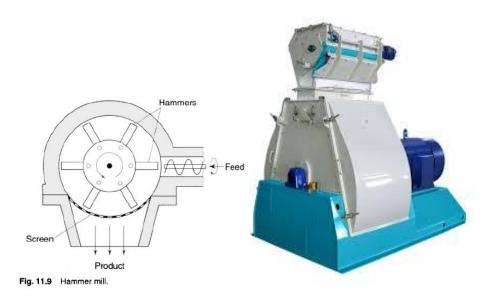
جهاز Roller mills are used for crushing such as premiling a cracking seeds prior to extraction.

This form should not be confused with the type used for milling ointments and pastes where both rolls are driven but at different speeds, so that size reduction occurs by attrition.


ب من جعال ثاني بشبعه بس العنت انه عدال على مانعر والمسافة بنهم منيع فريس ا مكال (مناه الماله) , فبعطيني oint ment and paster - very line partieles

الموامن العلامان الموامن Impact methods واعلزها استغدامًا.

3 hammer


Hammer mills

- -Principle of operation:فاكن حدين تحويي
- •It consists of a strong metal case enclosing a central shaft, to which a series of four or more hammers are attached.
- •The material is ground by impact of the hammer or against the plates around the periphery casing.
- •The material is <u>retained until</u> it is small enough to pass through the screen that forms the lower portion of the casing. عبن نصل لحبع حين بسريان من المعالى المعال


- close servet - confinue Method

31

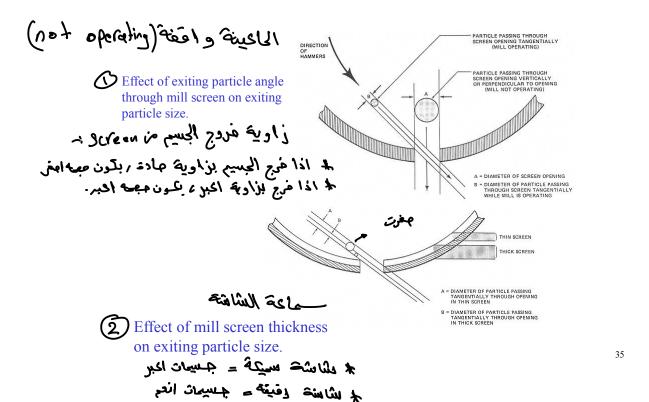
Hammer mill

hammermill ربنویه سرعة العلمان

Screens for hammer mill

33

Impact methods


له حوال بنائث على مه ۱۱۱۱۸ ما السوحة باله السوحة السوحة الشعل الشعل الشعل المناسلة المناسلة

- · Hammer mills
 - Various shapes of hammers may be used.
 - The rate of feed must be controlled.
 - The speed of hammer is crucial. Low speed gives mixing rather than grinding while with higher speed, no enough time for the material to fall in the screen.
- Thickness of <u>screen</u> affects the size of product به السُل الم المحاكا على الما يكون للميك المؤينات دم تخبط منيه وترجع لد mill به

اذا كانت السرعة بطيئة رح يصير يعمل mix بدل milling. اذا السرعة عالية رح يوصل للحجم المطلوب وما رح يقدروا يمروا من screen بسبب السرعة .

السُّل القلل تعام ٧

Impact methods

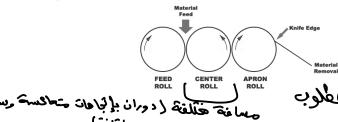
- Hammer mills
 - Advantages:

continue

- 1. Rapid in action.
- 2. Can be used almost for any type of milling (dry material, ointments and slurries).
- 3. The size of product can be controlled by controlling the
- orotor speed, type and number of hammers, and screen size and thickness.

 التحكم بعم المنتج النعائي عن طريف التحكم بعم المنتج النعائي عن طريف التحكم بعم المنتج النعائي عن طريف التحكم بعدم المنتج النعائي عن التحكم بعدم المنتج النعائي التحكم التحك

- résuri pouder 1 zérés et p je + cères Compréssion + affrésion


مفارانكالا

Attrition methods

Roller mills

- Principle of operation:
 - Roller mills use the principle of attrition for milling solids in suspensions, pastes or ointments.
 - Two or three porcelain or metal rolls are mounted horizontally with an adjustable gap, and rotate at different speed so that the material is sheared as it passes through the gap.

