

STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Paired t-test

The paired sample t-test has two competing hypotheses, the null hypothesis and the alternative hypothesis.

• The null hypothesis assumes that the true mean difference between paired sample = zero.

• The alternative hypothesis can take one of several forms depending on the expected outcome. If the direction of the difference does not matter, a two-tailed hypothesis is used. Otherwise, an upper-tailed or lower-tailed hypothesis can be used to increase the power of the test.

1. ما هو اختبار الفرضيات؟ مع دخلتوا بالحيط ؟ هي تاخيمي مُبسطوبلم افتكار " 6ايا :

اختبار الفرضيات هو طريقة إحصائية نستخدمها للتحقق من صحة فرضية (توقع) معينة حول مجتمع بيانات (مثل متوسط أو نسبة معينة).

2. الفرضيات الأساسية في الاختبار

- **:H₀ الفرضية الصفرية هي الفرضية التي تريد اختبارها، وغالبًا ما تكون أنها لا يوجد فرق أو تأثير. مثال: متوسط الطول = 170 سم.
- **: H_A الفرضية البديلة H_0 من الفرضية التي نريد إثباتها أو قبولها بدلاً من مثال: متوسط الطول ≠ 170 سم (أي مختلف)، أو أكبر من 170 سم، أو أقل من 170 سم.

3. أنواع اختبارات الفرضيات حسب اتجاه الفرق

أ. اختبار ذيلين (Two-tailed test)

- نختبر إذا كان المتوسط مختلفًا (أكبر أو أصغر) عن القيمة المفترضة.
- $H_0: \mu = \mu_0$ vs $H_A: \mu \neq \mu_0$: مثال

ب. اختبار ذيل واحد (One-tailed test)

- نختبر إذا كان المتوسط أكبر أو أصغر فقط من القيمة المفترضة.
- $oldsymbol{H}_0: \mu = \mu_0 \quad ext{vs} \quad H_A: \mu < \mu_0$ مثال (ذیل یسار)
- $H_0: \mu = \mu_0$ vs $H_A: \mu > \mu_0$: مثال (ذیل یمین)

4. متى نستخدم ذيل واحد ومتى ذيلين؟

- ذیل واحد: إذا كنت متأكد من اتجاه التغير المتوقع (مثلاً تريد فقط أن تعرف إذا كانت القيمة أكبر فقط أو أصغر فقط).
- ذىلىن: إذا لم تكن متأكدًا من اتجاه التغير أو تريد اختبار وجود اختلاف في أي اتجاه.
- عادةً في العلوم الاجتماعية يستخدم ذيلين لأنه أكثر تحفظًا.

5. إحصائية الاختبار (Test Statistic)

- تستخدم لمقارنة البيانات مع الفرضية. •
- تعتمد على نوع البيانات وحجم العينة ومعرفة الانحراف المعياري:

الحالة		إحصائية الاختبار المستخدمة	
الانحراف المعياري معروف σ والعينة كبيرة أو صغيرة		$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$	
المعياري غير معروف والعينة صغيرة أو التوزيع غير طبيعي	الانحراف	$t=rac{ar{X}-\mu_0}{S/\sqrt{n}}$	

Paired) اختبار العينة المزدوجة. (t-test

- يستخدم عندما تكون لدينا عينتان مرتبطتان (مثلاً •
 قياسات قبل وبعد على نفس الأشخاص).
- الفرضية الصفرية: الفرق بين العينتين = 0 •
- الفرضية البديلة: الفرق ≠ 0 (ذيلين) أو الفرق > 0 أو < الفرضية البديلة: الفرق ≠ 0 (ذيل واحد حسب التوقع).
- نيد من قوة الاختبار لأنه يأخذ في الحسبان العلاقة
 بين العينتين.

