

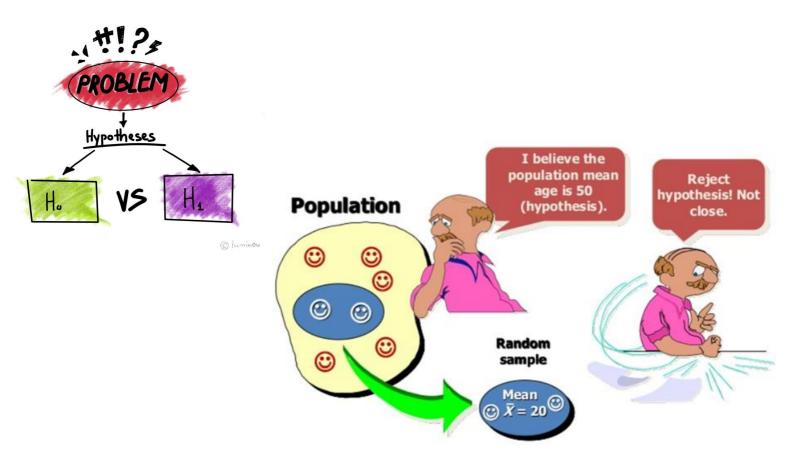
## STATISTICS



MORPHINE ACADEMY

MORPHINE ACADEMY

## **Hypothesis Testing**



Hypothesis Testing

الهدف هواستبعاد احتمال أن تكون المتائج التي تم المحمول عليها من عينة ما ناجمة فقط عن الهدفة أوضطاً العدية ( sampling er ) وذلك بناءً على تقسير منطقي وهو ثوق لننائج البحث The general goal of a hypothesis test is to rule

- The general goal of a hypothesis test is to rule out chance (sampling error) as a plausible explanation for the results from a research study.
- Hypothesis testing is a technique to help determining whether a hypothesis is true (e.g. treatment, procedure has an effect in a population), or simply if a relationship exists between two or more variables.

فرارهستذإلى البيانات حول محة

### Research Hypothesis vs Null Hypothesis

Research hypothesis (H<sub>1</sub>) is what the research believes to be a true reflection on the general population. In another word, a true explanation for a phenomena in the population. The researcher wants to prove that his sample statistics is different than the population parameters. Research hypothesis is also called alternative hypothesis.

Null hypothesis (H<sub>0</sub>) is the opposite of H<sub>1</sub>. The H<sub>0</sub> assumes no difference of test statistics and the population parameter. This means that the researcher hypothesis about a certain phenomena is not correct, and that there is no real difference between sample and population for a certain feature or difference is due another reason (that is not tested).

## Null & Alternative Hypothesis Null Hypothesis or the Hypothesis to be Tested (H<sub>0</sub>)

A claim that there is NO difference between the population parameter like mean (μ) and the hypothesized value. In the testing process the null hypothesis either is rejected or not rejected (we do not say accepted)

#### Alternative Hypothesis or the Research Hypothesis (H<sub>A</sub> or H<sub>I</sub>).

A statement of what we will believe is true if our sample data cause us to reject the null hypothesis. Usually the alternative hypothesis is the research hypothesis (the conclusion that the researcher is seeking to reach).

#### Null Hypothesis as an Assumption to be Challenged

- We might begin with a belief or assumption that a statement about the value of a population parameter is true.
- We then using a hypothesis test to challenge the assumption and determine if there is statistical evidence to conclude that the assumption is incorrect.
- In these situations, it is helpful to develop the null hypothesis first.
  - باحتصا
  - الفرضية الصفرية (H₀) هي نقطة انطلاق للاختبار. •
  - نَخْتُبْرِ صُحْةُ H<sub>0</sub> بناءً على بيانات العينة.
  - أدا وجدنا أدلة كافية، نرفض ،H، وإذا لم توجد أدلة
     كافية، لا نرفضها (لكن لا نقبلها بشكل قاطع).



## **Example**

• A new drug is developed with the goal of lowering blood pressure more than the existing drug.

- Null hypothesis
- The new drug does not lower BP more than the existing drug.
- Alternative hypothesis
- ► The new drug lowers blood pressure more than the existing drug.