اعكاك

المساعة بينها عسب عب البريات المعلوب عنها المساعة بينها عسب المبيانة بينها علم المبيانة المعلوب عنها المباعدة المباعدة

aftresion

Attrition methods use? million — emilion

+ ملحن عالعبلول مابذردرا بالعي

Colloid Mills

• Colloid mills are a group of machines used for wet grinding dispersion, and preparation of emulsions.

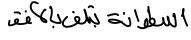
• They operate by <u>shearing</u> relatively thin layers of material between two surfaces, one of which (rotor) is moving at a <u>high angular</u> بقدران مورد براغير الحسافة من العبد (اذا اردن على دعيت بداً)

- The clearance is adjustable from virtually zero upward.
- The rotor is rotated at several thousand revolutions per minute, and the slurry of already fine material passes through the clearance under the action of centrifugal forces.
- Although <u>very fine</u> dispersions can be produced, they are not, as the name implies, of colloidal dimensions.

حكينا انه ما بقدر اطحن المادة الالما يكون نسبة الرطوبة 5% بهاي الطحانة بطحن على نسبة رطوبة عالية 60% مثلاً.

للهوا التوكسيك بدي وسيلة ما تعمل dust فبطحن ب close method او هاي لاته فيها مي.

The clearance is adjustable from virtually zero upward.


39

Combined impact and attrition methods

Ball mills

- Principle of operation
- السطوانة جوفة - Ball mills consist of a hollow cylinder
 - mounted such that it can be rotated on its horizontal longitudinal axis.
 - Their size range from laboratory to industrial (Cylinder can be greater that 3 m).
 - The cylinder contain balls that occupy 30 50% of the total volume.

لا مهنون عادة من معرن او بورسان

Ball mills

ومية اكادى دأفل الطامونة

- Principle of operation
 - جالكراً و للهغيرة تعلا الغرافان و تعلى الحادة إلى جواله المعينة -- Ball size depends on feed and mill size. ع لذلك من المكفيل خلط عرات بالمجام متلفة لتعسبن الكنارة
 - Balls with different diameter help to improve the product as the large balls tend to breakdown the coarse feed materials and the smaller balls help to form the fine product by reducing void spaces between balls. الكيات العنفيل محمة تنفليل رفي الفرانا المائية ال دا فل العاهوة فعلى نذاد انم وميحانس اعتم

لما تدور الطاحونة، الكرات ترفع بفعل الدوران وتنزل على المادة، تصدمها (impact) وتفركها (attrition) بنفس الوقت .وبالتالي الطحن ناتج من الصدمة +الاحتكاك.

41

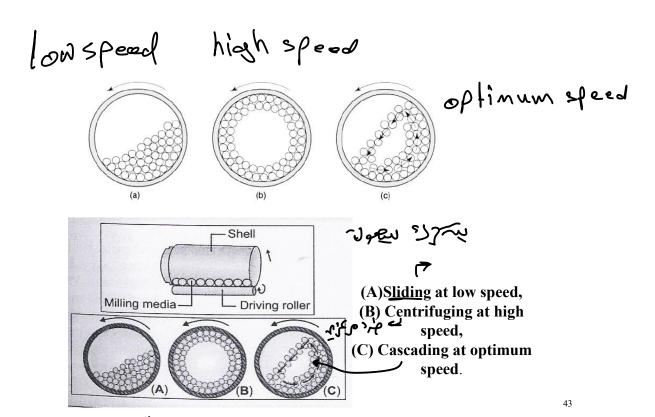
بد الكرات الكبيرة م تكسر الجزيدًان الحشة ،

Ball mills

- The amount of material in the mill and the speed of rotation are very important factors.

تقل عفادة العمن

- Too much feeding produces a cushioning effect and too little causes loss of efficiency and abrasion of the mill.

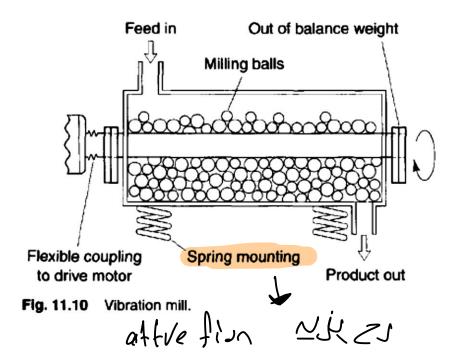

رهير طرد مركزيه

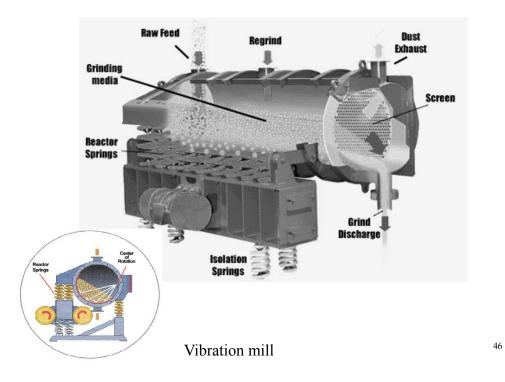
- At high speed, the balls are thrown out onto the mill wall by centrifugal forces, where at low speed the balls slide over each other with negligible amount of size reduction.

