

STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Probability Distribution

Discrete

Binomial Distribution

لع مه فرزوات الاحمالات المنفعة الم تنوم لوه ف المارب العوائمة اللي نكور وسكور معسر مراتباب ولا تربح المعرالة على نكور وسكور معسر مراتباب

Continuous

Normal Distribution

Example: Binomial Experiment

Testing the effectiveness of a drug

- Suppose that 10 patients with identical infirmities take a drug, for each patient, it s observed whether the drug is effective or not effective. Thus a success is a cure and failure is a non-cure.

 \[
 \text{N=\formular} \\
 \text{N=\formular
- The probability of success, p, is the effectiveness of the drug cures a patient, the probability of failure, q=1-p, is the probability that the drug does not cure a patient.
- Finally, we can assume that the results of administering the drug are independent from one patient to another. Hence the conditions of Binomial experiment are met.

الموريع الي زعرناء عنوم تنائي؟

* المتية تستود صده البارب عتابهة .

* المتية المعارج الد فتل فقلاً .

* المتية المعارج الد فتل فقلاً .

* المتابج المعارج ال

Binomial Distribution Thinking Challenge


You've sold 20 in your last 100 calls

You've sold 20 in your last 100 calls

(p = .20)) If you

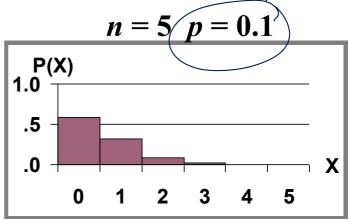
call 12 people tonight, what's the probability of

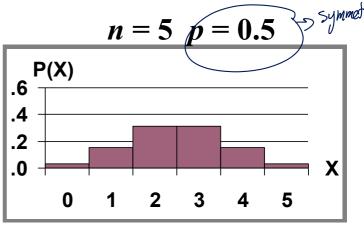
- A. No sales?
- B. Exactly 2 sales?
- C. At most 2 sales?
- D. At least 2 sales?

Binomial Distribution Characteristics

Mean

$$\mu = E(x) = np$$


Standard Deviation


$$\sigma = \sqrt{npq}$$

$$\int 5 \times 0.2 \times 0.2 = \sqrt{0.2}$$

$$\approx 0.29$$

Recall that q = 1 - p

Example

- Suppose it is known a new drug is successful in curing a muscular pain in 22% of the cases. If it is tried on a random sample of 5 patients, then answer the following:
- a) Find the probability that:
- 1) No one of patient will be cured?
- 2) Exactly 3 patients will be cured?
- 3) At least 2 patients will be cured?
- 4) At most 4 patients will be cured?
- 5) From 1 to 4 patients will be cured?
- b) Find the mean and standard deviation for the distribution of the number of patients who are cured?
- c) What is the approximate shape for the distribution of the number of patients who are cured?

Solution

• n=5, p=0.22, $X \sim Bin(5,0.22)$

$$P(X = 0) = {5 \choose 0} (0.22)^6 (0.78)^{5-0} = \frac{5!}{0!5!} (1)(0.289) = (1)(1)(0.289) = 0.289$$

$$P(X = 1) = {5 \choose 1} (0.22)^4 (0.78)^{5-1} = \frac{5!}{1!4!} (0.22)(0.370) = (5)(0.22)((0.370) = 0.407$$

$$P(X = 2) = {5 \choose 2} (0.22)^2 (0.78)^{5-2} = \frac{5!}{2!3!} (0.0484)(0.475) = (10)(0.0484)(0.475) = 0.229$$

$$P(X = 3) = {5 \choose 3} (0.22)^2 (0.78)^{5-3} = \frac{5!}{3!2!} (0.010648)(0.6084) = (10)(0.010648)(0.6084) = 0.065$$

$$P(X = 4) = {5 \choose 4} (0.22)^4 (0.78)^{5-4} = \frac{5!}{4!1!} (0.00234256)(0.78) = (5)(0.00234256)(0.78) = 0.009$$

$$P(X = 4) = {5 \choose 4} (0.22)^4 (0.78)^{5-4} = \frac{5!}{4!1!} (0.00234256)(0.78) = (5)(0.00234256)(0.78) = 0.009$$

