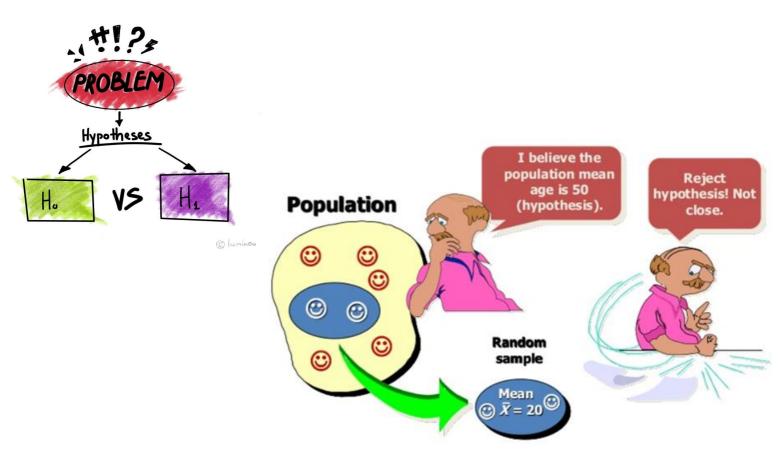


STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Hypothesis Testing



Hypothesis Testing

• The general goal of a hypothesis test is to rule out chance (sampling error) as a plausible explanation for the results from a research study.

 Hypothesis testing is a technique to help determining whether a hypothesis is true (e.g. treatment, procedure has an effect in a population), or simply if a relationship exists between two or more variables.

معدرة على المعالم الم

Null Hypothesis as an Assumption to be Challenged

- We might begin with a belief or assumption that a statement about the value of a population parameter is true.
- We then using a hypothesis test to challenge the assumption and determine if there is statistical evidence to conclude that the assumption is incorrect.
- In these situations, it is helpful to develop the null hypothesis first.

 A new drug is developed with the goal of lowering blood pressure more than the existing drug.

Null hypothesis

- The new drug does not lower BP more than the existing drug.
- Alternative hypothesis
- The new drug lowers blood pressure more than the existing drug.

Null & Alternative Hypothesis

Gabapentin has no pharmacological effect

- The mean for population A is 20 (H_0 : $\mu = 20$)
- The mean for population A is less than 20 (H_0 : $\mu \le 20$)
- The mean for population A
 is larger than 20 (H₀: μ ≥ 20)

Gabapentin has a pharmacological effect

- The mean for population A is not 20 (H₁: μ ≠ 20)
- The mean for population A is larger than 20 (H₁: μ > 20)
- The mean for population A is less than 20 (H_1 : μ < 20)

Accepting or rejecting a hypothesis is not a proof of the hypothesis!

Null hypothesis can be true or false, we only can reject it or not to reject it

ع عبول أو رفق العرضي عت دليل عامع ، بل بزفق الم او لا بزفقها مقع

Null Hypothesis vs Alternative Hypothesis

Null hypothesis Ho	Alternative Hypothesis H1
There is no relationship or difference	There is a relationship or difference
Refers to the population	Refers to the examined sample
Research aims to reject the null	Research aims to accept the alternative
Represent an <u>original</u> assumption	Prove statistically a systemic difference or relationship
Assumes a difference is due to chance	Assumes that difference is less likely to be due to chance.

Errors in hypothesis testing

TRUTH

	Ho is true (A=B)	Ho is false (A≠B)
Reject Ho (A≠B)	Type 1 error "giving a treatment that does not work"	Correct
Do not reject Ho (A=B)	Correct	Type 11 error "not giving a treatment that works"

DECISION

• Set your hypothesis Set both $H_0 \& H_{1.}$

Example

It is believed that a candy machine makes chocolate bars that are on average 5g. A worker claims that the machine after maintenance no longer makes 5g bars. Write Ho and Ha.

A company has stated that their straw machine makes straws that are 4 mm diameter. A worker believes the machine no longer makes straws of this size and samples 100 straws to perform a hypothesis test with 99% confidence.