السرعة منخفضة :الكرات بتزحلق فوق بعضها (sliding) مافي طحن حقيقي.

السرعة عالية :الكرات تلتصق بجدار الطاحونة (centrifuging) ايضاً مافي طحن.

(١١١١ ١١١١ نه مقيق عقيق حقيم سه بلوق

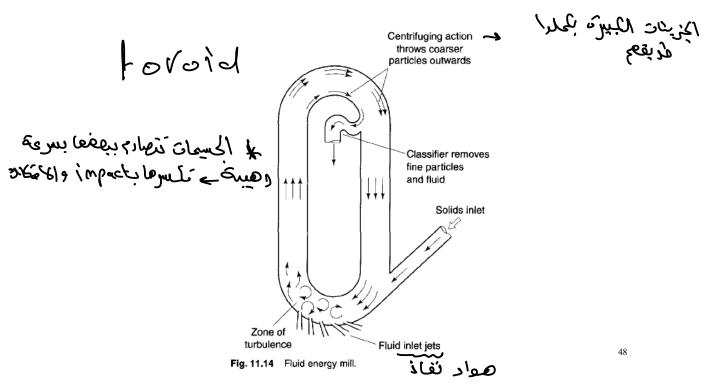

Combined impact and attrition methods


على المارية في عمارت بس المن المن المناه المناه في عمارت بس المناه المناه

Vibration mills

- Principle of operation
 - The vibration mills are filled to about 80% total volume with porcelain or steel balls.
 - During milling the whole body of the mill is vibrated and size reduction occurs by repeated impactions.
 - Comminuted particles fall through a screen at the base of mill. (دامعه ما محدود على المالية على المالية المالية على المالية المالية

ليش بقدر اعبيها كرات 80% والي فوق (30-50)% لانه الدوان انا بحاجة اسمح للكرة توقع من فوق ،اما هون مش بحاجة لهاي المساحة.


• Fluid energy mill

A typical form of this mill consists of a hollow toroid (loop) which has a diameter of 20 - 200 mm depending on the height of the loop which may be up to 2 m.

سے عداد

- A fluid, usually air, is injected at high pressure through nozzle at the bottom of the loop, resulting in a high velocity circulation in a very turbulent manner. الم عداد حصفى بعنى المنابات في بعنى المنابات في بعنى المنابات في بعنى المنابات ال

* ا معظ ا مِزاد الماكينان *

• Fluid energy mill

- The high kinetic energy of the air causes impact and some <u>attrition</u> forces to occur between the introduced particles which result in size reduction.
- A classifier is incorporated so that particles are retained until sufficiently fine.

لما تصير الجزيئات دقيقة بما فيه الكفاية ،تطلع من classifier مثبت اعلى الطاحونة.

Combined impact and attrition methods

• Fluid energy mill

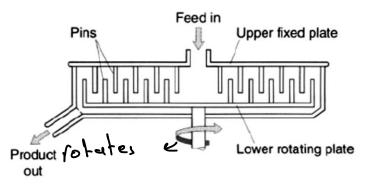
– Advantages:

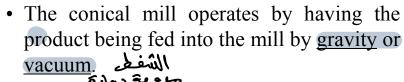
2. Expansion of gases at the nozzle leads to cooling effect. This counteract the frictional heat, which may affect heat sensitive materials.

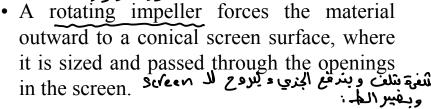
دبوس

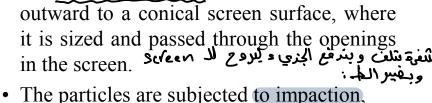
- Pin mill
 - Principle of operation
 - It consists of two disks with closely spaced pins rotate against one another at high speed.
 - Particle size reduction occurs by impaction with pins and by attrition between pins as the particles travel outwards under influence of centrifugal force.

51




Fig. 11.15 Pin mill.