7. خطوات اختبار الفرضيات (طريقة القيمة الحرجة)

- تحديد الفرضية الصفرية والبديلة. .1
- 2. **اختيار مستوى الدلالة α (مثل 0.05).**
- جمع البيانات وحساب إحصائية الاختبار (Z أو t). 3.
- 4. ونوع α ونوع α عنتحديد القيمة الحرجة من الجداول حسب α ونوع **
- مقارنة إحصائية الاختبار مع القيمة الحرجة. . 5
- اتخاذ القرار: .6
 - إذا كانت إحصائية الاختبار في منطقة ٥
 - H_0 الرفض، نرفض
 - $\circ \,\, .H_0$ وإلا، لا نرفض
- كتابة الاستنتاج بناءً على القرار. .7

Summary for Paired t-test

The paired sample *t*-test hypotheses are formally defined below:

- The null hypothesis (H0) assumes that the true mean difference (µd) is equal to zero.
- The two-tailed alternative hypothesis (H1) assumes that µd is not equal to zero
- The upper-tailed alternative hypothesis (H1) assumes that µd is greater than zero.
- The lower-tailed alternative hypothesis (H1) assumes that µd is less than zero.

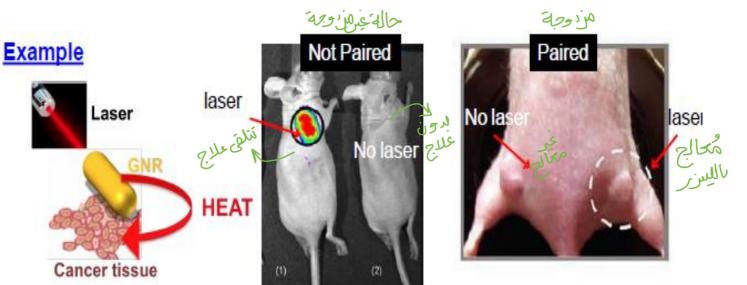
The mathematical representations of the null and alternative hypotheses are defined below:

```
H_0: \mu d = 0
```

 H_1 : $\mu d \neq 0$ (two-tailed)

 H_1 : $\mu d > 0$ (upper-tailed)

 H_1 : $\mu d < 0$ (lower-tailed)


المرضيات ليست عين المان المست على المستورة المتورة المتورة المان و المان و المان و المان و المان و المان و الم

Note. It is important to remember that hypotheses are never about data, they are about the processes which produce the data. In the formulas above, the value of µd is unknown. The goal of hypothesis testing is to determine the hypothesis (null or alternative) with which the data are more consistent.

(Paired Comparisons: Paired t-test)

الطيون

- The objective in paired comparison tests is to eliminate a maximum number of sources of extrañeous variations by making the pairs similar with respect to as many variables as possible.
- Related or paired observations may be obtained in a number of ways:
 - The same subjects may be measured before and after receiving some treatment.
 - In comparing two methods of analysis, the material to be analyzed may be divided equally so that one half is analyzed by one method and one half is analyzed by another.

To study the effect of gold nanoparticles in treating tumors, we induce tumor and then target it with gold nanoparticles which serve as "nanoheaters" upon radiation with laser. In "Not Paired" case, we use two groups that one receives gold nanoparticles and the other does not (control). The difference between treated and control may be due simply a difference in external characteristics between the mice in both groups. To eliminate this difference, we can use one group of mice and induce two identical tumors in the same mouse as you see in the picture to the right. Or we can use the same mice with before/after strategy.

بدلاًمن

• Instead of performing the analysis with individual observations, we use d_i , the difference between pairs of observations as the variable of interest.

بدلدً من المنحذام المقيم المؤدية الله بالتحليل بنستخدم الفروقات الم وهي الهزق بين كل رفح من العمل حظات الموقبطة. طب ليه م كل الدنه الهدف من اختبار العينات المودوجة هو دراسة الفروق د اخل الأزواج وليس المقيم المؤدية نفسها.

• When the <u>n</u> sample differences computed from the n pairs of measurements constitute a simple random sample from a normally distributed population of differences, the test statistic for testing hypothesis about the population mean difference μ_d is:

$$t = \frac{\overline{d} - \mu_{d_0}}{SE}$$

where:

متوسط الفروق فياللحسة

 \overline{d} is the sample mean difference متو سط المنون المعنون في العنونية المعنون μ_{d_0} is the hypothesized population mean difference

$$SE = \frac{s_d}{\sqrt{n}}$$
n is the number of the state of the

n is the number of sample difference s

 s_d is the standard deviation of the sample difference s

- The t statistic is distributed as Student's t with n-1 degrees of freedom.
- We do not have to worry about the equality of variances in paired comparisons, since our variable is the difference in the reading of the same subject or object.