Answer:

 H_0 : $\mu = 5$

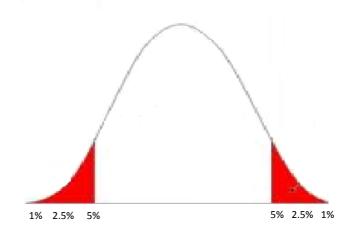
 H_1 : μ ≠ 5

Answer:

 H_0 : $\mu = 4$

 H_1 : $\mu \neq 4$

 Set level of significance associated with the hypothesis.



- Set the critical value needed to reject the null hypothesis (from Tables).
- You might need the table of Z-test, t-test, Ftest.
- Based on the chosen table, look for the cut off value based on the level of significance you determined in step 2.

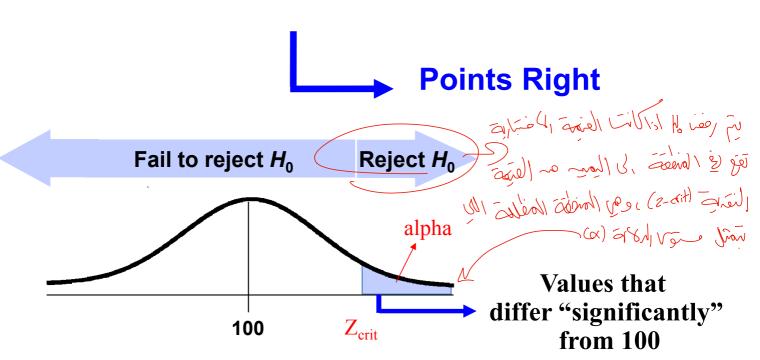
95%

-1.96

Right-tailed tests

 H_0 : $\mu = 100$

 H_1 : $\mu > 100$

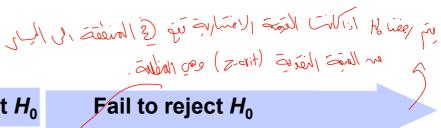


Left-tailed tests

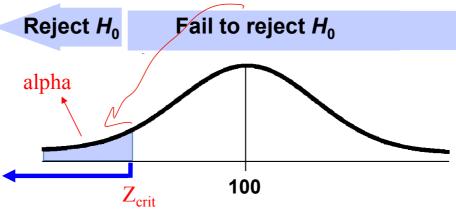
$$H_0$$
: $\mu = 100$

$$H_1$$
: μ < 100

Points Left



Values that differ "significantly" from 100



Two-tailed hypothesis testing

• H_A is that μ is either greater or less than μ_{H0}

• α is divided equally between the two tails of the critical region

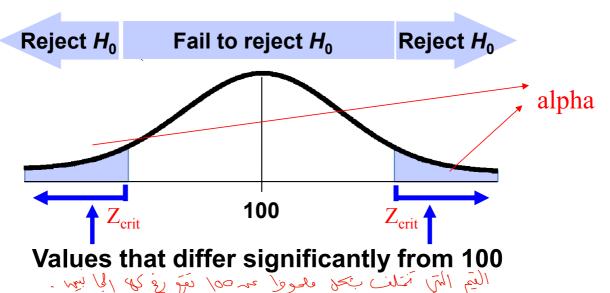
or pled sort on tell integral con is in syline (1 spell till is) the ising the contract the ising the contract the contrac

Two-tailed hypothesis testing

$$H_0$$
: $\mu = 100$

$$H_1$$
: $\mu \neq 100$

Means less than or greater than



One tale critical values

alpha .05, $Z_{crit}=1.64$; alpha .01, $Z_{crit}=2.33$

Two tale critical values

alpha .05, $Z_{crit}=1.96$; alpha .01, $Z_{crit}=2.58$

Normal Distribution (Population Standard Deviation σ is known or Standard Deviation σ is known but n is Large)

Normal Distribution σ is known $[n < 30 \text{ (small) or } n \ge 30 \text{ (large)}]$

small) or
$$n \ge 30$$
 $z = rac{ar{X} - \mu_0}{\sigma_{/\sqrt{n}}}$

Normal (σ is unknown) or unknown or non-normal distribution but $n \ge 30$ (large)

$$z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

Normal Distribution (Population Standard Deviation σ is Unknown and n is small)

