

SERUM ELECTROLYTE ANIONS

عنا الصوديوم ١٣٥ ل ١٤٥ الكلورايد + البايكاربونيت واشياء ثانيه زي الفوسفيت ولاكتيت عشان تعادل الصوديوم لحاله

ال بالمنعملة عدا بدناه بيل مع برر+ بحافظ على ال بانعباد هد لانه ماشني مع برر+ بحافظ عليه برزياد بالرداة

وال ملائل علم بحافظ عليها لانه وين مافي صوديوم بروح بلحق وراه كلورايد واحد + والثاني ـ حكننا ال عمل المدين لل بر + مش بس لم كمان لاوبرا

اذا مرتفع الصوديوم رح تلاقي الكلورايد. مرتفع وانخفضت الصوديوم رح تلاقي الكلوريد منخفض لكن مرات رح تلاقي الكلورايد مرتفع والصوديوم مامعه خبر شو بكون قباله نازل الباع كاربونيت

Nat bolon 2 7 Josep (CT Hos) (Nat

- ☐ The major extracellular anion
- □Function in body:
 - ☐ Maintaining osmolality
 - ■Blood volume and
 - □ Electric neutrality
- □Cl is usually shifted according to Na and bicarbonate
- □Excess chloride in the body is excreted in urine and sweat, excessive sweating will induce the release of aldosterone which will conserve Na and C

Chloride

الامتعالات ببحده حکینا هلگا لوغامی CL Not 6 mmol 11 mmole

كم الكية الى بقدر الطلاحار) أو reabsorption على المعادة المحادة

بطح ه الدتين هيك مجادلوا بجفى و بطعوا من الدتين هيك مجادلوا بجفى و بطعوا من المتعم اطلح العسم الطلح العسم الطلح العسم الطلح العسم الطلح العسم المتعمد ال

ای الددنی حوالی رح سطع أو بسیرك reabsorption

□Chloride maintains electrical neutrality in two ways:

□Na is reabsorbed along with Cl in the proximal tubules. Na reabsorption is limited by the amount of Cl- available

□Electroneutrality is also maintained by chloride through the chloride shift.

- ☐ Carbon dioxide generated by cellular metabolism within the tissue diffuses out into both the plasma and the red cells
- □ In the red cell, CO2, forms carbonic acid (H2CO3), which splits into H+ and HCO3-(bicarbonate).
- □ Deoxyhemoglobin buffers H+, whereas the HCO3- diffuses out into the plasma and Cl diffuses into the red cell to maintain the electric balance of the cell.

Electronentrality is also maintained by bicarbonate HCO3 الى بتنتج اصلاً من RBC'S بالدم

CO2 + H2O= H2CO3 = HCO3 + Ht المحافة والمحافة و

وهای العلیه کلها بتهر بین الد RBC1s والد plasma

- أي شي - الكنف من المرتفع المرتفع محم واذا الحنف محم واذا الحنف محم في عنا حالات exciption

- بکون علاقته مع مین الع Bicarbonate

Solu العلج diarrhea الله والمحتفية والمحتفية اذا الخفي اذا الخفي المحتفية HCI Ju diarrhanias intestant in the 2 Hassis Secretion per ducdeneum lie à GI is

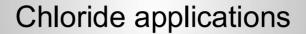
TO CE TIS LEGARE ON THE STOWN THE ST

metabolicacidosis Je RTA Je acidosis Je

(Hcoz) مرحع ترتبط مع (H+)

H20 + COZ - H2COZ - HCOZ + H+ ف شورع يصر لل ١٤٥٥ عرج نقل ١١ ولما يقل شور عبر ٢١ ١١ عريفه ١٩

Hupochloremia) blace


Lo I vomiting - HCl Ne 166 فالواحد بغسراي

>2) Keto acidosis-2222, Nat to Ketonbodies 11 ilms JCL 11 6HC03 - HC03 HC03 - LOGI LOGI - LOGI

-> 3) aldosterone deficancy -> retension for kt and excrection for Nat > وسنو بروح مح ۱۸ أكيد آن ف سورح يول دا مال + ۱۸۸۴ احنا فنفلتركلت و فزوض فقل Salt losing - nephrone و لما تكون ال absorption و الماتكان