- الفرضية الصفرية تفترض عدم وجود فرق أو تأثير جديد (الدواء الجديد ليس أفضل من القديم)

- الفرضية البديلة تفترضُ وجود فرق أو تأثير (الدواء الجديد أفضل ويخفض مُ خَمَا اللهِ مِ أَكِثُهُ )

#### **Null & Alternative Hypothesis**

## Gabapentin has no pharmacological effect

- The mean for population A is  $\underline{20}$  (H<sub>0</sub>:  $\mu = 20$ )
- The mean for population A is less than 20 ( $H_0$ :  $\mu \le 20$ )
- The mean for population A
  is larger than 20 (H<sub>0</sub>: μ ≥ 20)

## Gabapentin has a pharmacological effect

- The mean for population A
   is not 20 (H₁: μ ≠ 20)
- The mean for population A is larger than 20 (H<sub>1</sub>: μ > 20)
- The mean for population A is less than 20 ( $H_1$ :  $\mu$  < 20)

mis ch

Accepting or rejecting a hypothesis is <u>not</u> a proof of the hypothesis! Null hypothesis can be <u>true</u> or false, we only can reject it or not to reject it

## Null Hypothesis vs Alternative Hypothesis

| Null hypothesis Ho                     | Alternative Hypothesis H1                                   |
|----------------------------------------|-------------------------------------------------------------|
| There is no relationship or difference | There is a relationship or difference                       |
| Refers to the population               | Refers to the examined sample                               |
| Research aims to reject the null       | Research aims to accept the alternative                     |
| Represent an original assumption       | Prove statistically a systemic difference or relationship   |
| Assumes a difference is due to chance  | Assumes that difference is less likely to be due to chance. |

## Types of Statistical Errors in Hypotheses Testing

Because hypothesis tests are based on sample data, we must allow for the possibility errors.

#### **₹**Type I error

- A type I error is rejecting H<sub>0</sub> when it is true.
- The probability of making a Type I error when the null hypothesis is true as an equality is called the level of significance  $(\alpha)$ .

#### **☼ Type II error**

- A type II error is accepting H<sub>0</sub> when it is false.
- It is difficult to control for the probability of making a type II error  $(\beta)$ .
- Statisticians avoid the risk of making a type II error by using "do not reject H<sub>0</sub>" and not "accept H<sub>0</sub>"

## **Errors in hypothesis testing**

TRUTH

|                              | Ho is true<br>(A=B)                                        | Ho is false<br>(A≠B)                                    |
|------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| Reject Ho<br>(A≠B)           | Type 1 error<br>"giving a treatment<br>that does not work" | Correct                                                 |
| Do not reject<br>Ho<br>(A=B) | Correct                                                    | Type 11 error<br>"not giving a treatment<br>that works" |

**JECISION** 

## Dis Park cantering

## How to establish a good hypothesis?

Apply alone in ST

- and declarative statement. question. ماتكون
- Show a relationship between variables > المناسوان ال

- Be testable and measurable.

## Critical Value Approach to Hypotheses Testing

- **Step 1**: develop the null and alternative hypotheses.
- Step 2: specify the level of significance (α). Common value of  $\alpha$  are:  $\alpha = 1\%$  or 0.01, 5% or 0.05, 10% or 0.1
- Step 3: collect the sample data and compute the value of the test statistics Z or t.
- Step 4: use the level of significance ( $\alpha$ ) to determine the critical value (tabulated value).
- **Step 5**: use the suitable rejection rule.
- Step 6: state the appropriate conclusions.

  - تبدأ يتحديد الفرضيات ومستوى الدلالة. تجمع البيانات وتحسب احصائية الاختيار

  - $\alpha$  تحدد القيمة الحرجة بناءً على  $\alpha$ تقارن احصائية الاختيار بالقيمة الحرجة.

• Set your hypothesis Set both  $H_0 \& H_{1.}$ 

#### **Example**

It is believed that a candy machine makes chocolate bars that are on average 5g. A worker claims that the machine after maintenance no longer makes 5g bars. Write Ho and Ha.

A company has stated that their straw machine makes straws that are 4 mm diameter. A worker believes the machine no longer makes straws of this size and samples 100 straws to perform a hypothesis test with 99% confidence.