Normal Distribution σ is unknown

$$t \neq \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

Summary of Forms for Null and Alternative Hypotheses about a Population Mean

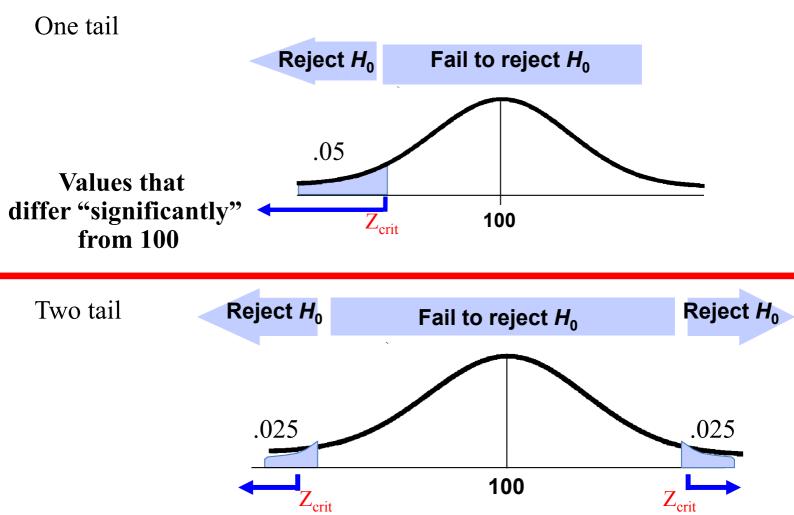
M. M. - H.

The equality part of the hypotheses always appears in the null hypothesis H_0 . In general, a hypothesis test about the value of a population mean μ must take one of the following three forms (where μ_0 is the hypothesized value of the population mean).

- a) One tailed test
- H_0 : $\mu = \mu_0$ vs H_1 : $\mu < \mu_0$ (less than or smaller than)
- Upper (right)-tailed test

$$H_0$$
: $\mu = \mu_0$ vs H_1 : $\mu > \mu_0$ (more than or greater than)

- b) Two tailed test
- H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$ (does not equal or different from)



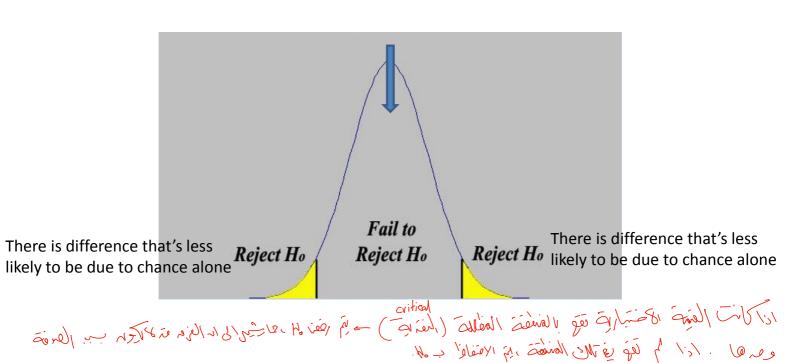
Values that differ significantly from 100

J-value z-value

• Compare the test statistics value with the critical value of rejection.

Does Z-value = or ≠ value from the table

• Decide whether to reject the null hypothesis and confidence statement.



Hypothesis Testing

One-tailed

Two-tailed

 H_0 : $\mu = 23$

 H_1 : $\mu \neq 23$

Left-tailed

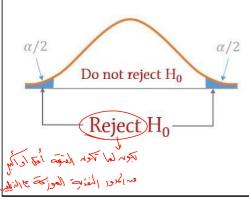
 $H_0: \mu \ge 23$

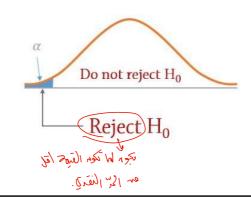
 H_1 : $\mu < 23$

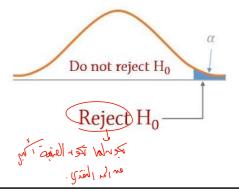
Right-tailed

 H_0 : $\mu \le 23$

 H_1 : $\mu > 23$







Rejection Rule

July 1

Lower (left)-tailed test

Hypotheses

$$H_0: \mu = \mu_0$$

vs H_1 : $\mu < \mu_0$ (less than or smaller than)

Rejection Rule

Reject H_0 at a level of significance α if:

- i. $Z < -Z_{1-\alpha}$ (In case of using Z-distribution)
- ii. $t < -t_{(\alpha, n-1)}$ (In case of using t-distribution)

Rejection Rule

Upper (right)-tailed test

Hypotheses

$$H_0$$
: $\mu = \mu_0$

vs
$$H_1$$
: $\mu > \mu_0$ (more than or greater than)

Rejection Rule

Reject H_0 at a level of significance α if:

- i. $Z > Z_{1-\alpha}$ (In case of using Z-distribution)
- ii. $t > t_{(\alpha, n-1)}$ (In case of using t-distribution)

Rejection Rule

Two-tailed test

Hypotheses

$$H_0$$
: $\mu = \mu_0$

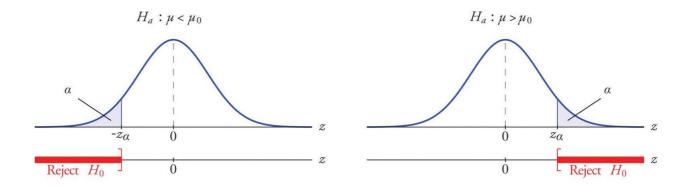
vs H_1 : $\mu \neq \mu_0$ (does not equal or different from)

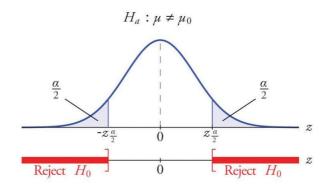
Rejection Rule

Reject H_0 at a level of significance α if:

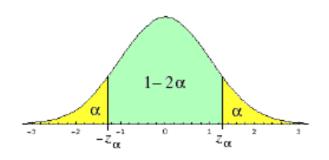
i.
$$|Z| > Z_{1-\alpha}$$
 (In case of using Z-distribution)

ii.
$$|t| > t_{(\frac{\alpha}{n}, n-1)}^{2}$$
 (In case of using t-distribution)





Common Critical Values



α = tail area	central area = $1 - 2\alpha$	Z_{α}
0.10	0.80	$z_{.10} = 1.28$
0.05	0.90	$z_{.05} = 1.645$
0.025	0.95	$z_{.025} = 1.96$
0.01	0.98	$z_{.01} = 2.33$
0.005	0.99	$z_{.005} = 2.58$

α	1-α	Z1-a
0.10	0.90	$z_{.0.90}$ = 1.28
0.05	0.95	z _{.0.95} = 1.645
0.01	0.99	2,0.99 = 2.33

Example Weight

Salem believes that his "true weight" is 72kg with a standard deviation of 3kg.

Salem weighs himself once a week for four weeks. The average of these four measurements is 75.4kg.

Are the data consistent with Salem's belief?

: المن العرف الله المعالمة الله المعالمة المعالمعالمة المعالمة المعالمة المعالمة المعالمة المعالمة المعالمة الم

J = 72 : Ho

H: SFCM (ishelo thous)

0.05 = 0

iez/8 oil, : ce il) ela luan, 8 ist iran a les Un leis I'm an 57 2.

Example Weight

1.
$$H_0$$
: $\mu = 72$ H_1 : $\mu > 72$

This is a one tail test

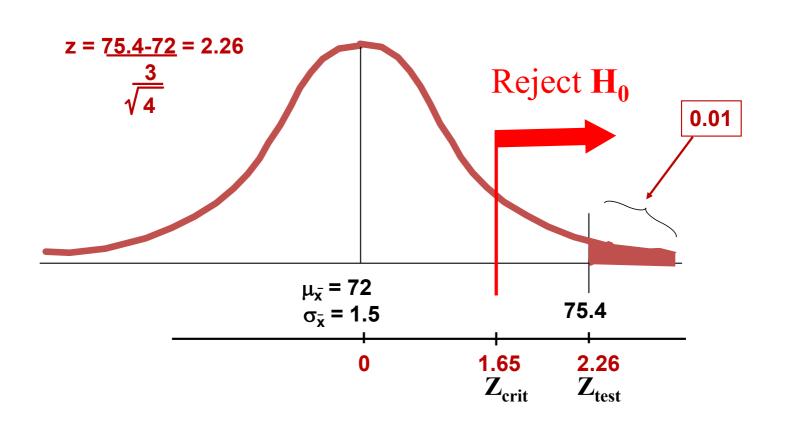
- 2. a=0.05
- 3. $\mu > 72$ (one tail test)
- 4. $Z_{crit} = ZReject H_0$ if $z \ge 1.645$