خربانه المحتويات بالمحتويات بالد عماس

(5)MHco3 - alkalosis 11 0522 CL 13 مارح يطلح مالتنفس لأنه مخد مر Compansation of respairatory alkalosis -> proof Together Hooz Hooz The Educy MCO2+Hoo + Hooz

- □Chloride disorders are often the result of the same causes that disturb Na levels because chloride passively follows Na
- There are a few exceptions. Renal Tubular Acidosis
 - ☐ Hyperchloremia may also occur when there is an excess loss of bicarbonate as a result of GI losses, RTA or metabolic acidosis
 - Hypochloremia may occur with excessive loss of chloride from prolonged vomiting, diabetic ketoacidosis, aldosterone deficiency or salt-losing renal diseases.
 - □A low serum level of chloride may be encountered in conditions associated with high serum bicarbonate concentrations such as compensated respiratory acidosis or metabolic alkalosis.

Determination of the chloride

Nat JIC;

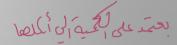
- ☐ Specimen: serum or plasma, whole blood samples, urine (24-hr) or sweat may be used
- ☐ Lithium heparin is the anticoagulant of choice.

Hemolysis does not cause significant change in serum or plasma values as a result of decreased levels of intracellular chloride (marked hemolysis, decrease due to dilutional effect) المني الي جوا كلعت برا وكملت المناهانية

☐ Methods: there are several methodologies includes:

✓ ISE (most commonly used where an ion-exchange membrane is used to selectively bind Cl ions)

□ Amperometric coulometric titration → Silver Ag محمد على المحمد على المحمد


□ Colorimetry

☐ Amperometric coulometric titration method using coulometric generation of silver ions (Ag which combine CI to quantitate the CI ion concentration

Reference range

TABLE 15-10 REFERENCE RANGES FOR CHLORIDE		
98-107 mmol/L		
110-250 mmol/day, varies with diet		

Bicarbonate

- □Is the second most abundant anion in the ECF
- □ The total CO2 comprises the bicarbonate (90%), carbonic acid and dissolved CO2 so total CO2 measurement is indicative of HCO3- measurement
- □Bicarbonate is the major buffering system in the blood where carbonic anhydrase in

و حکینا اذا مبار منام عنامل مناعل سے وہولہ یمی RBCs converts CO2 and H2O to carbonic acid المرام الكر فاعل مناعل مالكر فاعل مناسبة عالم الكر فاعل ا

$$CO_2 + H_2O \stackrel{CA}{\longleftrightarrow} H_2CO_3 \stackrel{CA}{\longleftrightarrow} H^+ + HCO_3^{-90}$$

□Bicarbonate diffuses out of the cells in exchange for chloride to maintain ionic charge neutrality within the cell

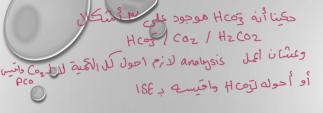
Respairaton 15 also cric is 51 16 19 Kidney 11 1/24 000

Bicarbonate regulation

مقيم نند الاور نم يتخلف من ألم

الانظموم المعنى المراجعة والتنفس كبيرة المناموم المعنى المحتى المراجعة الم urine النه صعب لح اناء عملف في إن يث حراً لانطبع بالي يبو تمامالي وورسلطنه ا ☐ Most of the filtered bicarbonate ion is reabsorbed in the kidneys (85% in proximal tubules and 15% in the distal) in the form of COC (1)

- and 15% in the distal) in the form of CO2 (due to low permeability of tubules to bicarbonate)
- □ Normally nearly all the bicarbonate ions are reabsorbed from the tubules, with little lost in the urine
- ☐ When bicarbonate ions are filtered in excess of hydrogen ions available, almost all excess HCO3- flows into the urine.
- ☐ In alkalosis, with relative increase in bicarbonate ion compared to CO2 the kidneys increase excretion of HCO3- into the urine, carrying along a cation such as sodium. This loss of HC3O- from the body helps correct pHPH ويعاف المناف يرجله المناف يعاد المناف يعاد المناف يعاد المناف يعاد المناف يعاد المناف يعاد المناف الم
- complete