حكروملي غير صوبب


Conical screen mill

3 in 1 all in one

• A rotating impeller forces the material outward to a conical screen surface, where it is sized and passed through the openings in the screen. مناع الجريء للروح الله على الجريء للروح الله على الجريء للروح الله على الجريء المراكة المر

attrition and compression.

Between two surfaces

53

Conical screen mill

- Conical mills come in a variety of sizes from tabletop lab models to full-size high-capacity machines for use in processing large quantities of material, and the impeller and screen can be customized for each individual use.
- The machines can be used not only to reduce the size of particles, but also for deagglomeration, sieving, dispersion, and mixing. تعنع التعتلان

Conical screen mill

- The <u>applications</u> for a conical mill in pharmaceutical industry include:
- Reclaiming broken pharmaceutical tablets by grinding them back عادة المنابع المكسورة linto powder for re-forming.

المسات Sizing wet granulated particles before drying, and sizing dry الاعتماد المساق المساق

- The conical mill has some marked advantages over the hammer mill:
 - عبوت المار عوارة الحل المعارة المعارة الحل
 - 2. a more uniform particle size
 - 3. flexibility to mill wet and dry material
 - 4. higher capacity

55

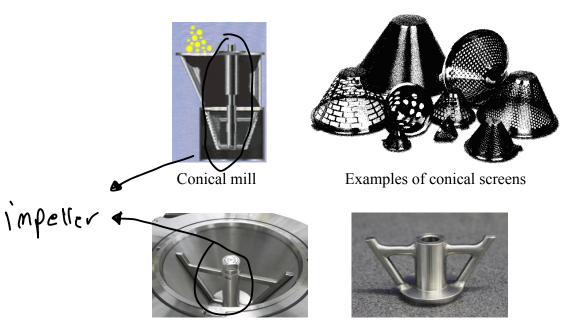
Conical screen mill

Critical milling factors

A. Impeller type

لنع الشفرة

B. Screen type

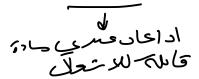

لنوع الشاشة

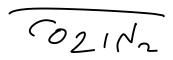
- C. Impeller/screen gap
- D. Velocity
- E. Feed and discharge condition

السوعة

يِّرُوفُ التَّذَيَّةِ وَ التَّنْ يُغِ

Examples of conical mill impellers


57


اله رسا بعدوا ها دو يطف م micro ornanell ما Wet and dry milling

- The choice of dry or wet milling depends on the <u>use of the</u> <u>product</u> and its subsequent processing.
- If the product undergoes physical or chemical <u>interaction</u> with water, dry milling is recommended.
- Wet milling eliminates <u>dust hazards</u> and is beneficial to grind to lower size limits than dry milling.

Inert milling

- · For explosive, combustible and oxidizable products

59

Cryogenic milling الفريزد لا تعارب الفريزد للمربالفريز الفريزد

- Milling under low temperature
- Uses liquid nitrogen or carbon dioxide.

Deep Freeze

- Applications:
 - to enhance milling for soft, elastic and low-melting point materials
 by freezing them and making them brittle.
 - for milling of heat sensitive products

Selection of particle size reduction method

The selection of a size reduction method depends on:

1) Material properties

- Hardness
- عبلها
- Structure (Cutter mill for fibrous materials)

الترعيب

- Toxicity (Closed mills like ball mill)
- s) النفال (s

Explosion (wet grinding or use inert gas)

2) Properties of final product

- Degree of size reduction در مه النفومة الملومة المالية
- Shape (Attrition methods give spheroidal particles with better flow properties)

ا كسلال ماكسلال

Selection of particle size reduction method

simil Pè «
in sexime
vory cours e
fire forder?

	Size required	example of mill
	Very coarse powder product (>1000 μm)	Cutter mill, Conical mill, Roller mills Hammer mills
- >	coarse powder product (50-1000 µm)	Ball mills, Conical mill, Cutter mill, Hammer mills, Pin mill, Roller mills, Vibration mills
•	Fine powder product (< 50 μm)	Ball mills, Colloid mill, Fluid energy mill, Pin mill, Vibration mills

Selection of particle size reduction method

The selection of a size reduction method depends on:

3) Need for dust control

- Use closed mills (e.g. costly or toxic material)

4) Sanitation → كون فيكا ح

- Ease of cleaning, sterilization
- For milling of sterile material the mill should be totally isolated (e.g. Ball mill).

63

Selection of particle size reduction method

The selection of a size reduction method depends on:

5) Capacity of the mill and production rate requirements

6) Economical factors

- Cost - pre milling

- Power consumption
- Space occupied