

SERUM ELECTROLYTE ANIONS

Chloride

- The major extracellular anion
- Function in body:
 - Maintaining osmolality

بساعد مع الNa بعملية تنظيم الosmolality

- Blood volume and
- بما انه الهاله +charge لازم يكون في -charge وهو charge وهو Charge كالم
- Cl is usually shifted according to Na and bicarbonate urin II.

يتبع الNa والbicarbonate عادة يعني اذا صار urin لل Na رح يروح معه سواء عن طريق الna or sweating

 Excess chloride in the body is excreted in urine and sweat, excessive sweating will induce the release of aldosterone which will conserve Na and Cl

Chloride

- Chloride maintains electrical neutrality in two ways:
- Na is reabsorbed along with Cl in the proximal tubules. Na reabsorption is limited by the amount of Cl- available
 اله المرح يصير امتصاص كمية مكافئة لكمية الل ClJ قليلة مارح يصير امتصاص كمية مكافئة لكمية الل ClJ الموجوبة
- Electroneutrality is also maintained by chloride through the chloride shift.
 - Carbon dioxide generated by cellular metabolism within the tissue diffuses out into both the plasma and the red cells
 - In the red cell, CO2, forms carbonic acid (H2CO3), which splits into H+ and HCO3-(bicarbonate).
 - Deoxyhemoglobin buffers H+, whereas the HCO3- diffuses out into the plasma and CI diffuses into the red cell to maintain the electric balance of the cell.

$CO_2 + H_2O \stackrel{CA}{\longleftrightarrow} H_2CO_3 \stackrel{CA}{\longleftrightarrow} H^+ + HCO_3^-$

رح يتحول ويطلع برا، جزء من الRBC ويتحول الRBC ويطلع برا، جزء من الRBC ويتحول ويتحول الRBC ويتحول على الRBC ويتحول على الCo2 و ويتحول ويتحول ويتحول ويتحول الدم ليوصل الCo2 و ويتحول ويت

-HCO3 و +H ال disscoiation عصير اله +H و + ECO3

الdeoxyhemo globin لازم يتحول ل oxyhemoglobin عن طريق انه يشيل الHCO3 ويحط بدالها O2 ال+ رح تنسحب للRBCعشان تعادل الRBC شحنه سالبة لازم اشي يروح بدالها وهيك الHCO3 رح تروح للبلازما وبما انها طلعت من الRBC شحنه سالبة لازم اشي يروح بدالها وهو ال

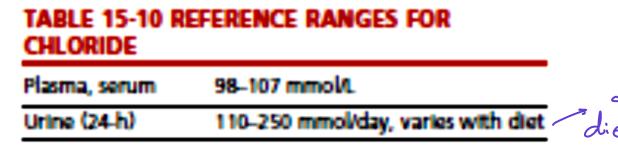
اذا انخفض تركيز الHCO3- تركيز الالا رح يرتفع

Chloride applications

- There are a few exceptions. في حالات ثانية
 - Hyperchloremia may also occur when there is an excess loss of bicarbonate as a result of GI losses, RTA or metabolic acidosis
 رتفع لحتى يعدل الوضع
 - Hypochloremia may occur with excessive loss of chloride from prolonged vomiting,
 diabetic ketoacidosis, aldosterone deficiency or salt-losing renal diseases.
 - A low serum level of chloride may be encountered in conditions associated with high serum bicarbonate concentrations such as compensated respiratory acidosis or metabolic alkalosis.

Determination of the chloride

- Specimen: serum or plasma, whole blood samples, urine (24-hr) or sweat may be used
- Lithium heparin is the anticoagulant of choice. -> Plus mu عسمهاد خنا يعب لما
- Hemolysis does not cause significant change in serum or plasma values as a result of decreased levels of intracellular chloride (marked hemolysis, decrease due to dilutional effect).
- Methods: there are several methodologies includes:
 - ISE (most commonly used where an ion-exchange membrane is used to selectively bind Clions)


 Ion-Selective Electrode (ISE) باختصار Clions

•جهاز يقيس تركيز أيون محدد (مثل CI) في الدم أو البول.