Continued

X	0	1	2	3	4	5	sum
P(X=x)	0.289	0.407	0.229	0.065	0.009	0.001	1

- a) The probability:
- 1) Probability that no one of patients will be cured = P(X=0)=0.289.
- 2) Probability that exactly 3 patients will be cured =P(X=3)=0.065.
- 3) Probability that at least 2 patients will be cured = $P(X \ge 2)$

$$= P(X=2)+P(X=3)+P(X=4)+P(X=5)$$

$$= 0.229 + 0.065 + 0.009 + 0.001$$

$$= 0.304$$
 OR

The probability that at least 2 patients will be cured

$$= P(X \ge 2) = 1 - P(X \le 2)$$

$$= 1 - (P(X=0) + P(X=1))$$

$$= 1 - (0.289 + 0.407) = 1 - 0.696 = 0.304$$

Continued

4) Probability that at most 4 patients will be cured

$$= P(X \le 4)$$

$$= P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)$$

$$= 0.289+0.407+0.229+0.065+0.009 = 0.999$$

OR

Probability that at most 4 patients will be cured $= P(X < A) = 1 \quad (P > A) = 1 \quad (P(X = 5) = 1 \quad 0.001 = 0.001$

$$= P(X \le 4) = 1 - (P > 4) = 1 - (P(X=5) = 1 - 0.001 = 0.999)$$

5) Probability that from 1 to 4 patients will be cured

$$= P(1 \le X \le 4)$$

$$= P(X=1)+P(X=2)+P(X=3)+P(X=4)$$

$$= 0.407 + 0.229 + 0.065 + 0.009$$

$$= 0.71$$

Continued

b) The mean and the standard deviation for the number of patients who are cured can be calculated as follows:

The mean
$$\mu = E(x)$$
 is $\mu = (5)(0.22) = 1.1$ patients

The standard deviation
$$\sigma = \sqrt{npq}$$

$$\sigma = \sqrt{np(1-q)} = \sqrt{(5)(0.22)(0.78)} = 0.926 \text{ patient.}$$

c) The approximate shape of the distribution of the number of patients who are cured is right-skewed (positive) because p = 0.22 which is less than 0.5.

ch is less than 0.5.

(Right-shewed)
$$\rho = 0.22 < 0.5$$

(Right-shewed) $\rho = 0.22 < 0.5$

Continuous Probability Density Function

The graphical form of the probability distribution for a continuous random variable *x* is a smooth curve

ما کوه المسقی العدة این الا (میما) العقابی ال

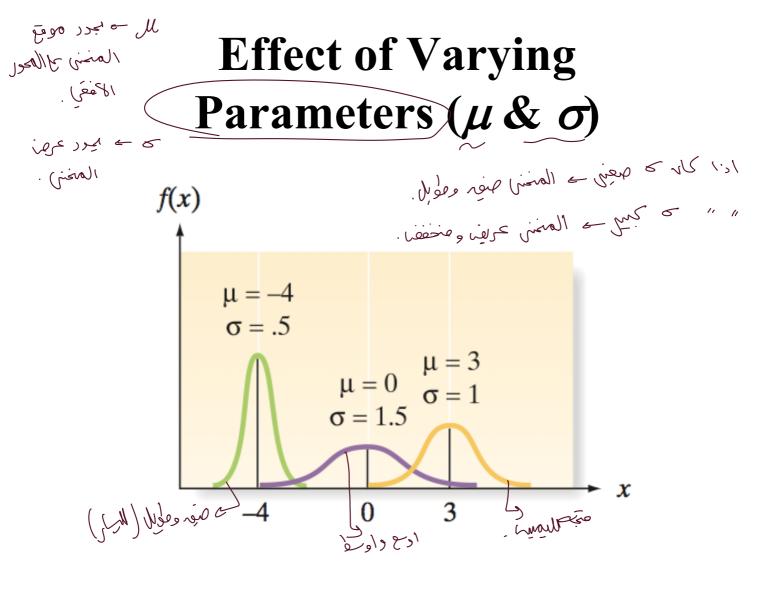
Probability Distributions for Continuous Random Variables