- Acid-base imbalances cause changes in bicarbonate and CO2 levels. A decreased bicarbonate/ CO2 occurs in metabolic acidosis leads to exhalation of CO2 by the lungs (hyperventilation), which lowers pCO2.
- □ Elevated total CO2 concentrations occur in metabolic alkalosis as bicarbonate is retained, often with increased pCO2, as a result of compensation by hypoventilation.
- □Typical causes of metabolic alkalosis include:
 - □ Severe vomiting → Hcl >
 - ☐ Hypokalemia
 - Excessive alkali intake —

لعمال بيكر عمر الماعن معمر ما كلهما

Hesterical attack Solut ube an information on in some of a like one mens con in some of a like one mens con in some of the alkalois one mens con in some of the

Mult PUL COZ MUZICE OPZ COMEN Hypoventeation of his new alkalosis allestices

Method

- ☐ Specimen: venous serum or plasma. > general 22 July 1989
- ☐ Serum or lithium heparin plasma is suitable for analysis.
- ☐ The sample is capped until the serum or plasma is separated and the sample is analyzed « عشان ما بطيم المردي immediately
- ☐ If the sample is left uncapped before analysis, CO2 escapes. Levels can decrease by 6 mmol/L
- pseudohypo Hozic نيك كاله (وي ينا ينفي عام 6 mmolli per hour ☐ Two common methods are ISE and an enzymatic method. > phosphoenol puruvate enzyme

ulais 2

ISE for measuring total CO2, uses an acidic reagent to convert all the forms CO2 to CO2 gas acidation J. and measured by a pCO2 electrode

The enzyme method alkalinizes the sample to convert all forms of CO2 to HCO3-. al Kalization 20

method of determine HCO3

Enzyme method

کول کل - CO2 ماستخدام acidic reagent

[PFP] = Phosphornol primate Enzyme and ise ويعل alkalinizes عشان احول كل

H Coz --- Coz(9)

Co2 -> HCo3

HCO3+ PEPCOrposalate H2POy + Oxaloacetate

pressure of windir miens co2 Electrode

oxaloacetate +NADH+H+ Malate+NAD+ 340nm = absorpance all NADH ais replaced

سنعا الـ AA ماله فأنا بقيس HAAN ب فيه منه تفاعل وجمار TAN ماله فأنا بقيس

اله على المنفقان " diffrance اله مقدار النفقار الكوبالاسة المراهنية بتناب تناب طردي اذا نقف كثير معناها قيهة والم موجودة كيثر بالحينية واذا شوي معناها و Hco سلوي

Okey "

له يعني بقيس الـ NADH قبل ا ضافة العينة وبدر وبطرح والنائج الي بطلا بتناسب تناسب طردي مع وHco

Method

☐ HCO3 is used to carboxylate phosphoenolpyruvate (PEP) of phosphoenolpyruvate (PEP) carboxylase, which catalyzes the formation of oxaloacetate.

Phosphoenolpyruvate
$$+ HCO_3^-$$
 PEF carboxylate \rightarrow هم منعان العمام کا کا کند کا کا کند کا کا کند کند کا کند کا

☐ This is coupled to the following reaction, in which NADH is consumed as a result of the action of malate dehydrogenase (MDH)

Oxaloacetate +
$$\frac{\text{NADH}}{\text{NAD}^+}$$
 + $\frac{\text{MDH}}{\text{Eq. 15-5}}$

☐ The rate of change in the absorbance of NADH is proportional to the concentration of HCO3-

Reference ranges

☐ Carbon dioxide, venous 23-29 mmol/L (plasma, serum).

Lactate

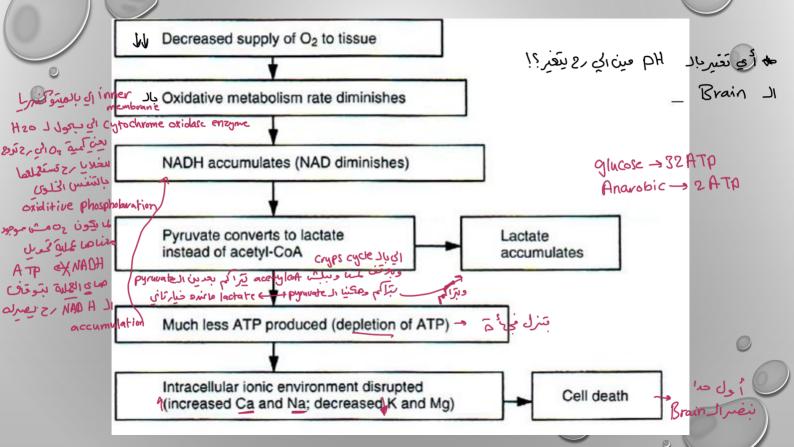
- Lactate is a by-product of an emergency mechanism that produces a small amount of ATP (2 moles)
- Under hypoxic conditions, acetyl CoA formation does not occur and NADH accumulates, favoring the conversion of pyruvate to lactate through anaerobic metabolism.