- Amperometric coulometric titration
- Mercurimetric titration
- Colorimetry

Reference range

Amperoetric coulmetrice

Colorimetry

Amperometric Coulometric Titration باختصار:

- •طريقة **معايرة كهربائية** تعتمد على **التيار الكهربائ**ي لتفاعل المادة في العينة.
 - ويقاس التيار الكهربائي (Amperometry) لمتابعة التفاعل.
- تُحسب كمية المادة من خلال الشحنة الكهربية المارة (Coulombs) باستخدام قانون فاراداي.
 - •مزاياها: دقيقة جدًا ولا تحتاج مؤشرات كيميائية.

باختصار (℃CI) للكلوريد Colorimetric method

- •تعتمد على تفاعل CI مع مؤشر كيميائي لتكوين لون.
 - •شدة اللون تتناسب مع تركيز CI-.
- يُقاس اللون باستخدام Spectrophotometer لتحديد التركيز بدقة.

Bicarbonate

- Is the second most abundant anion in the ECF
- The total CO2 comprises the bicarbonate (90%), carbonic acid and dissolved CO2 so total CO2 measurement is indicative of HCO3- measurement و نحکي عنها کمان شوي HCO3 عنها کمان شوي
- Bicarbonate is the major buffering system in the blood where carbonic anhydrase in RBCs converts CO2 and H2O to carbonic acid

 Bicarbonate diffuses out of the cells in exchange for chloride to maintain ionic charge neutrality within the cell

Bicarbonate regulation

- Most of the filtered bicarbonate ion is reabsorbed in the kidneys (85% in proximal tubules and 15% in the distal) in the form of CO2 (due to low permeability of tubules to bicarbonate)
- Normally nearly all the bicarbonate ions are reabsorbed from the tubules, with little lost in the urine
 ال excreation الها قليل
- When bicarbonate ions are filtered in excess of hydrogen ions available, almost all excess HCO3- flows into the urine.
 اذا صار excess من ال HCO3- مقارئه بتركيز ال++ رح (alkalosis) الـ excess الـ HCO3- اهذا بحاله الـ excess)
- In alkalosis, with relative increase in bicarbonate ion compared to CO2, the kidneys increase excretion of HCO3- into the urine, carrying along a cation such as sodium. This loss of HC3O- from the body helps correct pH

 completly من الله بصير الها +HJ وهيك بصير الها -reabsorption for HCO3 وال H+ هي للي رح يصير الها -reabsorption for HCO3
- In acidosis, the excretion of H into the urine is increased and HCO3- reabsorption is complete

Clinical applications

بصير لما يكون في metabolic acidosis بصير الواحد يطلع كميات كبيرة من الCO2(acidic) وعشان اخفف من الacidity من الدم بصير يتنفس بسرعة hyperventilation

- Acid-base imbalances cause changes in bicarbonate and CO2 levels. A decreased bicarbonate/ CO2 occurs in metabolic acidosis leads to exhalation of CO2 by the lungs (hyperventilation), which lowers pCO2.
 اذا صار alkalosis الجسم بحاول يقلل التنفس ويحاول يحبس الCO2ويقلل ph/l العالمة للوضع الطبيعي
- Elevated total CO2 concentrations occur in metabolic alkalosis as bicarbonate is retained, often with increased pCO2, as a result of compensation by hypoventilation.
- Typical causes of metabolic alkalosis include:
 - Severe vomiting بس الHCO3 ما بصير عليه اشي vomiting
 - Hypokalemia alkalosis هيك ال H+ رح تقل بالدم الخلايا رح تطلع ال Kل لبرة وتدخل بداله H+ وهيك ال H+ رح تقل بالدم ويصير
 - اذا كان بياخذ كميات كبيرة من ادوية فيها HCO3- او -HCO3- او alkali intake

