

Industrial Pharmacy 1 Introduction

Particle size analysis

Dr. Isra Dmour Credit: Prof. Nizar Al-Zoubi

Introduction

Eategories of dosage forms تصنيفات أ عكال الجرعات

- 1. Solids: Powder, granulates, tablets, capsules
- **** Powder, granules
- 1. Liquids: solutions, Suspensions, emulsions, etc
- 2. Semisolids: creams, ointments, etc.

20% water 3. Gaseous ** في الماسك إلى بطلُّو عارات محدرة Production Development Drug of formulated of formulated Particle size and the synthesis medicine medicine lifetime of a drug Drug Administration Drug removed of medicine in body from body 5

,

P. J Lamed 1, 200 and

Particle size and the lifetime of a drug

الم العمليان التمهنية Particle size influence

- mixing (content uniformity for potent drugs, segregation)
- المحالي و المعلق و ا
- أ ميل أل نستاج نكبر الحرم لتحسين الله فعه أثناء العقبة كَ الْمِلِيَّ الْخِفْطُ لَالْ عَبَرُ الْهِلَ ؟ الْمِيسِينَ الْاَمِيْرِ عَادَة تَنْفِيْفُ شِكَلُ أَفِيْلُ كَانِهُ حَامَة العَلِي وَتَمَاسِكُ سِهُولَةً بِينَ لُوكَانَ كَثِرُ مِعِيْرَ مَ اللَّهِ اللَّهِ الْكَانِي (إِن الْمَالَةُ اللَّهِ اللَّهُ اللِيلَا اللَّهُ اللْمُل
 - drug release into solution في الأدوية ونعينة لذوباه دائمًا بجروصاحة البطوعن علم يعم تجفير حجم الجزيئيات ؛ ومن على الأدوية
 - (e.g. griseofulvin, tolbutamide, spironolactone, indomethacin and nifidipine) Minimize the size called : Micronization.

Nitrofurantoin optimal particle size is 150 µm

و الغائدة مائتم والكيرماره تكوم

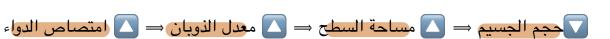
معالية زي المطلوبة.

3

Particle size and the lifetime of a drug

Particle size influence

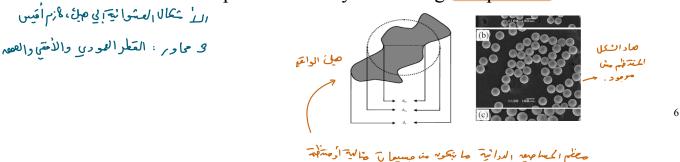
- The properties and behavior of various dosage forms:
 - suspensions: sedimentation rate, texture, taste, rheology
 - parenteral <u>suspensions</u>: *syringeability*, injectability and sustained release.
 - ophthalmic suspensions: irritation of the eye surface (small particle size is used)
 - inhalation aerosols: The position and retention of particles in the bronchopulmonary tract
 - topical formulation: grittiness (powder must be impalpable)


	Susp	parenteral susp	opthalmic	inhalabion	Topical	
مزعجة وتعلي جع الأم <i>زرع</i> علما ينظهم	و العسمان الكبيرة محمس خشن و والطمم المنسبة لل تذوب أسرع ف طع أسرع سنة الكبيرة العبسان العمارة	(sustained redease)	على زم تكويه جزئمان المعلم مهنيرة مدًّا (عادهٌ أمَّل من هلاه)	حکام و موله ن الجهازالتنسي لو کانت کبير: م يترسپنوالخد دالسختيرة و اُمال مع يومهاالقهارة وأمّل المعدومالات وعاد : مو اعماده	ا صام حسن عمد الما و الما و الما و الما و الما و الما و الما ما و الما	4

مرا يو حجم الجريء على عن المذوبان Effect of particle size on dissolution rate

is the diffusion coefficient of the solute in solution,

S is the surface area of the exposed solid \Rightarrow inversely proportional to particle size


h is the thickness of the diffusion layer.

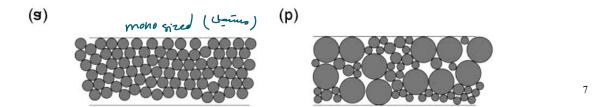
Particle size

- When determining the size of large solid usually we need to measure على يق من المنطل على المنطل
 - When determining the size of regular particles like spheres or cubes, it is possible to describe the size using one dimension (diameter or length).

 ا ما النكل المنتظم ن نمد راجاكاني (خل تياس القطر للرة) او أول النهام المربع)
 - If the particles <u>are mono-sized</u> (have the same size) then it is possible to describe the particle size by measuring <u>one particle</u>.

