Pharmaceutical Organic Chemistry-1

Chapter-1: Introduction

Organic Chemistry: Definition

- The word Organic can be a biological or chemical term, in biology it means anything that is living or has lived. The opposite is Non-Organic.
- Organic Chemistry is unique in that it deals with vast numbers of substances, both natural and synthetic. مناعبه العضويه بانها تتعامل مع عدد كبير من المواد سواء كانت طبيعيه او substances, both natural and synthetic.

The clothes, the petroleum products, the paper, rubber, wood, plastics, paint, cosmetics, insecticides, and drugs

- But, from the chemical makeup of organic compounds, it was recognized that one constituent common to all was the element carbon.
 ولكن من التركيب الكيميائي للمركبات العضوية، تم الاعتراف بأن أحد المكونات المشتركة بين الجميع هو عنصر الكربون ٥.
- Organic chemistry is defined as the study of carbon/hydrogencontaining compounds and their derivatives

The Uniqueness of Carbon

- What is unique about the element carbon?
- Ower Why does it form so many compounds?
 - ? The answers lie
 - The structure of the carbon atom.
 - The position of carbon in the periodic table. الجدول الدوري
- These factors enable it to form strong bonds with
 - > other carbon atoms
 - > and with other elements (hydrogen, oxygen, nitrogen,
- Each organic compound has its own characteristic set of physical and chemical properties which depend on the structure of the molecule.

Atomic Structure

- Atoms consist of three main particles: neutrons (have no charge), protons (positively charged) and electrons (negatively charged).
 - ➤ Neutrons and protons are found in the nucleus.
 - ➤ Electrons are found outside the nucleus.

موزعه Electrons are distributed around the nucleus in مستویات الطاقه الرئیسیه. successive shells (principal energy levels). مستویات الطاقه الرئیسیه

Atom is electrically neutral.

i.e. Number of electrons = Number of protons

Atomic number of an element is the number of protons.

Atomic Structure

- The energy levels are designated by capital letters (K, L, M, N, ..) or whole numbers (n).
- The maximum capacity of a shell = $2n^2$ electrons.

```
n = \text{number of the energy level}. 2(رقم الغلاف من ناحية الترتيب)²
```

مثال: سعة الغلاف

For example, the element carbon (atomic number 6)

الثانى =2(2)²=8

6 electrons are distributed about the nucleus as

K L M N Shell Number of electrons

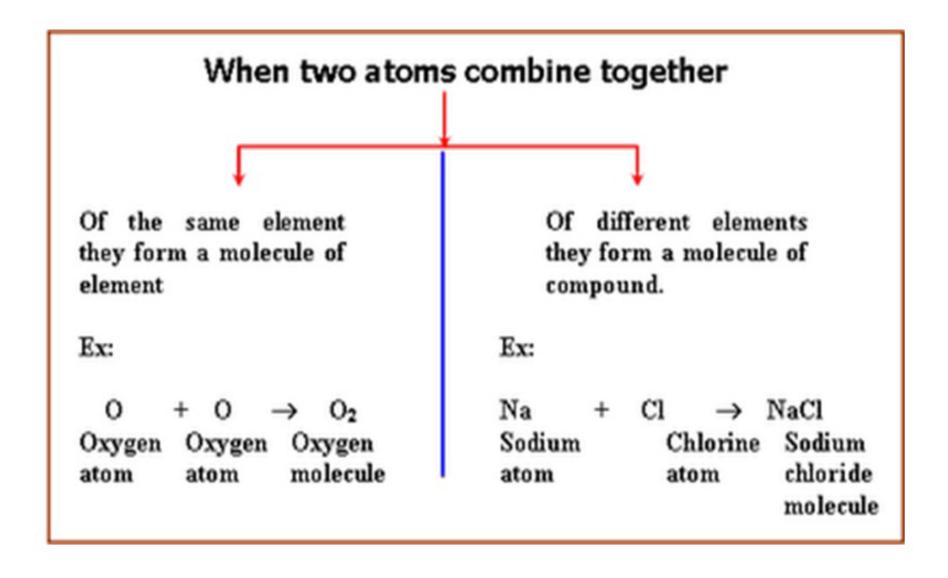
Atomic Structure

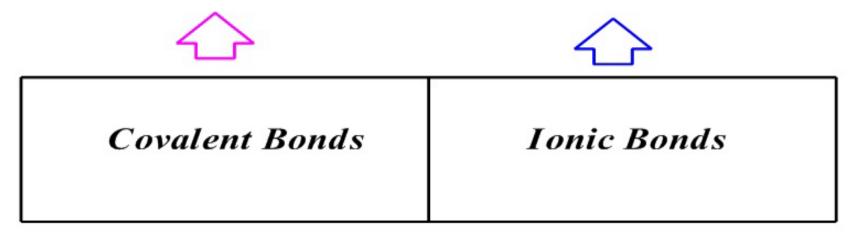
Valance Electrons: Electron-Dot

اخر مستوى طاقه

- الكترونات التكافؤ Structures

 Valance Electrons are those electrons located in the outermost energy مستوى التكافؤ او غلاف التكافؤ . (the valance shell). مستوى التكافؤ او غلاف التكافؤ
- **Electron-dot structures**
 - ➤ The symbol of the element represents the core of the atom.
 - ➤ The valance electrons are shown as dots around the symbol.