#### **Answer:**

 $H_0$ :  $\mu = 5$ 

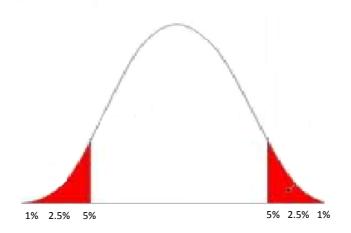
 $H_1$ :  $\mu$  ≠ 5

#### **Answer:**

 $H_0$ :  $\mu = 4$ 

 $H_1$ :  $\mu \neq 4$ 

 Set level of significance associated with the hypothesis.



- Set the critical value needed to reject the null hypothesis (from Tables).
- You might need the table of Z-test, t-test, F-test.
- Based on the chosen table, look for the cut off value based on the level of significance you determined in step 2.

95%

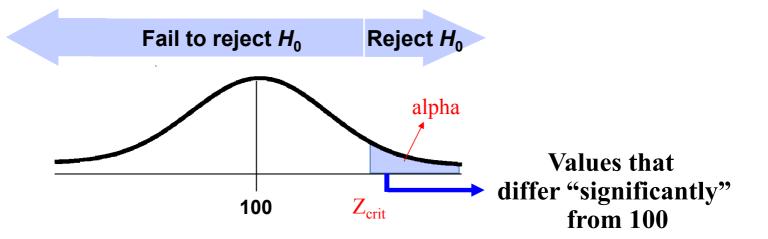
-1.96

## Right-tailed tests

 $H_0$ :  $\mu = 100$ 

 $H_1$ :  $\mu > 100$ 



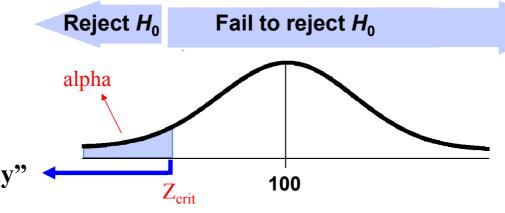


## Left-tailed tests

$$H_0$$
:  $\mu = 100$ 

$$H_1$$
:  $\mu$  < 100

**Points Left** 



Values that differ "significantly" from 100

## Two-tailed hypothesis testing

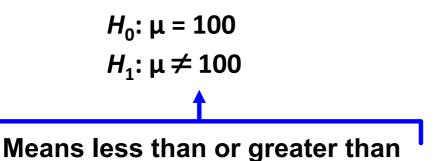
•  $H_A$  is that  $\mu$  is either greater or less than  $\mu_{H0}$ 

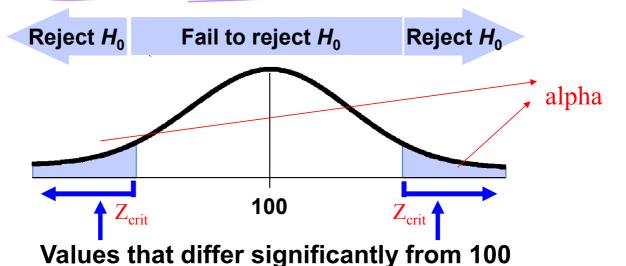
$$H_A$$
:  $\mu \neq \mu_{H0}$ 

• <u>α</u> is divided equally between the two tails of the critical region

- في اختبار ذو ذيلين، نبحث عن اختلاف في أي اتجاه (أعلى أو أقل) عن القيمة المفترضة في \(H\_0)).
  - منطقة الرفض تقع في الطرفين (الذيلين) للتوزيع الاحتمالي.
- هذا يعني أنه إذا كان الإحصاء الاختباري يقع في أي من الذيلين (أقل من الحد الأدنى أو أكبر من الحد الأعلى للقيمة الحرجة)، نرفض الفرضية الصفرية.