☐ The accumulation of excess lactate in blood is an early sensitive and quantitative indicator of the severity of oxygen deprivation (more than pH)

RBC's Il Fish Metabolism Glilar by products of

ويندسو لا ميك لا ميتو كندريا و الم من في من في من في من في من المعادلة عن في من المعادلة عن في المعادلة عن في glycolysis Liver Getate Pyrulate (glucose) سے یعی فیصممموحودمالدم ۱۱ glucose pyruvate - Lactate اه سساعلى قدالخلايا RBC's كمية قلسله Lanie Low- RBC's 1/4 glycolysis 1/4 Julis Men release in Blood HADAN ولا 'NADA حمَّ لَدُول له ATP فربتطر تكوله

Lactate والـ Lactate بنزر جالمحم وبروع لا Viver


والكبدبحوله عامر بالدم والدعوم والمخرر بالدم و العدمة الكبرحة الأنصم قلال اي بالدم دكونوا وبروحوا على الكبرحة يرجعوا regulation alla Lactate

ب ما يعير عندي hypoxia لا ناقعا دمه كثير أو مشاكل بالفل أو أي مشكلة صعبة بروح على الطوارى وبعقوة معروم يمير عمد المعدال المعدولة عموم مراعد المعدولة عموم المعدولة المعد

acidosis ray 21 of this lactate vice For acidosis

رحصه لا إما نفس الموحود بالصوا ١٠١٦ أوبريد عهال ١٥١ مه ١٥١١

> و ببحون معضوق عالاخر طالع من حربيق

□It is not regulated as with potassium and calcium

My actate I why b Oz is responce I و معو indicator سريح لل hypoxia والداعندي عريف نايم بالعندة المكزة مثو بجل بتابع الـ lactate اله اذا تحسن و عدد

□ As oxygen delivery decreases below a critical level, blood lactate concentration rise rapidly and indicate tissue hypoxia earlier than pH

☐ The liver is the major organ for removing lactate by converting lactate back to glucose by a process called gluconeogenesis Unic spendi lactate lino velizir liver onic publicals

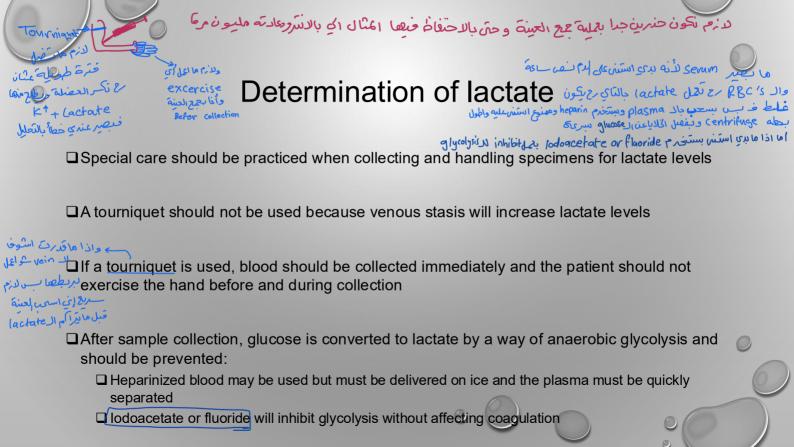
منه لعلني لاماعنه به بين متخلف منه

Clinical application

☐ Measurement of blood lactate are useful for metabolic monitoring in critically ill patients, for indicating the severity of the illness, and patient prognosis

is hypoxia James in cut hypoxia II com 17 lactate à l'isso

There are two types of lactic acidosis:

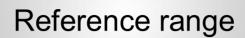

☐ Type A is associated with hypoxic conditions, such as shock, myocardial infarction, severe

3 congestive heart failure, pulmonary edema, or severe blood loss

الے سوائل علی الرکھ بحنی الے exchange قلل for gas

□Type B is of metabolic origin, such as with diabetes mellitus, severe infection, leukemia, liver or renal disease, and toxins (ethanol, methanol, or salicylate poisoning).

acid sic pubiz, Metabolism, E Lask


Method

- □Current enzymatic methods make lactate determination readily available.
- ☐ The most commonly used enzymatic method uses lactate oxidase to produce pyruvate and H2O2.