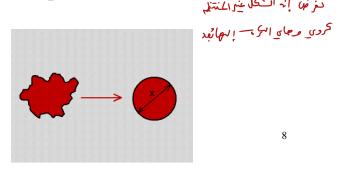
Diffusion layer

Particle size


• However powders generally are composed of particles that are:

هادالواعي

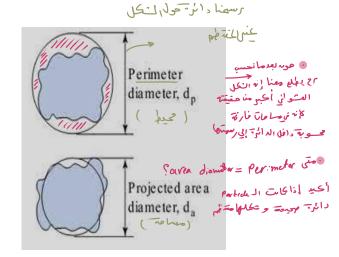
irregular in shape


with different sizes

- مفيرة جدًا
 Are very small in size to allow measuring of dimensions المتاس أبعادها ما مناقله ما مناقله المتاس ا
- In order to give good representation the size of relatively large number of particles should be determined. عناسية ناعنا قياس سيم المجمع عازم آخذي.

Particle size للك حبان السائمة مثن اش على أمهاك الهة وأفين (بهادها

- For these reasons it is <u>impractical</u> to measure more than one dimension.
- For this reason, solids are considered to approximate to a **sphere**, which can then be characterized by determining its diameter.
- This is an <u>approximate</u> representation of the particle size and is referred to as *equivalent diameter* of the particle.


Equivalent diameters

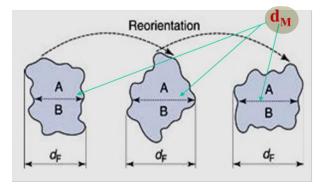
Projected perimeter diameter (dp)

The diameter of a circle that has the same <u>perimeter</u> as the projected image of the particle.

Projected area diameter (da)

The diameter of a circle that has the same <u>area</u> as the projected image of child child the particle.

Ç


Equivalent diameters

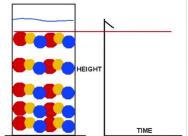
هوای أحد صاسین علی طرف البحزی و Feret's diameter (d_F) ما سنه وین حابدی ولاسانه بینهم می

• The mean distance between two parallel tangents to the projected particle perimeter

Martins diameter (d_M)

The mean length of the chord separating the projected particle into two equal areas.

Fig. 10.3 Influence of particle orientation on statistical diameters. The change in Feret's diameter is shown by the distances, $d_{\rm F}$; Martins diameter $d_{\rm M}$ corresponds to the dotted lines in the midpart of each image.


Equivalent diameters

Volume diameter (d_v) عَظْمُ الْحُرْثِ إِلِي الْمِهَا نَفْنِ حِمِ الْجِرِي وَ الْحِرْثِي وَ الْجِرِي وَالْجِرِي وَ الْجِرِي وَالْجِرِي وَالْجِي وَالْجِرِي وَالْجِرِي وَالْجِي وَالْجِيلِي وَالْجِي وَالْجِي وَالْجِي وَالْجِي وَالْجِيلِي وَالْجِيلِي وَالْجِيلِي وَالْجِيلِي وَالْمِنْ وَالْجِي وَالْجِيلِي وَالْجِي وَالْجِيلِي وَالْمِلِيِي وَالْجِلْمِ الْمِلْعِي وَالْمِلِي وَالْمِلِي وَالْمِلِي وَالْم

• The diameter of a sphere that has the same volume as the particle.

خُطراري إلى الم نس Stokes diameter (dst) > (lpijs) Particle I er sed invent of ion robe

• The diameter of a sphere that has the same sedimentation rate as the particles

11

Sieve diameter (d_s)

• The particle dimension that passes through a square aperture

م قديع ألمول غل محكالمرسعة والل الجوىء

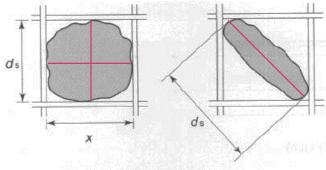
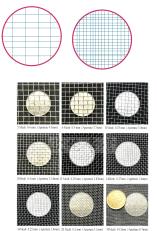
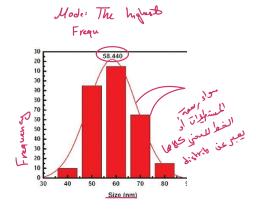




Fig. 10.7 Sieve diameter d_s for various shaped particles

الله ما تل * mesh مازاد حير الله على مازاد حير



Description of particle size

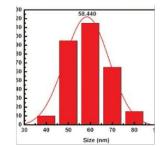
دمن تقريبي لحج الجزيئات في العية Mean particle size

• The mean particle size of an analyzed sample can be considered as a rough description for the size of sample.