Method

- Specimen: venous serum or plasma.
- Serum or lithium heparin plasma is suitable for analysis.
- The sample is capped until the serum or plasma is separated and the sample is analyzed immediately
- If the sample is left uncapped before analysis, CO2 escapes. Levels can decrease by 6 mmol/L
 per hour الي في الbel الله conc of HCO3 بمقدار 6mmol/L
- Two common methods are ISE and an enzymatic method.
 - ISE for measuring total CO2, uses an acidic reagent to convert all the forms CO2 to CO2
 gas and measured by a pCO2 electrode
 ال CO2 الموجود بالدم فلازم اعمل بالاول acidificationt عشان احول الح02 وبعدين لل CO2 وبعدها بقيس الCO3 وبعدها بقيس الCO3 وبعدها بقيس الCO3
 - The enzyme method alkalinizes the sample to convert all forms of CO2 to HCO3-.

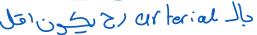
الطريقة اثانية تعمل alkalinization لكل الCO2الموجوده وبتحوله لHCO3

الى جايدهن لعينه رح تنفاءل حال HCos الى اذا حولته كله لHCO3 شورح تكون الخطوة الثانية o Yalocetute June 2) PFP catalyze enzyme 1 3 7) 0 Kaloacetalo 11 Elip ne asosil Hazi Il quotino العا عالم عنوح تنخفض بعقدار الامال abs العالم NADT- LIVER MADH NOWY &

حايدان مير

• HCO3 is used to carboxylate phosphoenolpyruvate (PEP) of phosphoenolpyruvate (PEP) carboxylase, which catalyzes the formation of oxaloacetate.

```
Phosphoenolpyruvate + HCO<sub>3</sub> - PEF carboxylate >
           Oxaloacetate + H<sub>2</sub>PO<sub>4</sub><sup>-</sup>
                                                         (Eq. 15-4)
```

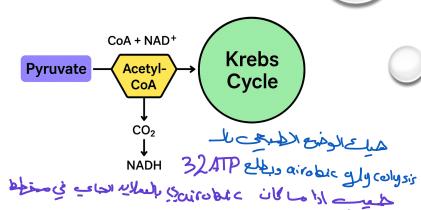

• This is coupled to the following reaction, in which NADH is consumed as a result of the action of malate dehydrogenase (MDH)

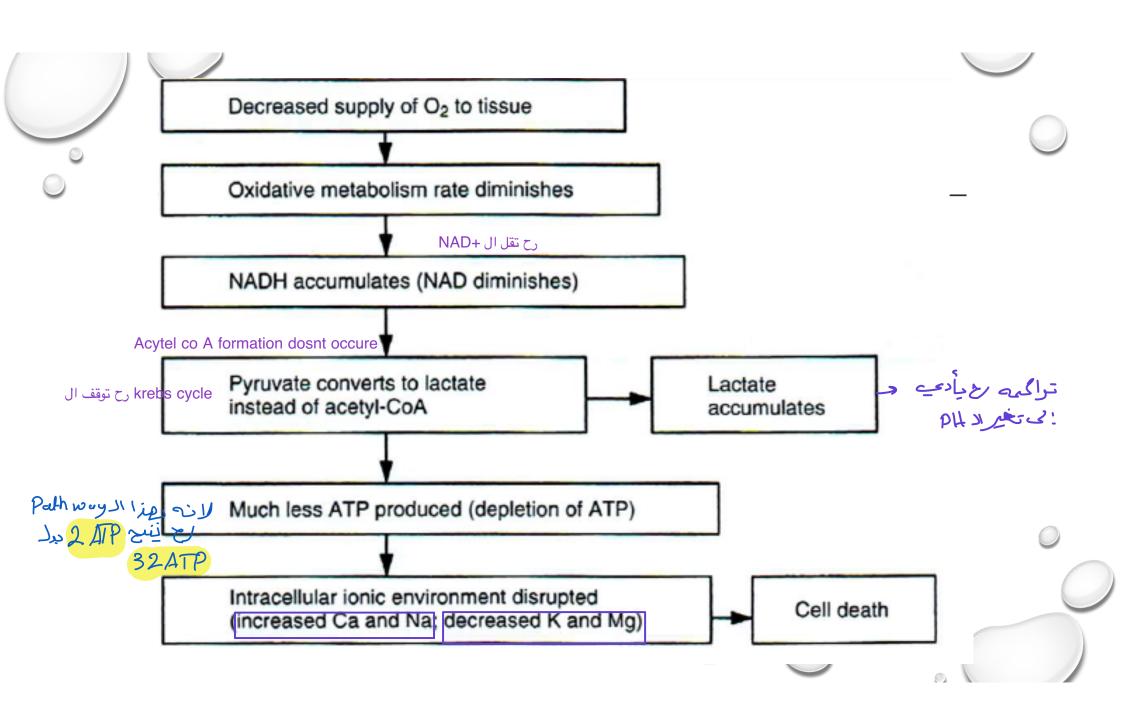
Oxaloacetate + NADH + H⁺
$$\xrightarrow{MDH}$$
 (Eq. 15-5)