□One of two couple reactions may then be used. Peroxidase may be used to produce a colored chromogen from H2O2

$$H_2O_2 + H donor + chromogen \xrightarrow{Peroxidase}$$

$$colored dye + 2H_2O \qquad (E)$$

ENZYMATIC METHOD, PLASMA	
Venous	0.5-2.2 mmol/L (4.5-19.8 mg/dL)
Arterial	0.5-1.6 mmol/L (4.5-14.4 mg/dL)
CSF	1.1-2.4 mmol/L (10-22 mg/dL)

بنقدر نربطه بكل اوا واود المناه في المناه في

□Routine measurement of electrolytes usually involves only Na+, K+, Cl-, and HCO3-

☐ These values may be used to approximate the anion gap (AG), which is the difference between unmeasured anions and unmeasured cations.

There is never a "Gap" between total cationic charges and anionic charges

AG is useful in indicating an increase in one or more of the unmeasured anions in the serum and also in the form of quality control for the analyzer used to measure these electrolytes.

Anion gap (AG)

☐ There are two commonly used methods for calculating the anion gap

$$AG = Na^+ - (Cl^- + HCO_3^-)$$
 ورنفع $AG = Na^+ - (Cl^- + HCO_3^-)$

رح ىنحتلق

ب ممكن يكون آوه Hc عادي سب الممكن يكون

عنده المعاملة معكن يكون كلش ملعنعا والشبها ماعنده أعرافنا دميمان يكون خلل باكهانر

□It has a reference range of 10-20 mmol/L

 K^{+} د اذا معن AG = (Na⁺ + K⁺) – (Cl⁻ + HCO₃⁻)

Anion gap (AG)

الحالات الى مصر فيصا AG ؟!

مالوهم العادي ماعتري لا سلفيت □An elevated anion gap may be caused by: ولا قوسفس مين رح يعاطم Uremia/renal failure, which leads to PO4-3 and SO4-2 retention 91 Na = Na _______ □Ketoacidosis, as seen in cases of starvation or diabetes س کاع و که ۲۲ مکونوا □ Methanol, ethanol, ethylene glycol poisoning, or salicylate

□ Lactic acidosis

Nat معلی جب کی کا ۱۹۵۸ - ۱۹۵۸ lactate . Lactic acidosis □Hypernatremia 11 □Instrument error ail auTo

CASE STUDY 15-2

A 60-year-old man entered the emergency department after 2 days of "not feeling so well." History revealed a myocardial infarction 5 years ago, when he was prescribed digoxin. Two years ago, he was prescribed a diuretic after periodic bouts of edema. An electrocardiogram at time of admission indicated a cardiac arrhythmia. Admitting lab results are shown in Case Study Table 15-2.1.

Questions

- Because the digoxin level is within the therapeutic range, what may be the cause for the arrhythmia?
- 2. What is the most likely cause for the hypomagnesemia?
- 3. What is the most likely cause for the decreased potassium and ionized calcium levels?
- 4. What type of treatment would be helpful?

CASE STUDY TABLE 15-2.1 LABORATORY RESULTS

VENOUS BLOOD

Digoxin: 1.4 ng/mL, therapeutic 0.5–2.2 (1.8 nmol/L, therapeutic 0.6–2.8)

Na+: 137 mmol/L

K+: 2.5 mmol/L

CI⁻: 100 mmol/L

HCO₃⁻: 25 mmol/L Mg²⁺: 0.4 mmol/L

Ion/free Ca2+: 1.0 mmol/L

Na135-145K3.4-5.0Cl98-107HCO323-29Mg0.63-1.0Ca/ionized1.16-1.32