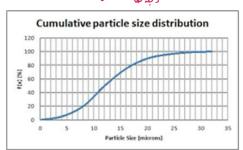
13

Particle size distribution

- The distribution of particles into different size ranges can be plotted in the form of <u>histogram</u>.
- A histogram presentation allows different particle size distributions to be compared.
- The value of the peak is the <u>mode</u> (highest frequency)


Presentation of size distribution

كين صكن أنهل توزيع العنيات؟


1) Frequency distribution data

2) Cumulative frequency distribution data

بتي مناع علي علي علي علي They are either <u>under size</u> or <u>oversize</u>

1) Frequency distribution data

2) Cumulative frequency distribution data

1 /

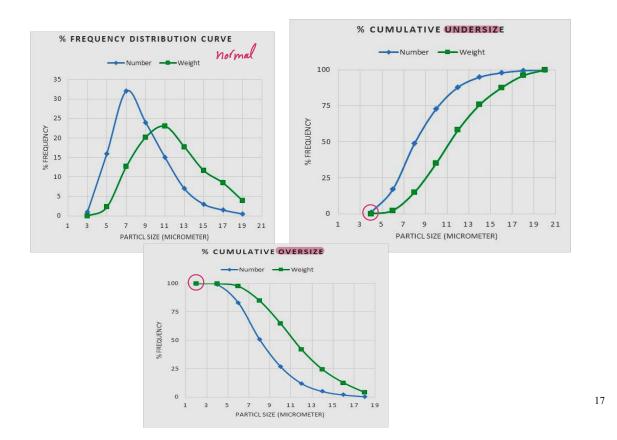
Presentation of size distribution الما الماليانات الماليات الماليانات الماليانات الماليات الماليانات الماليانات الماليات الماليا

عند في العسولة لما يجد عناتصلة ع إمنا

Number and weight distributions

منعبي مالوزيه مش عدد بزرئيات

- Frequently, we are interested in obtaining data based on a weight, rather than a <u>number</u> distribution. How ?!
- This can be obtained directly by methods such as <u>sieving</u> and <u>sedimentation</u>.
- Number distribution can be **converted** to weight distributions and vice versa.


15

يه كل بجزيمات نفس المددة في أكيد المهم ننس المشافة لي

2	أطفى حبم
20	و أي واهم
العتران ي	ف آنا بحط نی مارد

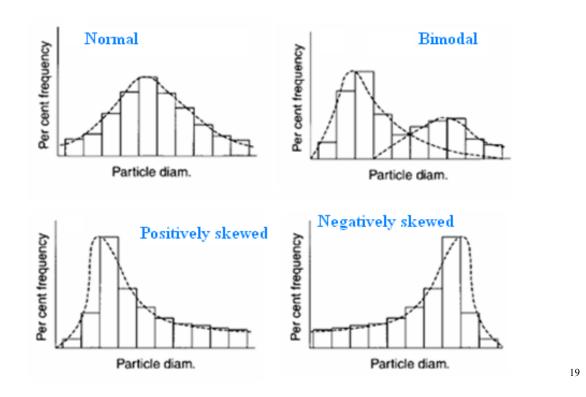
			(3) Number		بمحومل الأخداء إلى ونزمه		(7) Cumulative	(8) Cumulative	(9) Cumulative	(10) Cumulative	
			of particles		- m 18		percent	percent	percent	percent	
		(2) Mean of	in each		-	(6) Percent	frequency	frequency	frequency	frequency	
	(1) size	size range,	size range,	(4) Percent	ثمابتية	nd3	undersize	undersize	oversize	oversize	
	range	d (μm)	n	n	(5) nd3	(Weight)	(Number)	(Weight)	(Number)	(Weight)	
	2.0-4.0	9+4 2 = 3	2	2 100 = 1	$2 * 3 = 54 \frac{5}{12}$	0.03	1 1	0.03= 0.03	100	100	
	4.0-6.0	5	32	16	4000	2.31	1+16:17 0.	3+25-2.34	100-1 = 99	99.97 <i>=10</i>	- 0.63
m	6.0-8.0	7	100 de 64	32	21952	12.65	+32- 49	14.99	9-16=83	97.66 = 0	9.97-2.31
	8.0-10.0	8 <u>+10</u> =9	48	24 4	⊶' ₌34992	20.16	73	35.15	83 <i>-32</i> •51	85.01	
	10.0-12.0	11	30	15	39930	23.01	88	58.16	27	64.85	ترڪيزي علي
	12.0-14.0	13	14	14 x100=7	30758	17.72	95	75.88	12	41.84	يويزين upper limit undersize باك يغ
	14.0-16.0	15	6	3	20250	11.67	98	87.55	5	24.12	undering of is
	16.0-18.0	17	3	1.5	14739	8.49	99.5	96.04	2	12.45	
	18.0-20.0	19	1	0.5	6859	3.95	100	99.99	0.5	3.96	4 4 1 14
			Σ n = 200	100	173534	99.99					lower limit .
عادم بي									lower limit is		
% FREQUENCY DISTRIBUTION CURVE			100 %	% CUMULATIVE UNDERSIZE			% CUMULATIVE OVERSIZE				
Number — Weight				Number — Weight			→ Number → Weight				

Description of particle size

Types of distributions -

ده فا دانتهسی بعدر آنوع ندر امن سیان حجمها کیرو کامین حجمها کیرو کامین خ

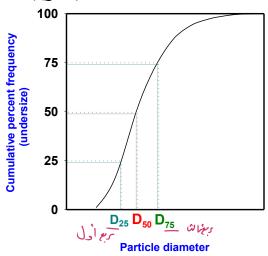
• Normal distribution: The mode separates the curve into two symmetrical halves.