• The rate of change in the absorbance of NADH is proportional to the concentration of HCO3-

Reference ranges

• Carbon dioxide, venous 23-29 mmol/L (plasma, serum).





regulation اشي ما بصير اله Lactate

- Lactate is a by-product of an emergency mechanism that produces a small amount of ATP (2 moles)
 anairobic ويعني صار عنده hypoxia ويعني صار عنده glycolosis
- Under hypoxic conditions, acetyl CoA formation does not occur and NADH accumulates, favoring the conversion of pyruvate to lactate through anaerobic metabolism.
- The accumulation of excess lactate in blood is an early sensitive and quantitative indicator of the severity of oxygen deprivation (more than pH)

اشي مش طبيعي بالجسم الخلايا الوحيدة الي بتطلعه بشكل Normalخلايا الدم الحمراء لانه ماعندها مايتوكندريا

Regulation

رهبائے لکون کون

Convert it be purvate

RBC (conver

It is not regulated as with potassium and calcium

As oxygen delivery decreases below a critical level, blood lactate concentration rise
 rapidly and indicate tissue hypoxia earlier than pH

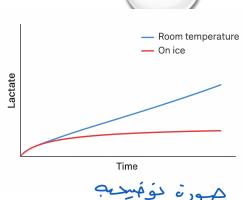
PH عظمه (anaerobic) laetato ا محني ليلاما

رففنن و

• The liver is the major organ for removing lactate by converting lactate back to glucose by a process called gluconeogenesis

Clinical application

 Measurement of blood lactate are useful for metabolic monitoring in critically ill patients, for indicating the severity of the illness, and patient prognosis


الريف على احجره التنفس ها المنفى بالمنفى بالمشغي

There are two types of lactic acidosis:

- Type A is associated with hypoxic conditions, such as shock, myocardial infarction, severe congestive heart failure, pulmonary edema, or severe blood loss
- Type B is of metabolic origin, such as with diabetes mellitus, severe infection, leukemia, liver or renal disease, and toxins (ethanol, methanol, or salicylate poisoning).

Determination of lactate

Special care should be practiced when collecting and handling specimens for lactate

levels

• A tourniquet should not be used because venous stasis will increase lactate levels

سان ای ای این ال سفر شمان مین ایرا ممکن است می ایس ایرا گان ال

If a tourniquet is used, blood should be collected immediately and the patient should not exercise the hand before and during collection -> قبير منا حيفي منا حيفي

لما باخذ العين رح آخنم Plagma للفلا Serum بعثاث اقدر السعل فيعا وهذا إلى صرفيض كاحنما بإاحلاها بسية

• After sample collection, glucose is converted to lactate by a way of anaerobic glycolysis and should be prevented:

Method

- Current enzymatic methods make lactate determination readily available.
- The most commonly used enzymatic method uses lactate oxidase to produce pyruvate and H2O2.