o In 1916 G.N. Lewis pointed out that: بالالكترونات النبيله كانت مستقره التكافؤ او مستوى التكافؤ او مستوى التكافؤ او مستوى النبيله كانت مستقره اللالكترونات النبيله كانت مستقره The noble gases were stable elements and he described their lack of


The noble gases were stable elements and he described their lack of reactivity to their having their valence shells filled with electrons.

- ➤ 2 electrons in case of helium.
- ▶ 8 electrons for the other noble gases.
- According to Lewis,

in interacting with one another atoms can achieve a greater degree of stability gement of the valence electrons to acquire the outer-shell structure of the closest noble gas in the periodic table.

بقول لك وفقا للويس انه التفاعل مع ذرات اخرى بيحقق درجه اكبر من الاستقرار عن طريق اعادة ترتيب الغلاف الاخير او مستوى التكافؤ حتى يصبح المدار الاخير كشكل اقرب للغازات النبيله

العناصر الموجودة على يسار الجدول الدوري تتخلى او تفقد من إلكترونات التكافؤ وتصبح أيونات موجبة الشحنة | onic

- Bonds (کاتیوناٹ).
 Elements at the left of the periodic table give up their valance electrons and become +ve charged ions (cations).
- Elements at the right of the periodic table gain the electrons and become -ve charged ions (anions). العناصر الموجوده على يمين الجدول الدوري تكتسب الإلكترونات وتصبح أيونات سالبة الشحنة (أنيونات). ٥
- o lonic bond

The electrostatic force of attraction between oppositely charged قوة التجاذب الكهروستاتيكي بين الأيونات ذات الشحنات المتعاكسة. ions.

$$\mathbf{A}^{\times} + \mathbf{B}^{\times} \longrightarrow \mathbf{A}^{+} + \begin{bmatrix} \mathbf{B}^{\times} \mathbf{B}^{\times} \end{bmatrix}^{-}$$
Electron donor Electron acceptor Cation Anion

$$\mathbf{A}^{+} + \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix} \longrightarrow \mathbf{A}^{+} \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix}$$
Electrostatic attraction

Ionic bond

O The majority of ionic compounds are inorganic substances.

Electronegativity Measures The Ability of An Atom To Attract Electrons

Increasing electronegativity

						H	D	
						2.1	erea	••
F	O	N	C	В	Be	Li	Decreasing	Li $\stackrel{\bullet}{:}$ F $\stackrel{\bullet}{:}$ F $\stackrel{\bullet}{:}$ $\stackrel{\bullet}{:}$ F $\stackrel{\bullet}{:}$
4	3.5	3	2.5	2	1.5	1	elec	••
Cl	S	P	Si	Al	Mg	Na	electronegativity	$\text{Li} \xrightarrow{+} \text{F} : \longrightarrow \text{Li}^{+} \text{F}^{-}$
3	2.5	2.1	1.8	1.5	1.2	0.9	egat	electron transfer He configuration Ne configuration ionic bond
Br						K	ivity	
2.8						0.8	<u></u>	

ب) الروابط التساهمية

B) Covalent **Bonds**

تصل العناصر القريبة من بعضها البعض في الجدول الدوري إلى تكوين الغاز النبيل المستقر من خلال مشاركةً ـ الكترونات التكافؤ فيما بينها.

 Elements that are close to each other in the periodic table attain the stable noble gas configuration

by sharing valence electrons O Covalent bond between them.

The chemical bond formed when two atoms share one pair of electrons.

 A shared electron pair between two atoms or single covalent bond, will be represented by a dash (-).

B) Covalent

Exambagds

H₂
$$H \cdot + \cdot H$$
 \longrightarrow $H \cdot H$ or $H \rightarrow H$ each H shares two electrons (He configuration)

Cl₂ $\circ Cl \cdot + \circ Cl \cdot \longrightarrow \circ Cl \cdot Cl \cdot \circ Cl \cdot$

اذا كانوا ذرتين متشابهتين فبصير تشارك بالتساوى لانهم بيحتوا على نفس الالكترونات الحره

B) Covalent

Bonds
 In molecules that consist of two like atoms;

the bonding electrons are shared equally

(both atoms have the same

O When two unike atoms, .

ذا كانوا ذرتين مختلفتين فبالتالي سوف يصبح التشارك غير متساوي وستسحب الذره ذات الكهروسالبية العاليه الكترونات الرابطه نحوها وبالتالى سميناهاpolar covalent bond

the bonding electrons are no longer shared equally (shared

A) Polar Covalent

Bond

A bond, in which an electron pair is shared

➤ The more electronegative atom assumes a partial negative charge and the less electronegative atom assumes a partial positive charge.