م عده دیم التجاه امجز سال آ الاحجها کس **Positively skewed**: A frequency curve with an elongated tail towards the higher size range.

The higher size range and a size range.

- Negatively skewed: A frequency curve with an elongated tail towards the lower size range.
- **Bimodal**: The frequency curve containing two peaks (two modes)

فليط صمير+ كبير



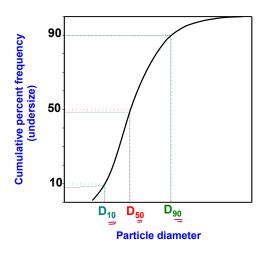
Presentation of size distribution

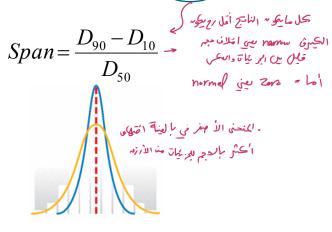
Evaluation of degree of skewness

قديد المنخى منرن للمن أواليسام

 The degree of skewness can be estimated by determining interquartile coefficient of skewness (*IQCS*)

$$IQCS = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{50})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{50} - D_{50})}{(D_{75} - D_{50}) + (D_{50} - D_{25})} = \frac{(D_{75} - D_{50}) - (D_{75} - D_{50})}{(D_{75} - D_{50}) + (D_{75} - D_{50})} = \frac{(D_{75} - D_{50}) - (D_{75} - D_{50})}{(D_{75} - D_{50})} = \frac{(D_{75} - D_{50}) - (D_{75} - D_{50})}{(D_{75} - D_{50})} = \frac{(D_{75} - D_{50})}{(D_{75} - D_{50})} = \frac{($$


Cumulative frequency distribution curves.


Point D_{50} corresponds to the median diameter; D_{25} is the lower quartile point and D_{75} is the upper quartile point.

Presentation of size distribution

Evaluation of distribution width > در عان مود ا بنك مه في ورمان جد ا دالعكي

The size distribution width can be estimated by determining Span

• Note: D_{90} , D_{50} , D_{10} are values corresponding to 90, 50 and 10% in the cumulative undersize curve.

Particle size analysis methods

Microscope methods

Equivalent diameters

 d_a , d_p , d_F and d_M can be determined

Range of analysis

- Light microscope $(1 1000 \mu m) \rightarrow 20$
- Scanning electron microscope (0.05 1000 μm)
- Transmission electron microscope (0.001 0.05 μm)

1-1000 Am

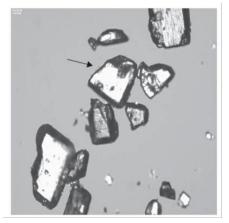


Image by light microscope 2D

0.001 - 0.05 Um

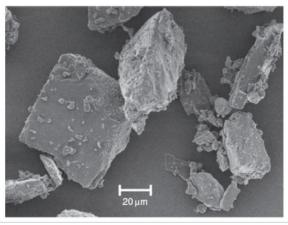
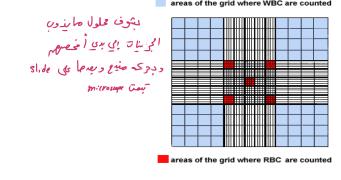


Image by scanning electron microscope(SEM)

23

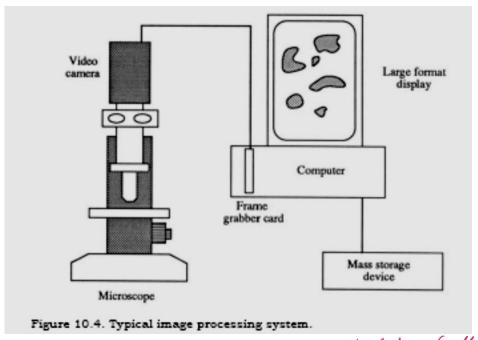
Particle size analysis methods

Microscope methods


Sample preparation

Techniques

سanual به تان


Semiautomatic

Particle comparator

- Image shearing evepiece (double prism arrangement) اخذ مور دا المعنة و اشوف قديد ميل الما يكوم ميها رما حوه عشام يله مهورة المعنة و اشوف قديد ميل الما يكوم ميها رما حوه عشام يله مهورة المعنة و اشوف قديد

A video camera is used to transform the image to a microprocessor where - acr lugbe ar manipulations and calculations are done

Sieve methods

Equivalent diameter Sieve diameter (d_S)

Range of analysis

Available range: (5 - 125 000 µm)