The Normal Distribution

Probability Density Function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{1}{2}\right)\left(\frac{x-\mu}{\sigma}\right)^2}$$

where


$$\mu$$
 = Mean of the normal random variable x

$$\sigma$$
= Standard deviation

$$\pi = 3.1415...$$

$$e = 2.71828...$$

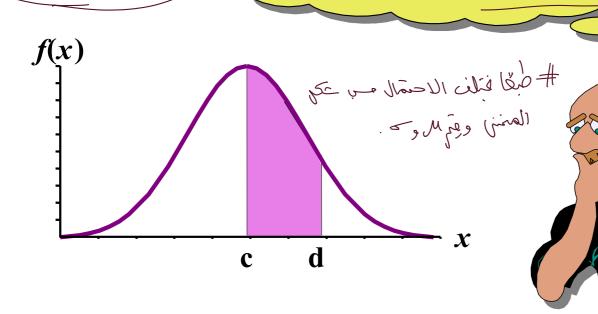
$$P(x < a)$$
 is obtained from a table of normal probabilities

The Beauty of the Normal Curve

- Note that, when X is normally distributed with the mean μ and standard deviation σ , then we refer to that as follows: $X\sim N(\mu,\sigma^2)$.
- Example: 68-95-99 Rule

The Hashemite University students intelligence scores (X) are normally distributed with $\mu = 100$ and $\sigma = 15$; that is $X \sim N(100,255)$.

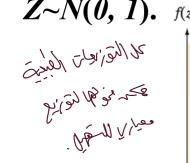
- 68% of scores within $\mu \pm \sigma = 100 \pm 15 = 85$ to 115
- 95% of scores within $\mu \pm 2\sigma = 100 \pm (2)(15) = 70$ to 130
- 99.7% of scores within $\mu \pm 3\sigma = 100 \pm (3)(15) = 55$ to 145

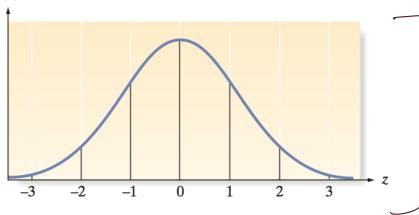

Normal Distribution

I verall= llandes in livery

Probability

Probability is area under curve!

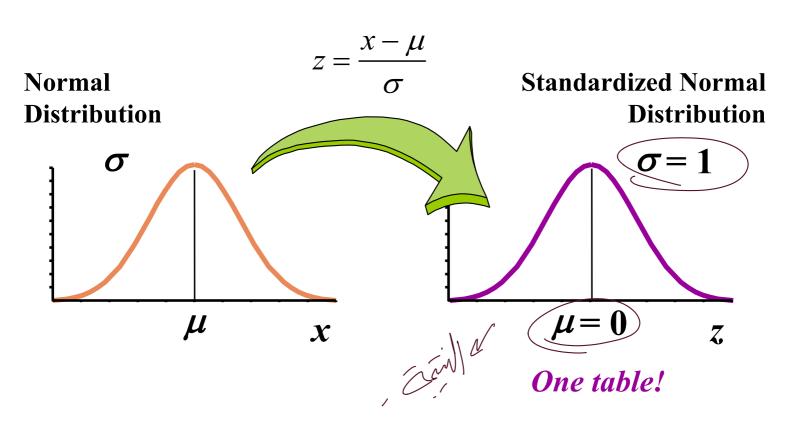

$$P(c \le x \le d) = \int_{c}^{d} f(x) dx?$$



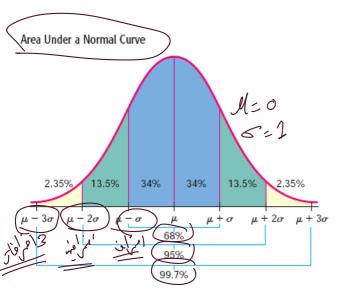
Standard Normal Distribution

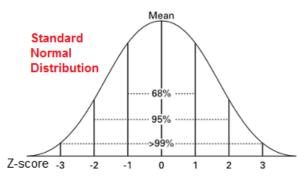
The standard normal distribution is a distribution with $\mu = 0$ and $\sigma = 1$. A random variable with a standard normal distribution, denoted by the symbol z, is called a standard normal random variable.