تفترض الذرة الأكثر سالبية كهربائية شحنة سالبة جزئية وتفترض الذرة الأقل سالبية كهربائية شحنة موجبة جزئية. $\delta + \delta - \delta + \delta - C - C - C - C$

B) Coordinate Covalent

 Bonds
 There are molecules in which one atom supplies both electrons to another atom in the formation of a covalent bond.

For example;

هناك جزيئات يزود فيها ذرة واحدة كلا الإلكترونين لذرة أخرى في تكوين رابطة تساهمية ٥ يعني واحد بيقدم زوج الالكترونات والثاني بيقدم الفلك الفارغ

H-N-H + H

Ammonia Hydrogenion (Lewis base) (Lewis acid) Ammonium ion

o Lewis

اللى بيقدم زوج الالكترونات بنسميه Lewis base

base The species that furnishes the electron pair to form a coordinate covalent bond.

Lewis acid

اللي بيقدم الفلك الاخير الفارغ بنسميه Lewis acid

The species that accepts the electron pair to complete its valance shell.

العدد التساهمى

How Many Bonds to an Atom? Covalence Number

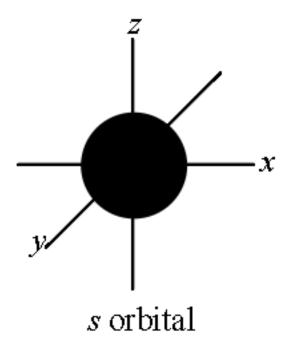
The number of covalent bonds that an atom can form with other atoms.

i.e. the covalence number is equal to the number of electrons needed to fill its valance shell.

Element	Number of	Number of electrons		
Cova	lence			
	valence electrons	in filled	valence shell	
numb	er			
Н	1	2	1	
C	4	8	4	
N	5	8	3	
0	6	8	2	
F, CI, Br, I	7	8	1	

المدارات الذريه Atomic

Orbitals

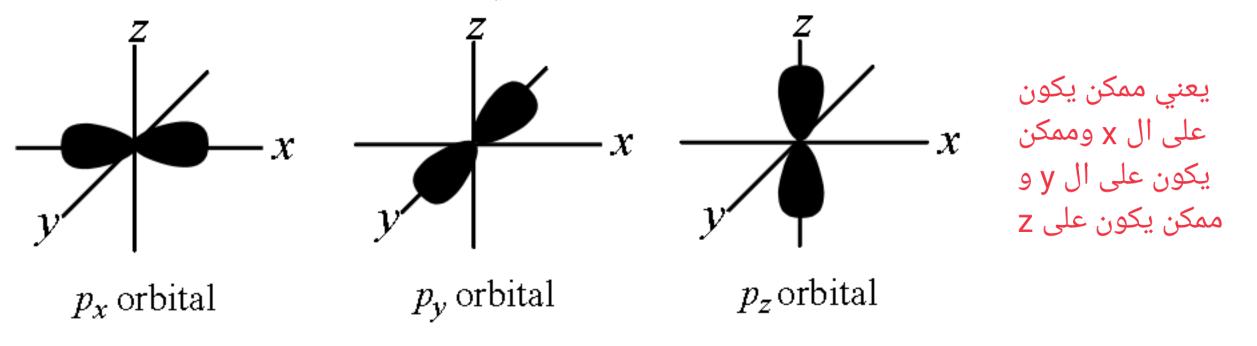

يمثل المدار الذري منطقة محددة في الفضاء من المرجح أن يوجد فيها الإلكترون ٥

- An atomic orbital represents a specific region in space in which an electron is most likely to be found.
- Atomic orbitals are designated in the order in which they are filled by the letters s, p, d, and f.
 - Examples: K shell has only one 1s orbital.

L shell has one 2s and three 2p $(2p_x, 2p_y)$ and $2p_z$.

 An s orbital is spherically shaped electron cloud with the atom's nucleus and its center.

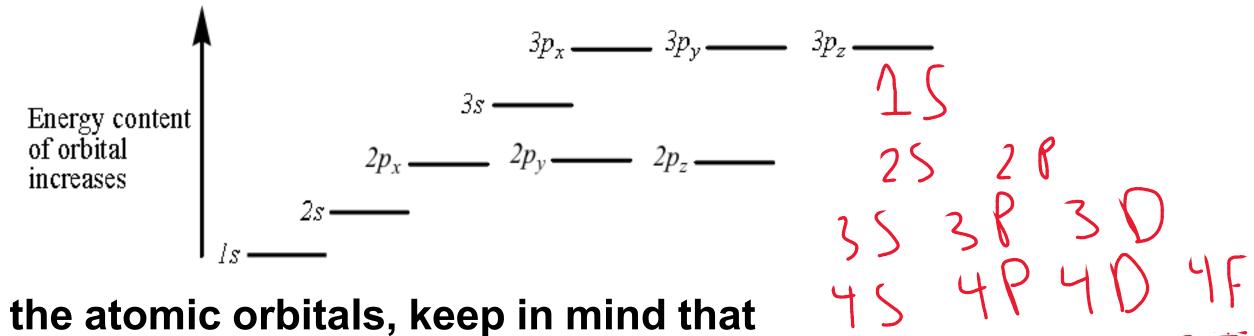
المدار s هو سحابة إلكترونية كروية الشكل مع نواة الذرة ومركزها.