## Two-tailed hypothesis testing





## One tale critical values

alpha .05,  $Z_{crit}=1.64$ ; alpha .01,  $Z_{crit}=2.33$ 

#### Two tale critical values

alpha .05,  $Z_{crit}$ =1.96; alpha .01,  $Z_{crit}$ =2.58

# Normal Distribution (Population Standard Deviation σ is known or Standard Deviation σ is known but n is Large)

Normal Distribution 
$$\sigma$$
 is known  $\sigma$  is known  $\sigma$  is known  $\sigma$   $\sigma$  (small)  $\sigma$   $\sigma$   $\sigma$   $\sigma$  (large)] 
$$z = \frac{\bar{X} - \mu_0}{\sigma}$$

Normal (σ is unknown) or unknown or non-normal distribution but n ≥ 30 (large)

$$z=rac{ar{X}-\mu_0}{S/\sqrt{n}}$$

## Normal Distribution (Population Standard Deviation $\sigma$ is Unknown and n is small)

#### **Normal Distribution**

σ is unknown

N < 30 (small)

$$\underline{t} = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

- \*\*معرفة (6) وحجم العينة كبير أو صغير\*\* ↔استخدام إحصائية (Z).
- \*\*عدم معرفة (♂) أو التوزيع غير طبيعي والعينة صغيرة \* أ ↔ استخدام إحصائية (t).
  - \*\*عينة كبيرة مع عدم معرفة (ع) \*\* ↔ يمكن استخدام (Z) كاقتراب.

## Summary of Forms for Null and Alternative Hypotheses about a Population Mean

The equality part of the hypotheses always appears in the null hypothesis  $H_0$ . In general, a hypothesis test about the value of a population mean  $\mu$  must take one of the following three forms (where  $\mu_0$  is the hypothesized value of the population mean).

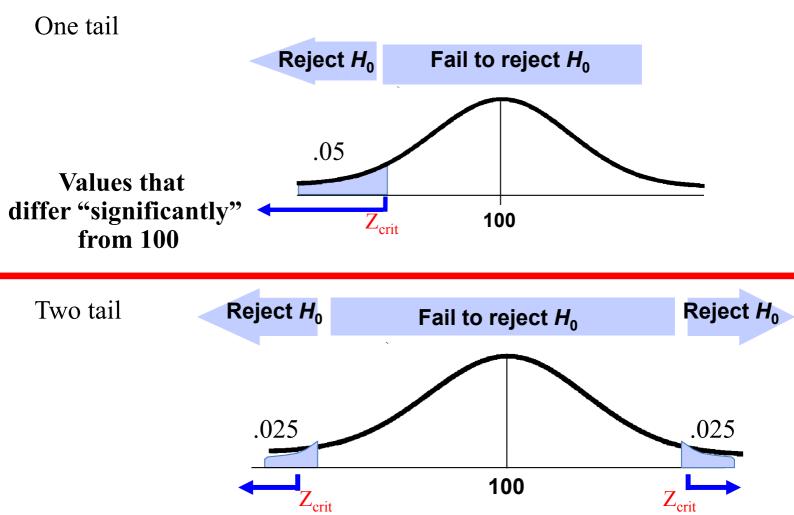
- a) One tailed test
- i.  $H_0$ :  $\mu = \mu_0$  vs  $H_1$ :  $\mu < \mu_0$  (less than or smaller than)
- ii. Upper (right)-tailed test
  - $H_0$ :  $\mu = \mu_0$  vs  $H_1$ :  $\mu > \mu_0$  (more than or greater than)
- b) Two tailed test  $H_0$ :  $\mu = \mu_0$  vs  $H_1$ :  $\mu \neq \mu_0$  (does not equal or different from)

#### One- vs. Two-Tailed Tests

- In theory, you should use one-tailed when
  - 1. Change in opposite direction would be meaningless
  - 2. Change in opposite direction would be uninteresting
  - 3. No opposing theory predicts change in opposite direction
- By convention/default in the social sciences, two-tailed is standard

لانه اختبارا عشر عمراها

Why? Because it is a more strict criterion. A more conservative test.

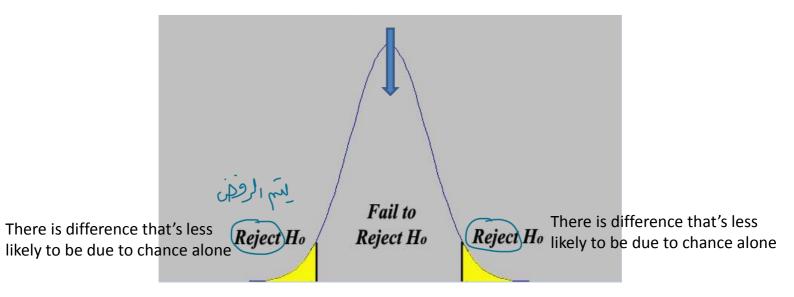


Values that differ significantly from 100

• Compare the test statistics value with the critical value of rejection.