ISO range: (45 - 1000 μm)

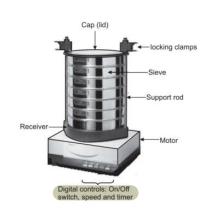
Sample preparation

- Wet sieving: for suspensions and cohesive powders

ا في المرادة والمادة والمرادة المراجد المراجد

Sieve methods

Techniques

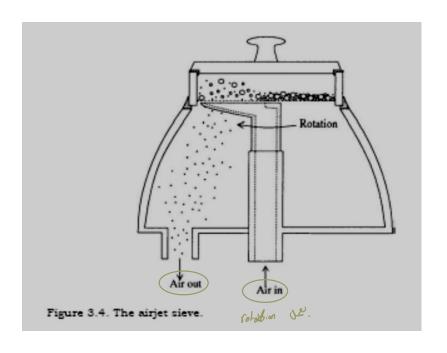

أ اهميّا أن Vibrated sieving:

- Uses a sieve stack (usually 6-8) sieves)

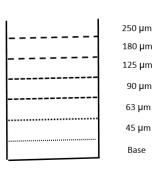
 The Partialog
 - The Particles are retained on sieve mesh corresponding to the sieve diameter.

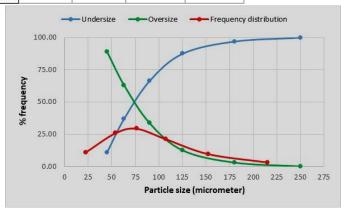
لمن تملد على Air-jet sieving:

- Uses individual sieves starting from that of مارية مخارز بحث المعربة الزر بحث المعربة الزر بحث المعربة المعرب
- <u>Vacuum</u> is applied to encourage particles to pass through sieves.



27

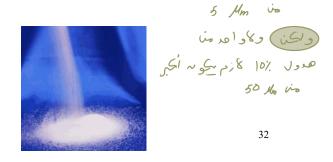



Vibrated sieving:

Air-jet sieving:

(1)	(2)	(3)		(4)	(5)	(6)
Sieve size	mean of	Sieve f	ractions	<u>Nominal</u>	%	%
range (µm)	size range	فهات	وزم الجوسيات إلى	aperture	Cumulative	Cumulative
	upper limit +low	g di	على الغرطال الأ	size (µm)	undersize	oversize
	2			عشام أعِرِي أي		
		wt (g)	∞ wt%	visi seive		
>250		0.02 4%	₹ = 0.04	250	99.96	0.04
180-250	215	1.32	2.96	180	96.99	3.01
125-180	152.5	4.23	9.50	125	87.49	12.51
90-125	107.5	9.44	21.19	90	66.30	33.70
63-90	76.5	13.1	29.41	63	36.89	63.11
45-63	54	11.56	25.95	45	10.93	89.07
<45	22.5	4.87	10.93	0	0	100
		Sum=44.54				

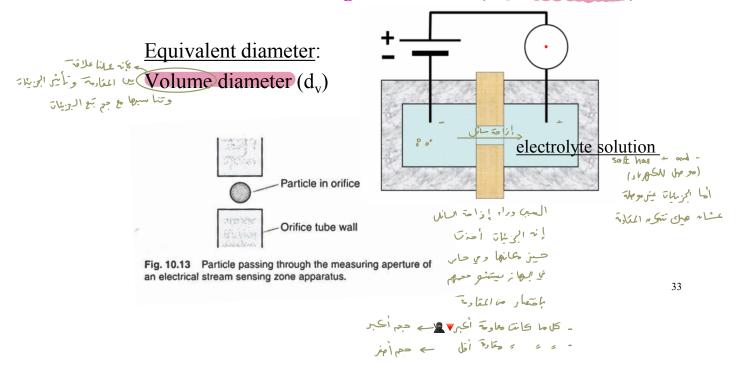
Standards for powders based on sieving


• Standards for pharmaceutical powders are provided in **pharmacopoeiae**, which indicate the degree of <u>coarseness</u> or <u>fineness</u> depending on percentage passing or not passing through certain sieves.

• e.g. BP	Table 12.1 Powder Pharmacopoeia	grades spe	cified in British
عرب عسا حم الري و الي ال به ومنه	Description of grade of powder العنة عَرَف الله الله الله الله الله الله الله الل	Coarsest sieve diameter (µm)	Sieve diameter through which no more than 40% of powder must pass (µm) wo 40% is
نشن 🗢 کین اعرب اِنه عینن منهم 🚜 ۲۵۵ مرام 🚜 ۲۵۵ مرام	Coarse Moderately coarse	1700 710	355 30 250 250 250 250 250
والثاني ١٤٦٨ وعرصالعينة أولااي عل	Moderately fine	355	180
١٥٥٥ و خزم يعبر كلها ، و بعدها على 365	Fine نام	180	_
كانم ملير أكثرت (40) من المرساة	الله الله Very fine	125	_
Coarse vies (for 41%) os			

Standards for powders based on sieving

• Some Pharmacopoeia define another size fraction, known as '<u>ultrafine</u> powder'.