Atomic Orbitals

هو سحابة إلكترونية على شكل دمبل، نواتها بين فصين.

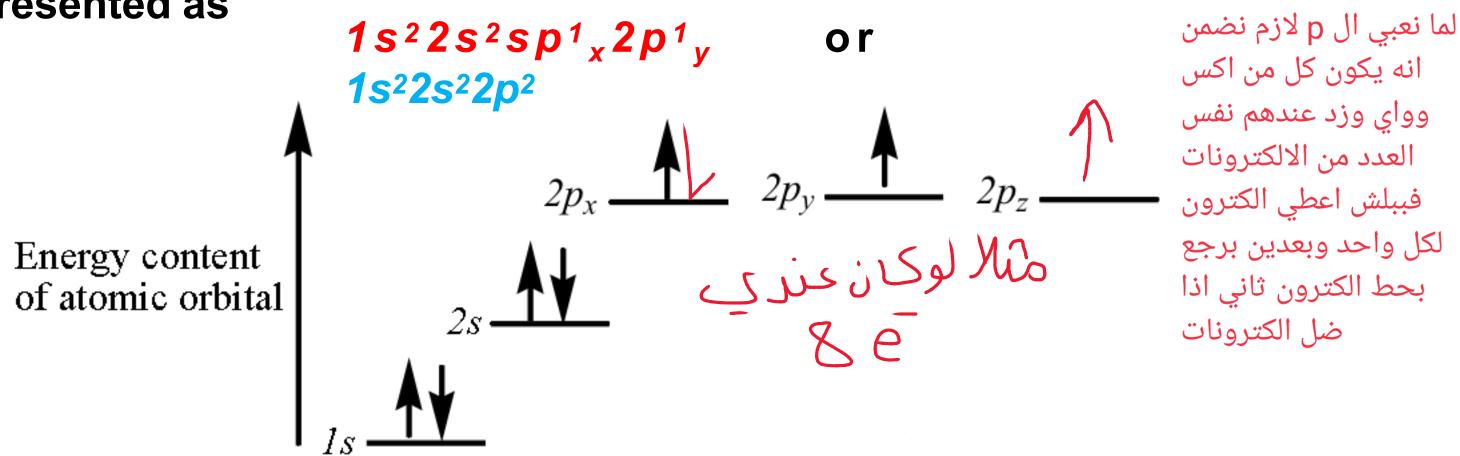
- A p orbital is a dumbbell-shaped electron cloud with the nucleus between the two lobes.
- Each p orbital is oriented along one of three perpendicular coordinate axes (in the x, y, or z direction).


كل مدار p موجه على طول أحد محاور الإحداثيات الثلاثة المتعامدة (في اتجاه x أو y أو z).

Atomic

Orbitals

An energy level diagram of atomic orbitals.



- When filling the atomic orbitals, keep in mind that
 - (1) An atomic orbital contain no more 2
 - Electrons fill orbitals of lower energy
 - Firsto orbital is filled by 2 electrons until all the orbitals of equal energy have at least one electron.

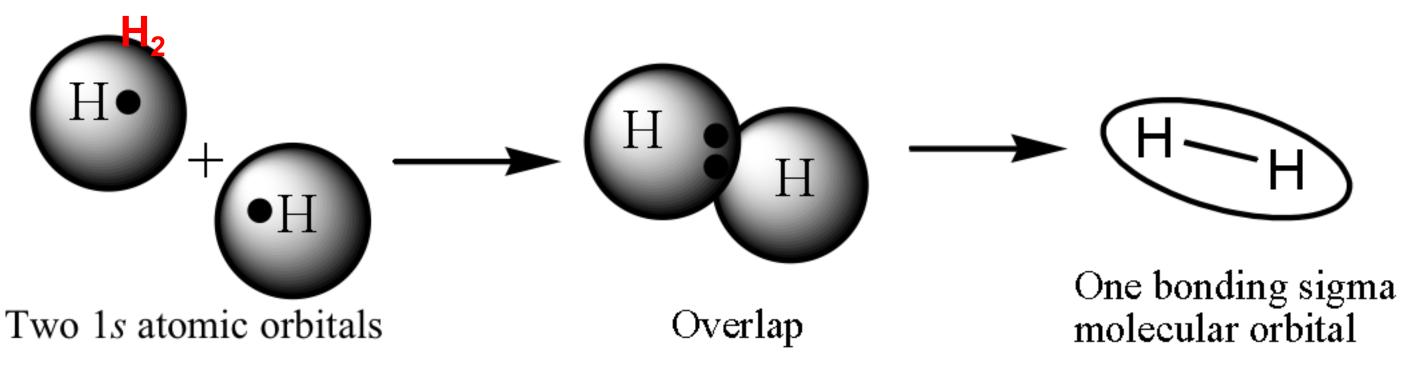
Atomic Orbitals

The electronic configuration of carbon (atomic number 6) can be

represented as

Energy level diagram for carbon.