Does Z-value = or ≠ value from the table

 Decide whether to reject the null hypothesis and confidence statement.



## Hypothesis Testing

#### Two-tailed

 $H_0$ :  $\mu = 23$ 

 $H_1: \mu \neq 23$ 

#### One-tailed

Left-tailed

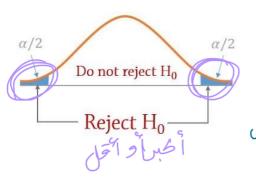
 $H_0$ :  $\mu \ge 23$ 

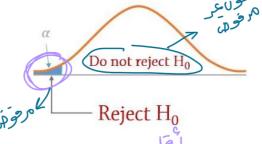
 $H_1$ :  $\mu < 23$ 

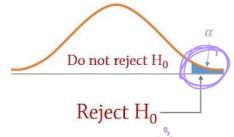
Right-tailed

 $H_0: \mu \le 23$ 

 $H_1$ :  $\mu > 23$ 







## **Rejection Rule**

#### Lower (left)-tailed test

#### **Hypotheses**

$$H_0$$
:  $\mu = \mu_0$ 

vs  $H_1$ :  $\mu < \mu_0$  (less than or smaller than)

#### Rejection Rule

Reject  $H_0$  at a level of significance  $\alpha$  if:

- i.  $Z < -Z_{1-\alpha}$  (In case of using Z-distribution)
- ii.  $t < -t_{(\alpha, n-1)}$  (In case of using t-distribution)

## **Rejection Rule**

#### **Upper (right)-tailed test**

#### **Hypotheses**

$$H_0$$
:  $\mu = \mu_0$ 

vs  $H_1$ :  $\mu > \mu_0$  (more than or greater than)

#### **Rejection Rule**

Reject  $H_0$  at a level of significance  $\alpha$  if:

- i.  $Z > Z_{1-\alpha}$  (In case of using Z-distribution)
- ii.  $t > t_{(\alpha, n-1)}$  (In case of using t-distribution)

## Rejection Rule

#### Two-tailed test

### **Hypotheses**

$$H_0$$
:  $\mu = \mu_0$ 

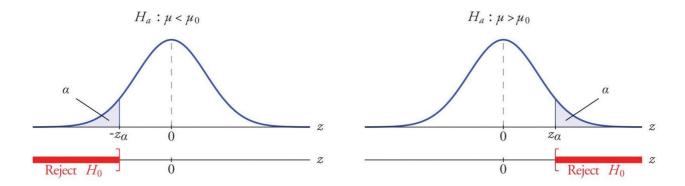
vs  $H_1$ :  $\mu \neq \mu_0$  (does not equal or different from)

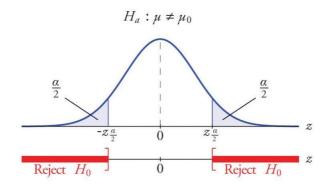
## Rejection Rule

Reject  $H_0$  at a level of significance  $\alpha$  if:

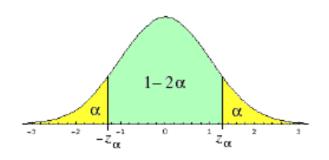
i. 
$$|Z| > Z_{1-}^{\alpha}$$
 (In case of using Z-distribution)

ii. 
$$|t| > t_{(\frac{\alpha}{n}, n-1)}^{2}$$
 (In case of using t-distribution)





### **Common Critical Values**



| α = tail area | central area = $1 - 2\alpha$ | $Z_{\alpha}$      |
|---------------|------------------------------|-------------------|
| 0.10          | 0.80                         | $z_{.10} = 1.28$  |
| 0.05          | 0.90                         | $z_{.05} = 1.645$ |
| 0.025         | 0.95                         | $z_{.025} = 1.96$ |
| 0.01          | 0.98                         | $z_{.01} = 2.33$  |
| 0.005         | 0.99                         | $z_{.005} = 2.58$ |

| α    | 1-α  | Z1-a                       |
|------|------|----------------------------|
| 0.10 | 0.90 | $z_{.0.90}$ = 1.28         |
| 0.05 | 0.95 | z <sub>.0.95</sub> = 1.645 |
| 0.01 | 0.99 | Z <sub>.0.99</sub> = 2.33  |

## **Example Weight**

Salem believes that his "true weight" is 72kg with a standard deviation of 3kg.