• In this case it is required that the maximum diameter of at least 90% of the particles must be no greater than 5 μm and that none of the particles should have diameters greater than 50 μm.

31

very fine is just !

Electric stream sensing zone method (Coulter counter)

Particle size analysis methods

لثوح

Electric stream sensing zone method (Coulter counter)

Principle of measurement

- Powder samples are dispersed in an <u>electrolyte solution</u> to form a very dilute suspension.
- The particle suspension is drawn through an orifice where electrodes are situated on either side and surrounded by electrolyte solution.
- As the particle travels through the <u>orifice</u>, it displaces its own volume of electrolyte solution.
- The <u>change in electrical resistance</u> between the electrodes is proportional to the volume of the particle (volume of electrolyte displaced)

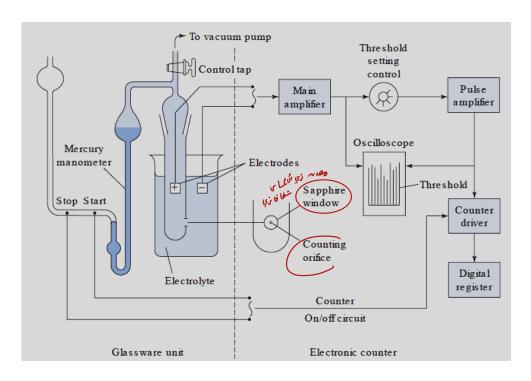
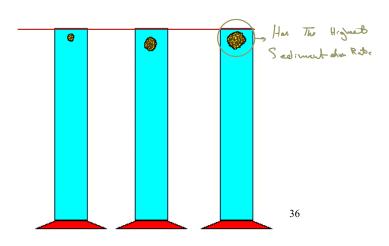


Diagram of electrical sensing zone apparatus

Sedimentation methods


استخدام افيا دنية لمونة جم الري،

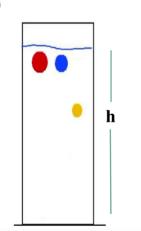
Range of analysis

الحادثية الأعجام for gravitational ~ 5 - 1000 μm

for centrifugal ~ 0.5 - 50 μm

المحادث الم

Sedimentation methods


Equivalent diameter: Stokes diameter (d_{st})

• Stokes equation:

$$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$

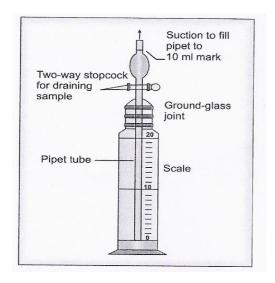
 $\cdot \mathbf{d}_{st}$ = Stokes diameter,

- η = viscosity of fluid \uparrow seekin \downarrow
 - • \mathbf{h} = height or sedimentation distance,
 - ρ_s = density of solid,
 - • ρ_f = density of fluid,
 - • \mathbf{g} = the acceleration due to gravity, 981 cm/s = 2
 - $\bullet t = time$

Particle size analysis methods

Sedimentation methods

Principles of measurement


- Particle size distribution can be determined by examining the powder as it sediments out.
- The powder is dispersed uniformly or introduced as a thin layer in a fluid.
- Techniques can be divided into two main categories.

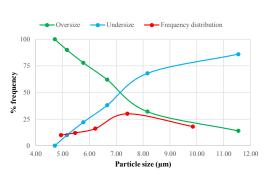
Sedimentation methods

عِلْ بهي أَمُونَ جم المِ سَارِة به ، 30

- 1 Pipette method (Andreasen pipette) البابية كالمالية كالمالية المالية المالي
 - In this method known volumes of the suspension are withdrawn, at various time intervals, from bottom (lower set limit).
 - The amount of solid is determined in each volume.
 - The particle diameter corresponding to each time period is calculated from Stokes' law.
 - The amount of solid determined for each time interval is the weight fraction having particles of sizes more than the <u>size obtained</u> by the <u>Stokes' law</u> for that time period.

• A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec.