المدارات الجزيئية


Shapes of Organic Molecules: Orbital Picture of Covalent Bond

Molecular

Orbitals

- A covalent bond consists of the overlap between two atomic orbitals to form a molecular orbital.
- Example:

Molecular orbital of

Molecular Orbitals

- Sigma bonds (σ bonds) can be formed from
 - ➤ The overlap of two s atomic orbitals.
 - ➤ The end-on overlap of two p atomic orbitals.
 - ➤ The overlap of two an s atomic orbital with a p atomic orbital.
- o pi bonds (π bonds) can be formed from the side-side overlap between two p atomic orbitals.

Bond Energy and Bond Length

الجزيء أكثر استقرارًا من الذرات المكونة المعزولة ٥

A molecule is more stable than the isolated constituent atoms.

This stability is apparent in the release of energy during the formation of the molecular bond.

عتضح هذا الاستقرار في إطلاق الطاقة أثناء تكوين الرابطة الجزيئية.

الحراره الناتجه من التكوين

Heat of formation (bond energy) هي الحراره الناتجه من تكوين الرابطه

The amount of energy released when a bond is

formed. طاقه تفكك الرابطه

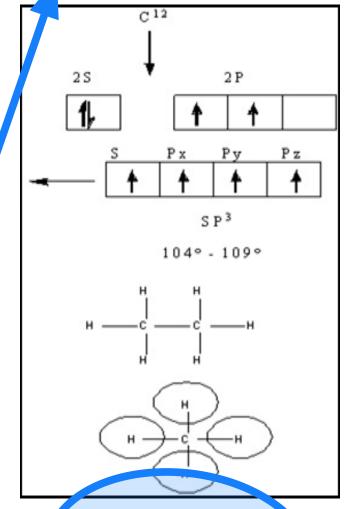
Bond dissociation energy

هي الطاقه التي يجب امتصاصها لتفكيك الرابطه

The amount of energy that must be absorbed to break

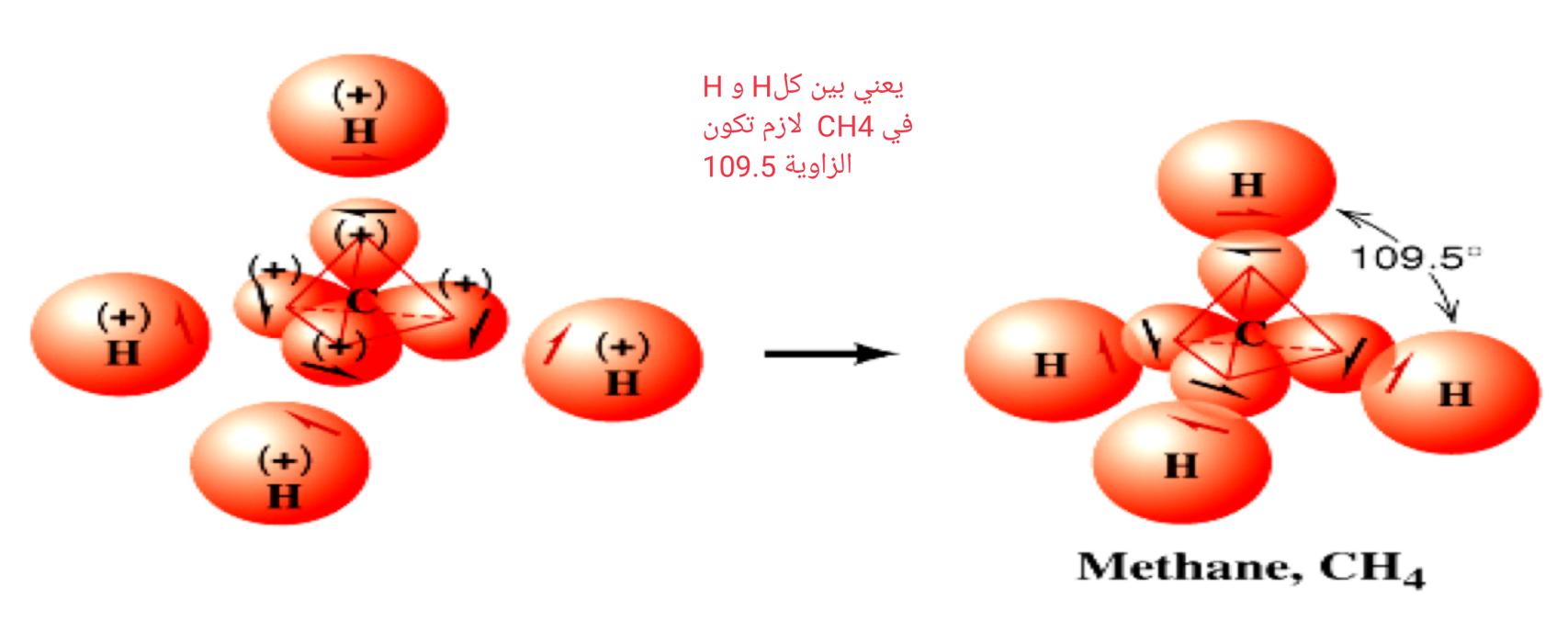
a bond, و طول الرابطه o Bond length

المسافة بين النوى في البنية الجزيئية.


The distance between nuclei in the molecular structure.

التهجين

Hybridization (Alkanes sp³)


- o In the case of alkanes sp^3 , the three 2p orbitals of the carbon atom are combined with its 2s orbital to form four new orbitals called " sp^3 " hybrid orbitals.
- Four hybrid orbitals were required since there are four atoms attached to the central carbon atom.
- These new orbitals will have an energy slightly above the 2s orbital and below the 2p orbitals as shown in the following illustration.