Salem weighs himself once a week for four weeks. The average of these four measurements is 75.4kg.

₩Are the data consistent with Salem's belief?



## **Example Weight**

1. 
$$H_0$$
:  $\mu = 72$   $H_1$ :  $\mu > 72$ 

This is a one tail test

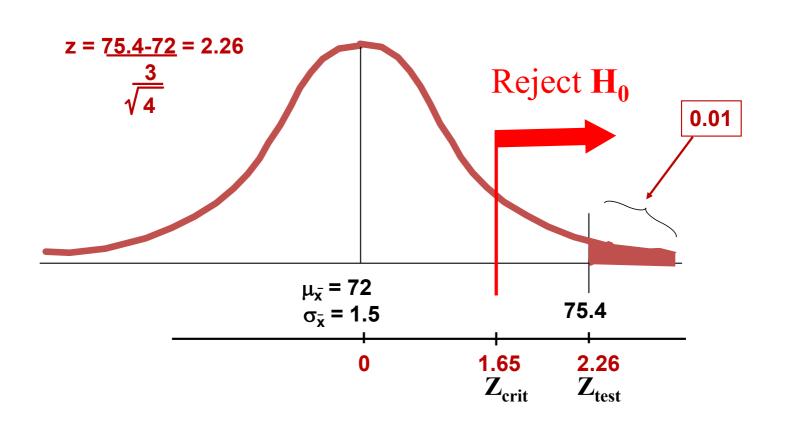
- 2. a=0.05
- 3.  $\mu > 72$  (one tail test)
- 4.  $Z_{crit} = ZReject H_0$  if  $z \ge 1.645$

5. 
$$Z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} = \frac{75.4 - 72}{3/\sqrt{4}} = 2.26$$

$$P(Z > 2.26) = .012$$

6. Since 2.26 > 1.645, we Reject  $H_0$ . There is a statistically significant evidence at a=0.05 to show that the mean weight measured is higher than his original belief about his weight. The chance that the measured weight and initial (belief) weight means are different due to chance only is less than 5%.

## Example Weight illustrated



## **Example**

Researcher are interested in the mean age of a certain population. They are wondering if the **mean age** is more than **25** years. Assuming that the **population** is **normally** distributed with **variance** equal to **20**. A **random sample** of **10** individuals drawn from the population of interest. From this sample, a **mean** of **27** is calculated. Construct the proper hypothesis, test your hypothesis, and then state the proper conclusion? Use  $\alpha = 0.05$  to test the hypothesis?

#### Solution

We have:

- Normal distribution.
- 2- The standard deviation  $\sigma$  is known.

n = 10 ,  $\mu_0 = 25$  ,  $\bar{X} = 27$  ,  $\sigma = \sqrt{\sigma^2} = \sqrt{20} = 4.472$  ,  $\alpha = 0.05$ 

## Example

#### **Hypotheses**

$$H_0: \mu = \mu_0 \longrightarrow H_0: \mu = 25$$

vs 
$$H_1$$
:  $\mu > \mu_0 \longrightarrow H_1$ :  $\mu > 25$  (more than)

#### Rejection Rule

Reject  $H_0$  at a level of significance  $\alpha = 0.05$  if:

$$Z > Z_{1-\alpha}$$
,  $Z_{1-\alpha} = Z_{1-0.05} = Z_{0.95} = 1.645$ 

Test statistics (calculated value)

Test statistics (calculated value)
$$\overline{Z} = \frac{\overline{X} - \mu_0}{\sigma_{/\sqrt{n}}} = \frac{27 - 25}{4.472/\sqrt{10}} = 1.414$$

#### **Continued**

#### **Decision**

We get  $Z = 1.414 < Z_{1-\alpha} = 1.645$ 

Then the rejection is not satisfied and therefore the decision will be do not reject (accept)  $H_0$  at  $\alpha$  = 0.05 and therefore we conclude that the mean age is 25 years, that is,  $\mu$  =25 years

## **Example**

The **mean** maximum oxygen uptake for a sample of **242** women was 32.3 with a standard deviation of 12.14, we wish to know if, on the basis of the data, can we conclude that the **mean** score for a population of such women is smaller than 33? Use  $\alpha = 0.01$  to test the hypothesis?