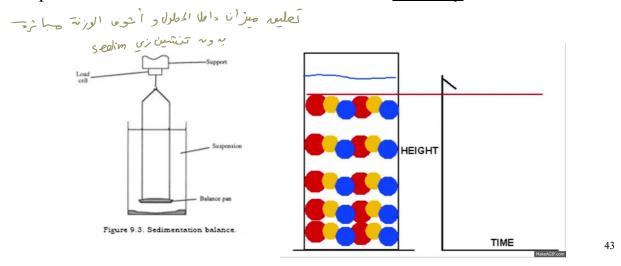
 $d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$


ے اکید ایک دجم رہ بیر سبادل	Time	Particle size	Size range	Mean of size range	wt of sample collected	wt	Cumulative undersize	Cumulative Oversize
حجمره بيرسب اول	(se c)	(µm)	(µm)	(µm)	(g)	(%)	(%)	(%)
) ئىراخى	- 600	11.54	>11.54		0.7	14	86	14
ر می	1200	8.16	8.16-11.54	9.85	0.9	18	68	32
	1800	6.66	6.66-8.16	7.41	1.5	30	38	62
	2400	5.77	5.77-6.66	6.22	8.0	16	22	78
	3000	5.16	5.16-5.77	5.47	0.6	12	10	90
	3600	4.71	4.71-5.16	4.94	0.5	10	0	100
					$\Sigma = 5$			

 $\int_{c+}^{c} = \int_{c}^{\frac{18\% c \, 0 \, 18 \, 26}{(5.6 - 1.01) \, 29 \, 1 \, 18 \, 1800}} = \int_{c}^{\frac{3.6}{8/05029}} = 6.66 \, 10^{-6} \,$

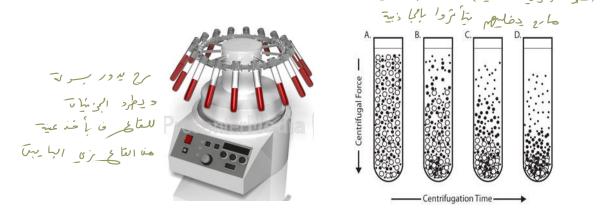
42

• A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec.


Time	Particle size	Size range	Mean of size range	wt of sample collected	wt	Cumulative undersize	Cumulative Oversize
(sec)	(µm)	(µm)	(µm)	(g)	(%)	(%)	(%)
600	11.54	>11.54		0.7	14	86	14
1200	8.16	8.16-11.54	9.85	0.9	18	68	32
1800	6.66	6.66-8.16	7.41	1.5	30	38	62
2400	5.77	5.77-6.66	6.22	0.8	16	22	78
3000	5.16	5.16-5.77	5.47	0.6	12	10	90
3600	4.71	4.71-5.16	4.94	0.5	10	0	100
				$\Sigma = 5$			

Sedimentation methods

Balance method


The increase in weight of sedimented particles falling onto a balance pan suspended in the fluid is recorded with time. **Gravity**

Sedimentation methods

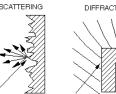
Alternative technique

• It is the application of centrifugal sedimentation to make <u>quicker</u> the sedimentation of small particles.

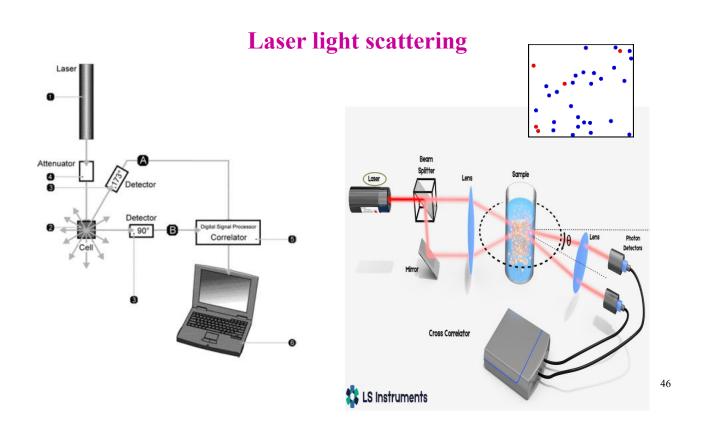
Laser light scattering methods

على المجزي، بحوم حم (مجزي، على جا بجس حم (مجني، الذو تعالم المتشبت و بخالها المتشبت و بخالها المتشبت و المحال المحال المتشبت و المحال المحال المتشبت و المتشبت و المحال المتشبت و المحال المتشبت و المحال المتشبت و المحال المتشبت و المتشبت و

Principle of measurement: Interaction of laser light with particles


1) Fraunhofer diffraction

• This is based on forward scatter (small angle change) of laser light by particles, which is detected, amplified and analyzed by microprocessor.


Range of analysis = 0.5 - 1000 mm $\times 10^{-9}$

• Sample is liquid orair-suspendedd

العينة يا بتكرم في سائل أو معلقة ع الهواد

Laser light scattering methods

2) Photon correlation spectroscopy (PCS) الريح الدي الذي الله . It is termed also Dynamic light scattering (DLS)

- This is based on the Brownian movement (random motion of small particles or macromolecules caused by the collisions with the smaller molecules of the
 - suspending fluids) . و صورته صاني العجالة و يعتم ان العجالة و Range of analysis ~ 0.001 1 µm
 - PCS analyses the constantly changing patterns of laser light scattered or diffracted by particles in Brownian movement and monitors the rate
 - Calculation of size is based on Stokes-Einstein equation:

$$D = \frac{1.38 \times 10^{-12} T}{3\pi \eta d} m^2 s^{-1}$$
 حین میں مثابہ میل انقلام عبل انقلام عبل

$$d_{sp} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$

- T = absolute temperature, d = diameter, η = viscosity of liquid,
- D = Brownian diffusion