Steps for Calculating Paired Sample *t* Tests

- Step 1: Identify the populations, distribution, and assumptions.
- Step 2: State the null and research hypotheses.
- Step 3: Determine the characteristics of the comparison distribution.
- Step 4: Determine critical values, or cutoffs.
- Step 5: Calculate the test statistic.

• Step 6: Make a decision.

طارك حيمة ع المدحسوبة بالقيمة لحرجة ، اذا كانت في منطقة الرفض رفض ملا واذالم تكن لا ترفض ملا

n=q

• In a study to evaluate the effect of very low calorie diet (VLCD) on the weight of 9 subjects, the following data was collected:

					. <u>X</u> 91	150 (31-	1001 - (UVI	י שינוטט	J W C J P I
В	117.	111.4	98.6	104.3	105.4	100.4	81.7	89.5	78.2
(before)	3								
A(After)	83.3	85.9	75.8	82.9	82.3	77.7	62.7	69	63.9

- The researchers wish to know if these data provide sufficient evidence to allow them to conclude that the treatment is effective in causing weight reduction in those individuals.
- If we choose (d_i=A B), the differences are:-34, -25.5, -22.8, -21.4, -23.1, -22.7, -19, -20.5, -14.3.
- Assumptions: the observed differences constitute a simple random sample from a normally distributed population of differences that could be generated.

- We may obtain the differences in one of two ways: by subtracting the before weights from the after weights (A B) or by subtracting the after weights from the before weights (B A).
- If the test is two sided and the question of interest is there a difference in mean body weight: A-B or B-A can be used H₀ and H_a are the same for either:

T-criticals =
$$\pm t(1-\alpha/2,df=n-1)$$

 $H_0: \mu_d = 0$
 $H_A: \mu_d \neq 0$

 If the question of interest does the VLCD result is significant weight reduction, H₀ and Ha change on whether A-B or B-A is used as follows

A-B	B-A
$H_0 \mu_d \ge 0$, $H_a \mu_d < 0$	$H_0 \le 0, H_a > 0$
t-critical = -t (α , df=n-1) or t-critical = -t (1- α , df= n-1)	t-critical = t (1- α ,n-1)

• The test statistic:

$$\underline{t} = \frac{\overline{d} - \mu_{d_0}}{S_{\overline{d}}}$$

• Decision rule: Let α =0.05, and the question of interest was is their significant weight reduction after VLCD (Based on A-B H₀: μ_d > 0; H_a: μ_d ≤ 0, left sided) the critical value of $t_{\alpha, df=8}$ or $-t_{1-\alpha/2, df=8}$ is -1.86, reject H₀ if the computed t is less than or equal to the critical value.

$$\sqrt[3]{d} = \frac{\sum d_i}{n} = \frac{-203.3}{9} = -22.5889$$

$$\sqrt[3]{s_d^2} = \frac{\sum (d_i - d)^2}{n - 1} = 28.2961$$

$$\sqrt[3]{t} = \frac{-22.5889 - 0}{\sqrt{\frac{28.2961}{9}}} = -12.7395$$

$$t'_{calc}$$

 $H_0: \mu_d \ge 0$ $\alpha = 5\% (0.05)$ $t'_{calc} = -12.74$ $-1.860 = -t_{1-\alpha} = -t_{0.95} (n-1=8)$

Reject H₈ since -12.7395 is in the rejection region.

We may conclude that the diet program is effective

ثم الرفض لانه 12.739- ج قل هن القيمة العرجة 18.6-

• A 95% confidence interval for μ_d may be obtained as follows:

$$\overline{d} \pm t (1-\alpha), df = 8 * SE$$

$$-22.5889 \pm 1.86\sqrt{28.2961/9}$$

$$-22.5889 \pm 4.0888$$

$$-26.68, -18.50$$