 One of two couple reactions may then be used. Peroxidase may be used to produce a colored chromogen from H2O2

Reference range

ENZYMATIC METHOD,

PLASMA

Venous	0.5-2.2 mmol/L (4.5-19.8 mg/dL)
Arterial	0.5-1.6 mmol/L (4.5-14.4 mg/dL)
CSF	1.1-2.4 mmol/L (10-22 mg/dL)

Anion gap (AG)

واللهل انه في كيان مونامه دكيان موالمها

- Routine measurement of electrolytes usually involves only Na+, K+, Cl-, and HCO3-
- These values may be used to approximate the anion gap (AG), which is the difference between unmeasured anions and unmeasured cations.
- There is never a "Gap" between total cationic charges and anionic charges
- AG is useful in indicating an increase in one or more of the unmeasured anions in the serum and also in the form of quality control for the analyzer used to measure these electrolytes.

Anion gap (AG) محبتصر لما يرتفع واحدمين الامم

There are two commonly used methods for calculating the anion gap

$$AG = Na^{+} - (Cl^{-} + HCO_{3}^{-})$$

- With a reference range of 7-16 mmol/L
- The second method:

$$AG = (Na^{+} + K^{+}) - (Cl^{-} + HCO_{3}^{-})$$

• It has a reference range of 10-20 mmol/L

cend Rang 112

electrolytation من العرقف واحد من العراقة المنافعة المنا

الجسم رح يحامل يعادل هاعب

الزيادة عنالمربق انه يرفع واحرمن

"Man Na Jes; Cation 1

A B-(Not +K) - (CI+H(O])

الروزاء والا ما بعادلوا اله والرواد الم والرواد الم المحامه المحامه المحامه المحامه المحامه المحامه المحامه المحامه المحامة ا

عه و المغروض ما يكون في عه و بس لما واحدمت الا الماله المن عما حسبتها هوا لمرتفع والرولا

بحاوله بعادله

Anion gap (AG)

- An elevated anion gap may be caused by:
 - Uremia/renal failure, which leads to PO4-3 and SO4-2 retention جنوب کی نیرتنمعوا باله
- arvion อน 🕶 Methanol ethanol, ethylene glycol poisoning, or salicylate
- lactate _ Lactic acidosis acetate_ Joseph _ oxalute_ Joseph
 - Hypernatremia
 - Instrument error

CASE STUDY 15-2

A 60-year-old man entered the emergency department after 2 days of "not feeling so well." History revealed a myocardial infarction 5 years ago, when he was prescribed digoxin. Two years ago, he was prescribed a diuretic after periodic bouts of edema. An electrocardiogram at time of admission indicated a cardiac arrhythmia. Admitting lab results are shown in Case Study Table 15-2.1.

Questions

- 1. Because the digoxin level is within the therapeutic range, what may be the cause for the arrhythmia?
- 2. What is the most likely cause for the hypomagnesemia?
- 3. What is the most likely cause for the decreased potassium and ionized calcium levels?
- 4. What type of treatment would be helpful?

CASE STUDY TABLE 15-2.1 LABORATORY RESULTS

VENOUS BLOOD

Digoxin: 1.4 ng/mL, therapeutic 0.5–2.2 (1.8 nmol/L, therapeutic 0.6–2.8)

Na+: 137 mmol/L

K+: 2.5 mmol/L

CI-: 100 mmol/L

HCO₃-: 25 mmol/L

Mg2+: 0.4 mmol/L

Ion/free Ca2+: 1.0 mmol/L

Na 135-145

K 3.4-5.0

Cl 98-107

HCO3 23-29

Mg 0.63-1.0

Ca/ionized 1.16-1.32