47

Selection of particle size analysis method

Factors to be taken into considerati

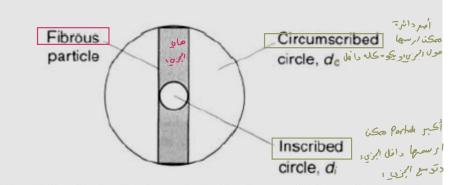
- 1. Size range of powder | Solimin 5-1000 Mm

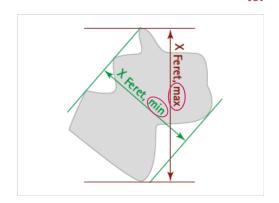
 Solimin 4 has loge | 2. Amount of sample If sample is very small we can use microscopy but we can not use sieving
 - 3. Speed of analysis
 - 4. Accuracy of results For Potent / toxic drugs
 - 5. Cost
 - Physical nature of material (like Agglomeration and cohesiveness) non coherve | cherve wef

8 زم يكوسني أدوال تكشف عن عكل الجيئلة

Influence of particle shape

() Circularity = di/dc تقيس دانرج الجزيء (0-1) كل ما كانما رهية أوْنِ لا 1 مع تكوم أُوْنِ للدائرة) و حَوْنِ العَلَيْةُ وَفُ الرَّمِمْ وَعُنَا الرَّمِمُ وَفُ الرَّمِمُ وَفُ الرَّمِمُ وَفُا الرَّمِمُ وَفُا الرَّمِمُ وَفُا الرَّمِمُ اللَّهِ بِينَ لَا الْخَدَامُ الْمُنْ اللَّهِ اللَّهُ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهُ اللَّهُ اللَّهِ اللَّهُ اللِّهُ اللَّهُ اللِّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللِّهُ اللَّهُ الْمُعْلِمُ اللَّهُ الْمُعْلِمُ اللَّهُ الْمُعْلِمُ اللَّهُ الْمُعْلِمُ اللَّهُ الْمُلْعُ اللَّهُ الللِّهُ الللْمُولُ اللْمُلْمُ الْمُلْعُلِيلِ الْمُعْلِمُ الْمُلْمُ الْمُلْمُ الْ




Fig. 10.6 A simple shape factor is shown which can be used to quantify circularity. The ratio of two different diameters (d_i/d_c) is unity for a circle and falls for acicular particles.

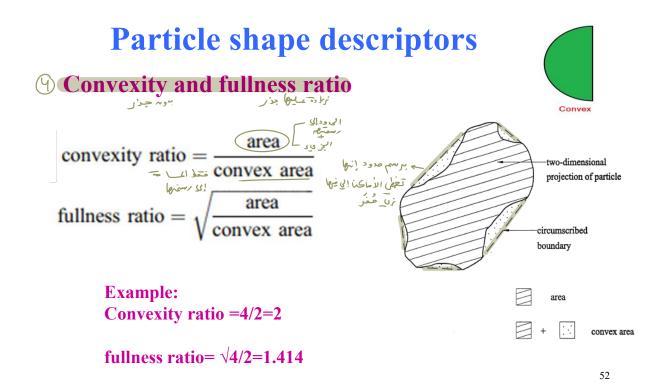
والحزيء بكومه والري مهجم 7 = d; = de ~ 5-16 49

Particle shape descriptors

الما الله عبد " المهامة عبد " المهامة عبد " المهامة عبد المهامة عبد المهامة عبد المهامة عبد (وانهمة) عبد المهامة عبد المهامة عبد المهامة عبد المهامة عبد المهامة عبد المهامة المها diameter is another measure for the particle shape. ويجوزوا المترازيل

• = df_{min}/df_{max}

نرط د. من الاحكورة إسراء


• Equant particles (e.g., spheres, cubes) with a value near 1. • Elongated particles (e.g., rods, ilbers, needles) with a value significantly less than 1.

Particle shape descriptors

ع شامه أعرى شكل الجيء **Sphericity**

- بكور عندى وزي و تكامها عشوانی میمون سساد و جم کم وبتيل كرة بنس العج فكلا معل عندم متس الحج بس مش نفس سامة الطح ف سبوف particle surface area وحسامة سطع الكوة دبعتسمهم على بعبى دبغلع نابح s phared the particle: دني دايمًا أمرَ ب المواصد و بعيد عن الرمغ مين أترب للدائرة المعيد
- The sphericity S is ratio surface area of a sphere (with same volume as the given particle) the surface area of

Shape	Spherecity
Tetrahedron	0.671
Cube	0.806
Dodeca- hedron	0.910 أخرب للواعد أديب للدائر