- Notice that no change occurred with the 1s orbital.
- Regular tetrahedron with all H-C-H bond angles of 109.5°.

هاي المدارات الجديده لازم تحتوي على طاقه تكون اعلى من25 واقل من 2p

Methan e

Hybridization (Alkanes sp3

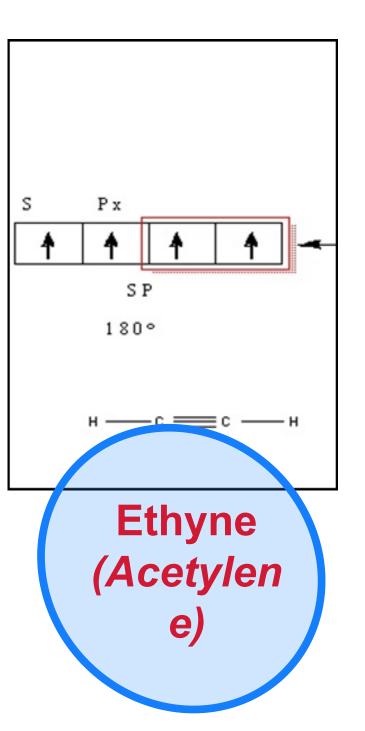
يتم دمج ،sp2 في حالة الألكينات (sp2 sp2 في حالة الألكينات (sp2 sp2 المدار p2 sp2 المدار sp2 sp2 المدار p2 sp2 المدار sp2 عا اثنين فقط من مدارات p2 المدار sp2 عا اثنين فقط من مدارات p2 المدار sp2 عا اثنين فقط من مدارات sp2 المدار s

O In the case of **alkenes** *sp*², the *2s* orbital is combined with only two of the *2p* orbitals (*since we only need three hybrid orbitals* المجموعات على أنها ذرات وأزواج غير *for the three groups. thinking of groups as atoms and non-bonding pairs*) forming three hybrid orbitals called *sp*² hybrid orbitals.

S Px Py Pz Orbitals (*since we only need three hybrid orbitals*) orbitals.

The other p-orbital remains unhybridized and is at right angles to the trigonal planar arrangement of the hybrid
 The other p-orbital remains unhybridized and is at right angles to the trigonal planar arrangement has bond angles of

(a) An sp^2 orbital (b) Three sp^2 orbitals (c) Three sp^2 orbitals and an unhybridized 2p orbital


نظرًا لأننا نحتاج فقط إلى ثلاثة مدارات) هجينة للمجموعات الثلاث التفكير في لتكوين ثلاثة مدارات هجينة (رابطة .sp² تسمی مدارات هجینة SP2 **Ethene** (Ethylen

Hybridization (Alkynes sp)

في حالة الألكاينات sp، يتم دمج المدار 2s مع مدار واحد فقط من مدارات 2p لإنتاج مدارين هجينين

- one of the 2p orbitals to yield two sp hybrid orbitals.
- سيتم ترتيب المدارين الهجينين بعيدًا عن بعضهما البعض قدر الإمكان بحيث تكون النتيجة ترتيبًا خطيًا ٥.
- The two hybrid orbitals will be arranged as far apart as possible from each other with the result being a linear arrangement.