5.
$$Z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} = \frac{75.4 - 72}{3/\sqrt{4}} = 2.26$$

$$P(Z > 2.26) = .012$$

6. Since 2.26 > 1.645, we Reject H_0 . There is a statistically significant evidence at a=0.05 to show that the mean weight measured is higher than his original belief about his weight. The chance that the measured weight and initial (belief) weight means are different due to chance only is less than 5%.

Example Weight illustrated



Researcher are interested in the mean age of a certain population. They are wondering if the **mean age** is more than **25** years. Assuming that the **population** is **normally** distributed with **variance** equal to **20**. A **random sample** of **10** individuals drawn from the population of interest. From this sample, a **mean** of **27** is calculated. Construct the proper hypothesis, test your hypothesis, and then state the proper conclusion? Use $\alpha = 0.05$ to test the hypothesis?

Solution

We have:

- Normal distribution.
- 2- The standard deviation σ is known.

Then we will use the standar normal distribution (Z).

n = 10 , $\mu_0 = 25$, $\bar{X} = 27$, $\sigma = \sqrt{\sigma^2} = \sqrt{20} = 4.472$, $\alpha = 0.05$

Hypotheses

$$H_0$$
: $\mu = \mu_0 \longrightarrow H_0$: $\mu = 25$

vs
$$H_1$$
: $\mu > \mu_0 \longrightarrow H_1$: $\mu > 25$ (more than)

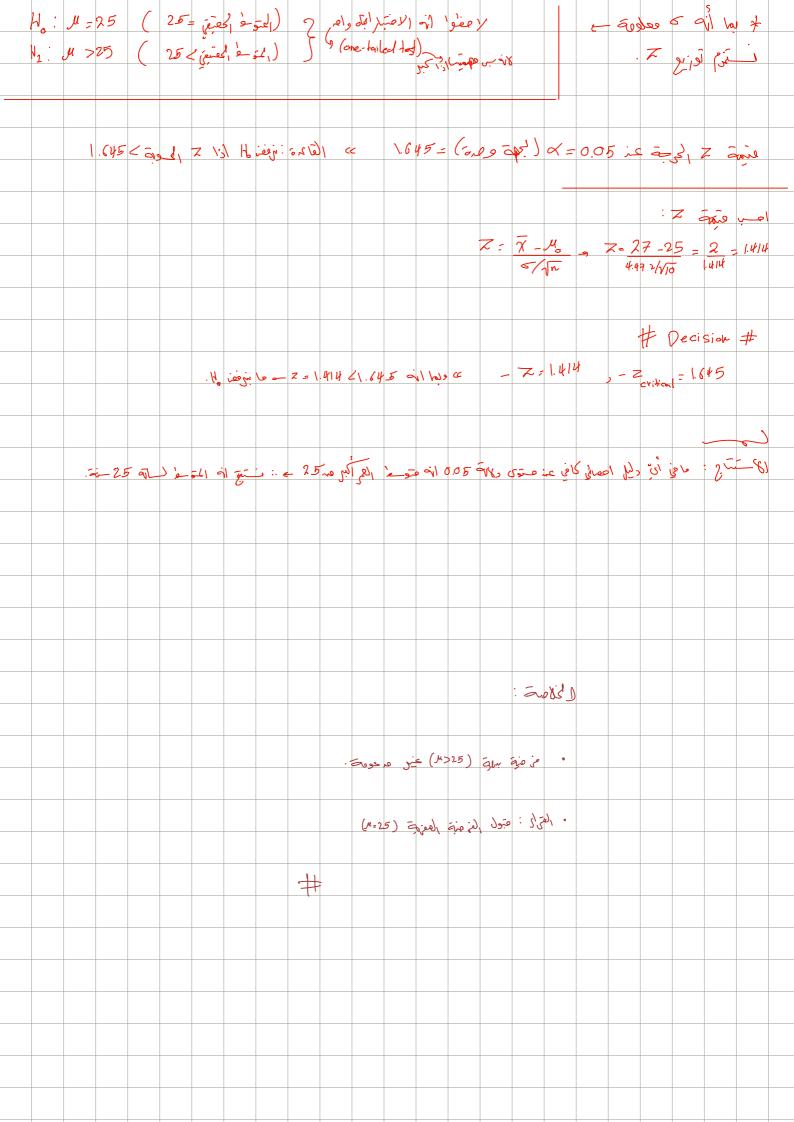
Rejection Rule

Reject H_0 at a level of significance $\alpha = 0.05$ if:

$$Z > Z_{1-\alpha}$$
, $Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.645$