#### Solution

We have:

- Unknown distribution (population).
- 2- The standard deviation  $\sigma$  is unknown (S = 12.14).

3- The sample size (n) is large ( n = 242 > 30).

n = 242 ,  $\mu_0 = 33$  ,  $\bar{X} = 32.30$  , S = 12.14 ,  $\alpha = 0.01$ 

$$\alpha = 0.01$$

the standard normal

distribution (Z).

#### **Continued**

#### Lower (Left) - Tailed Test

#### **Hypotheses**

$$H_0: \mu = 33$$
  
vs  $H_1: \mu < 33$  (smaller than).

#### Rejection Rule

Reject  $H_0$  at level of significance  $\alpha = 0.01$  if:

$$Z < -Z_{1-\alpha}$$

Test Statistic (Calculated Value)

$$Z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

$$Z = \frac{32.30-33}{12.14/\sqrt{242}} = -0.897$$

#### Decision

We get 
$$Z = -0.897 > -Z_{1-\alpha} = -2.33$$

Then the rejection rule is not satisfied and therefore the decision will be do not reject (accept)  $H_0$  at  $\alpha = 0.01$  and therefore we conclude that the mean score for a population of such women is 33, that is,  $\mu = 33$ .

Critical Value(Tabulated Value)

$$Z_{1-\alpha} = Z_{1-0.01} = Z_{0.99} = 2.33$$
  
 $-Z_{1-\alpha} = -Z_{1-0.01} = -Z_{0.99} = -2.33$ 

## **Example**

The body mass index (BMI) of a **group** of **14** healthy adult males has a **mean of 30.5** and a **standard deviation of 10.6392**, can we conclude that the **mean** BMI of the **population** is equal to **36** assuming that the population is normally distributed? Use  $\alpha = 0.1$  to test the hypothesis?

#### Solution

We have:

- 1- Normal distribution (Normal population).
- 2- The standard deviation  $\sigma$  is unknown (S = 10.6392).
- 3- The sample size (n) is small ( n = 14 < 30).

Then we will use the t-distribution.

n = 14 ,  $\mu_0 = 36$  ,  $\bar{X} = 30.5$  , S = 10.6392 ,  $\alpha = 0.10$ 

#### Two -Tailed Test

#### Hypotheses

$$H_0: \mu = 36$$
  
 $H_1: \mu \neq 36$ 

vs  $H_1: \mu \neq 36$  (does not equal).

#### Rejection Rule

Reject  $H_0$  at level of significance  $\alpha = 0.10$  if:

$$|t| > t_{\left(\frac{\alpha}{2}, n-1\right)}$$

Test Statistic (Calculated Value)
$$\bar{X} - \mu_0$$

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

$$t = \frac{30.5 - 36}{10.6333}$$

$$t = \frac{30.5 - 36}{10.6392 / \sqrt{34}} = -1.934$$

## Decision

We get 
$$|t| = |-1.934| = 1.934 > t_{(\frac{\alpha}{2}, n-1)} = t_{(0.05, 13)} = 1.771$$
  
Then the rejection rule is satisfied and therefore the decision will be reject  $H_0$  at  $\alpha = 0.10$  and therefore we conclude that the mean BMI of the population is not equal to 36, that is  $n \neq 36$ . In other

Critical Value(Tabulated Value)

 $t_{(\frac{\alpha}{2},n-1)}$ 

 $=t_{(\frac{0.10}{2},14-1)}$ 

 $= t_{(0.05,13)}$ 

BMI of the population is not equal to 36, that is,  $\mu \neq 36$ . In other words  $H_1$  is accepted at  $\alpha = 0.10$ .