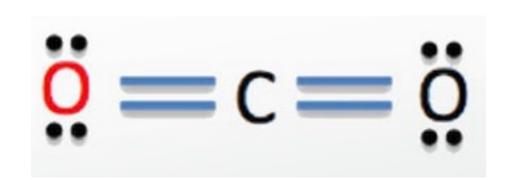
o The two unhybridized *p*-orbitals stay in their respective positions (at right angles to each other) and perpendicular to the linear molecule (180°).

Formal Charge

الشحنه الشكليه

هي الشحنة الصافية على كل ذرة من ذرات الجزيء أو الأيون. (التي تحتوي على رابطة تساهمية فقط)

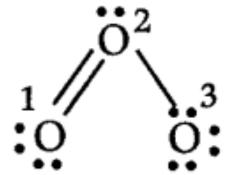
Formal Charge: is the net charge on each atoms of the molecule or ion. (which contain a covalent bond only)


How to calculate the Formal Charge (FC):

FC =
$$\frac{\text{Valence e}}{\text{in Free Atom}} - \left(\frac{\text{Total}}{\text{Nonbonding e}} + \frac{\text{Bonding e}}{2} \right)$$

Example: calculate the formal charge of CO2

FC for
$$O = 6 - (4 + 4/2) = 0$$


FC for
$$C = 4 - (0 + 8/2) = 0$$

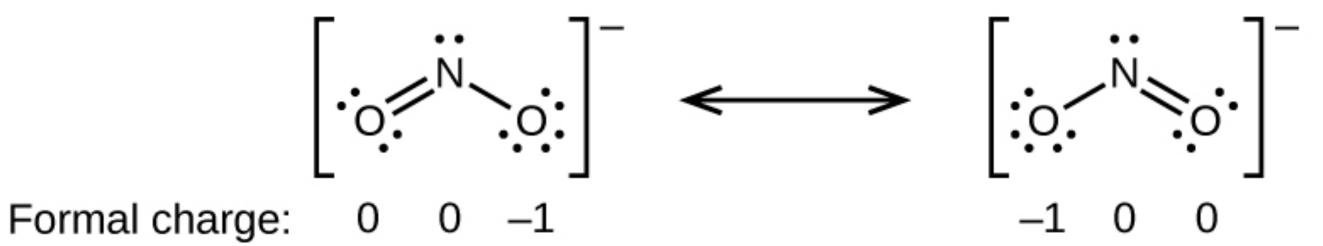
Example:

Formal Charg

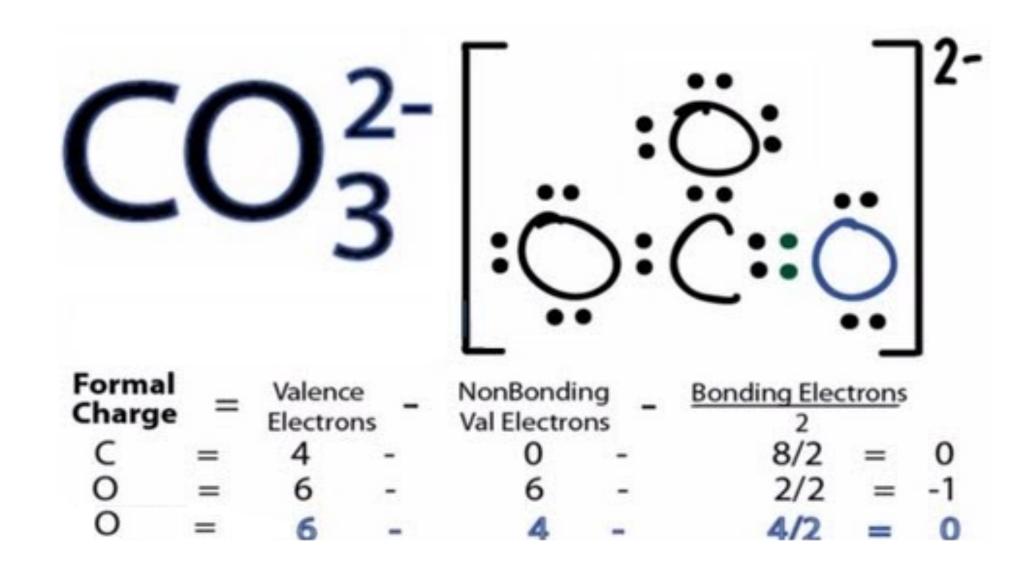
Lewis structure of O₃ is

Formal charge on O(1) = 6 -
$$(4 + \frac{4}{2})$$
 = 0

Formal charge on O(2) =
$$6 - (2 + \frac{6}{2}) = + 1$$

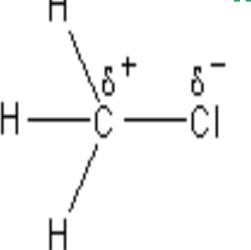

Formal charge on O(3) = 6 -
$$(6 + \frac{2}{2}) = -1$$

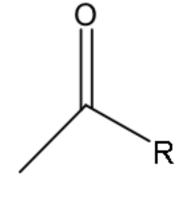
Hence we represent O₃ along with formal charges as follows.