Test statistics (calculated value)

$$z = \frac{\bar{X} - \mu_0}{\sigma_{/\sqrt{n}}} = \frac{27 - 25}{4.472/\sqrt{10}} = 1.414$$



The **mean** maximum oxygen uptake for a sample of **242** women was **32.3** with a **standard deviation** of **12.14**, we wish to know if, on the basis of the data, can we conclude that the **mean** score for a population of such women is **smaller** than **33**? Use $\alpha = 0.01$ to test the hypothesis?

the standard normal

distribution (Z).

Solution

We have:

- 1- Unknown distribution (population).
- 2- The standard deviation σ is unknown (S = 12.14).
- 3- The sample size (n) is large (n = 242 > 30).

$$n = 242$$
 , $\mu_0 = 33$, $\bar{X} = 32.30$, $S = 12.14$, $\alpha = 0.01$

Continued

Hypotheses

Lower (Left) -Tailed Test

$$H_0: \mu = 33$$

vs $H_1: \mu < 33$ (smaller than).

Rejection Rule

$$Z < -Z_{1-\alpha}$$

Test Statistic (Calculated Value)

$$Z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

$$Z = \frac{32.30-33}{12.14/\sqrt{242}} = -0.897$$

Decision

We get
$$Z = -0.897 > -Z_{1-\alpha} = -2.33$$

Then the rejection rule is not satisfied and therefore the decision will be do not reject (accept) H_0 at $\alpha = 0.01$ and therefore we conclude that the mean score for a population of such women is 33, that is, $\mu = 33$.

Critical Value(Tabulated Value)

$$Z_{1-\alpha} = Z_{1-0.01} = Z_{0.99} = 2.33$$

 $-Z_{1-\alpha} = -Z_{1-0.01} = -Z_{0.99} = -2.33$

The body mass index (BMI) of a **group** of **14** healthy adult males has a **mean of 30.5** and a **standard deviation of 10.6392**, can we conclude that the **mean** BMI of the **population** is equal to **36** assuming that the population is normally distributed? Use $\alpha = 0.1$ to test the hypothesis?

Solution

We have:

- 1- Normal distribution (Normal population).
- 2- The standard deviation σ is unknown (S = 10.6392).
- 3- The sample size (n) is small (n = 14 < 30).

Then we will use the t-distribution.

$$n = 14$$
 , $\mu_0 = 36$, $\bar{X} = 30.5$, $S = 10.6392$, $\alpha = 0.10$

Two -Tailed Test

$$H_0: \mu = 36$$

vs $H_1: \mu \neq 36$ (does not equal).

Rejection Rule

 $t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$

Rejection Rule

Reject
$$H_0$$
 at level of significance $\alpha = 0.10$ if:

Decision

Test Statistic (Calculated Value)

 $t = \frac{30.5 - 36}{10.6392 / \sqrt{14}} = -1.934$

words H_1 is accepted at $\alpha = 0.10$.

 $|t| > t_{\left(\frac{\alpha}{2}, n-1\right)}$

Critical Value(Tabulated Value)

 $=t_{(\frac{0.10}{2},14-1)}$

 $= t_{(0.05,13)}$

We get $|t| = |-1.934| = 1.934 \ge t_{(\frac{\alpha}{2}, n-1)} = t_{(0.05, 13)} = 1.771$

Then the rejection rule is satisfied and therefore the decision will

be <u>reject</u> H_0 at $\alpha = 0.10$ and therefore we conclude that the mean

BMI of the population is not equal to 36, that is, $\mu \neq 36$. In other

 $t_{(\frac{\alpha}{2},n-1)}$