Formal Charg

Example:

Formal Charg


Example:


- يمكن تعريف التأثير الحثي بأنه الإزاحة الدائمة للإلكترونات التي تشكل رابطة تساهمية (روابط سيجما) نحو العنصر أو المجموعة الأكثر كهروسالبية o الاثر الحاث او التاثير الاستقرائي
 - Inductive effect can be defined as the <u>permanent displacement</u> of electrons forming a covalent bond (<u>sigma σ bonds</u>) <u>towards</u> the more electronegative element or group.
 - The inductive effect is represented by the symbol, the arrow pointing towards the more electronegative element or group of elements.
 - (+ I) effect if the substituent electron-donating

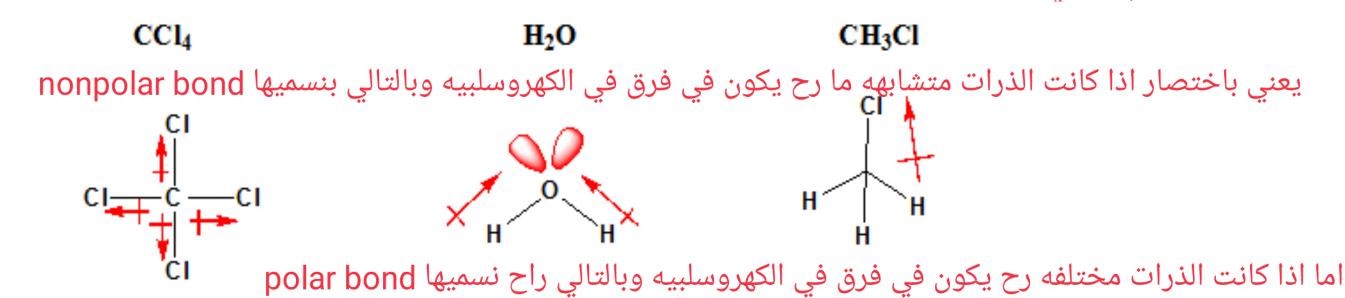
(-I) effect "fthe author" the allegation ing

H₃C ----- CI

يعني باختصار الاثر الحثي هو عباره عن انه الذره اللي بتملك كهروسلبيه عاليه او اعلى من الذره الاخرى تسحب الكترونات الرابطه نحوها

التأثير الموجب تدفع الالكترونات بعيدا

Electron-donating substituents (+I): -CH₃, -C₂H₅,....


Electron-withdrawing substituents (-I): -NO₂, -CN, -SO₃H, COOH, COOR, NH₂,

OH, OCH₃ التاثير السالب تسحب الالكترونات نحوها

Bond Polarity and Dipole Moment (µ)

العزِم القطبي او عزم ثنائي القطب

- O Dipole moment (depends on the inductive effect).
- A bond with the electrons shared equally between two atoms is called a nonpolar bond like in CI-CI and C-C bond in ethane.
- A bond with the electrons shared unequally between two different elements is called a polar bond.
- $_{\circ}$ The bond polarity is measured by its dipole moment (μ).
- Dipole moment (μ) defined to be the amount of charge separation (+δ and -δ) multiplied by the bond length.
 العزم القطبي=مقدار الشحنه المفصوله x طول الرابطه

 $\mu = zero$ $\mu \neq zero$ $\mu \neq zero$

Functional Groups

المجموعة الوظيفية هي جزء تفاعلي من جزيء عضوي أو ذرة أو مجموعة ذرات تمنح التي تمنح الجزيء خصائصه المميزه او المركب بشكل عام خصائصه المميزه

Functional Group is a reactive portion of an organic molecule, an atom, or a group of atoms that confers on the whole molecule its characteristic properties.

Class	General formula	Functional group	Specific
Alkane	RH	C – C (single bond)	H_3C-CH_3
Alkene	$R - CH = CH_2$	C = C (double bond)	$H_2C = CH_2$
Alkyne	R−C≡CH	c≡c (triple bond)	нс≡сн
Alkyl halide	RX	-X (X = F, Cl, Br, I)	H ₃ C - Cl
Alcohol	R-OH	-OH	H ₃ C - OH
Ether	R-O-R'	- C- O - C -	$H_3C - O - CH_3$
Aldehyde	R-Ğ-H	—ё <u>—</u> н	О Н-С-Н ,_ Н ₃ С-С-Н
Ketone	O R-C-R	-ç-ç-ç-	Н−С−Н, Н₃С−С−Н О Н₃С−С−СН₃
Carboxylic acid	О R-С-ОН	' о ' —ё-он	О H-С-ОН, Н ₃ С-С-ОН
Ester	0 R -C-OR	0 —Ü-OR	О H−С⊓ОСН₃ О
			O H₃C−Ö−OCH₃
Amine	R-NH ₂	-¢-NH ₂	H_3C-NH_2