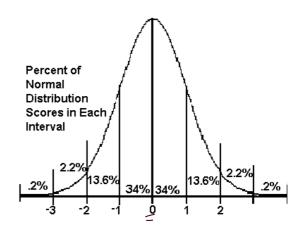
 $Z\sim N(0, 1)$. f(z)

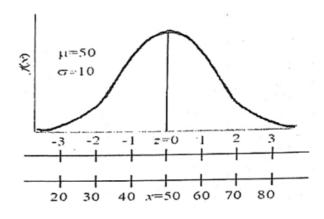

Property of Normal Distribution

If x is a normal random variable with mean μ and standard deviation σ , then the random variable z, defined by the formula

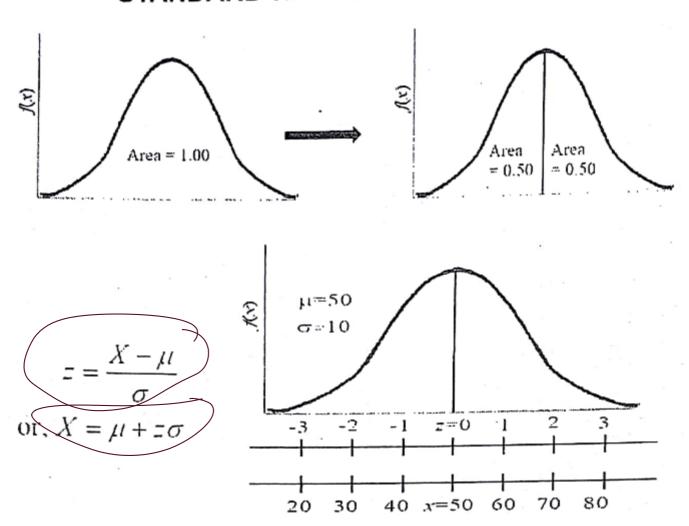

$$z = \frac{x - \mu}{\sigma}$$


has a standard normal distribution. The value z describes the number of standard deviations between x and μ .


Standardize the Standardize the Normal Distribution



Standard Normal Distribution



STANDARD NORMAL DISTRIBUTION

Finding Areas Under the Standard Normal Curve

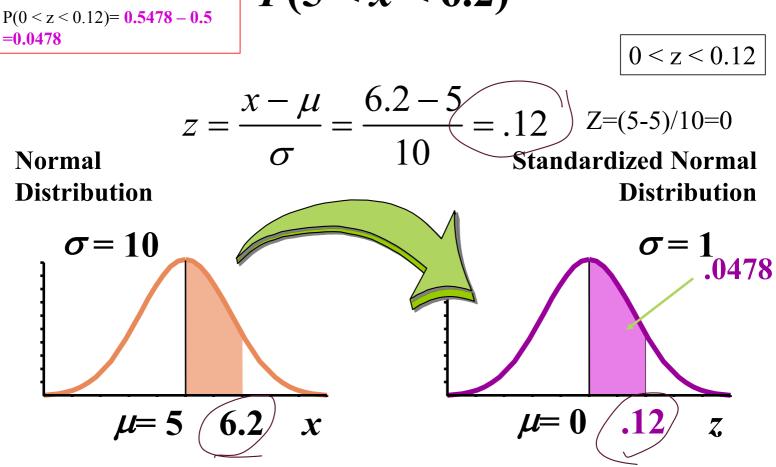
(a) To find the area to the left of z₀, find the area that corresponds to z₀ in the Standard Normal Table by using the following rule:

Normal Table by using the rule:

$$P(Z \le z_0) = N(z_0)$$

N(0, 1) Curve

N(0, 1) Curve

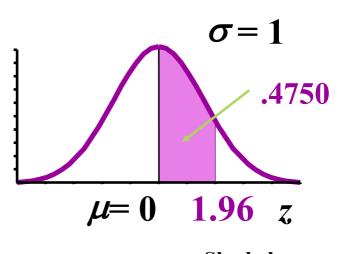

(b) To find the area to the right of z₀, use the Standard Normal Table to find the area that corresponds to left of z₀. Then subtract the area from 1 by using the following formula:

$$P(Z > z_0) = 1 - P(Z \le z_0) = 1 - N(z_0)$$

Or

$$P(Z > z_0) = P(Z \le -z_0) = N(-z_0)$$

0= 0.5 0.12 = 0.5478
P(0 < z < 0.12) = 0.5478 - 0.5
$$P(5 < x < 6.2)$$



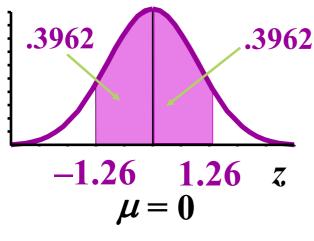
The Standard Normal Table: P(0 < z < 1.96)

Standardized Normal Probability Table

•					
Z	.04	.05	.06		
1.8	.96512	.96784	.96856		
1.9	.97381	.97441	.97500		
2.0	.97932	.9798	.98030		
2.1	.98382	.98422	.984616		

$$0 = 0.5 \ 1.96 = 0.9750$$

 $P(0 < z < 0.12) = 0.9750 - 0.5 = 0.4750$



Probabilities

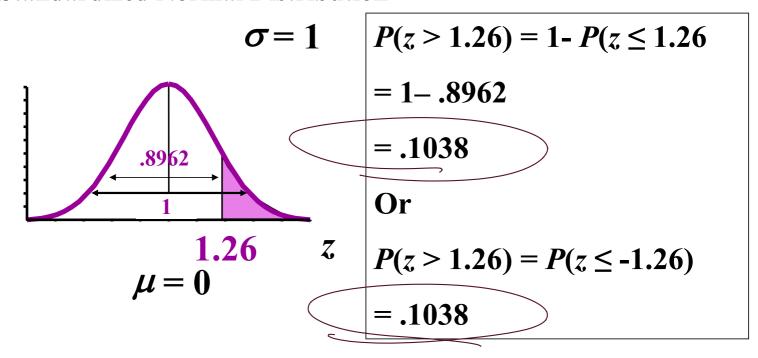
The Standard Normal Table: $P(-1.26 \le z \le 1.26)$

Standardized Normal Distribution

$$\sigma$$
= 1

$$-1.26 = 0.1038 \quad 1.26 = 0.8962$$

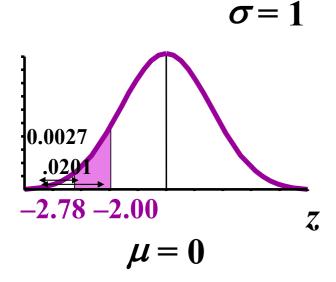
P(-1.26 \le z \le 1.26)= **0.8962** - **0.1038** = **0.7924**


$$P(-1.26 \le z \le 1.26)$$

$$= 0.8962 - 0.1038$$

$$= 0.7924$$

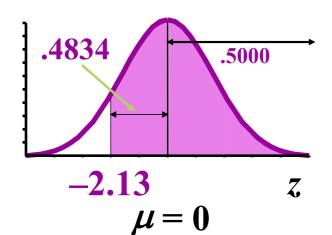
The Standard Normal Table:


Standardized Normal Distribution

The Standard Normal Table:

$$P(-2.78 \le z \le -2.00)$$

Standardized Normal Distribution


$$P(-2.78 \le z \le -2.00)$$

= .0228 - .0027
= .0201

The Standard Normal Table:

$$P(z > -2.13)$$

Standardized Normal Distribution

$$\sigma$$
= 1

Shaded area exaggerated

$$P(z > -2.13) = P(z \le 2.13)$$

= 0.9834

OR

$$P(z > -2.13) = 1 - P(z \le -2.13)$$

$$= 1 - 0.0166$$

$$= .9834$$

العنى (ول لحق : (1) تحديم الاحتمالية المعلوبة: مهر الناه الاحتمالية اله الاحتمالية ... مثل (عر ح ح) ع ا و (عر ح ح) ع او (عر ح ح) ع .

: z ā a d d d 5 d 2)

. از ا کام الموزیع عنی عبلی، لمنیم راهینی : المرحد : تر عنی المرحد الفاحه (مثل : ۲ : ۲) .

(E) استرلم صبول x:

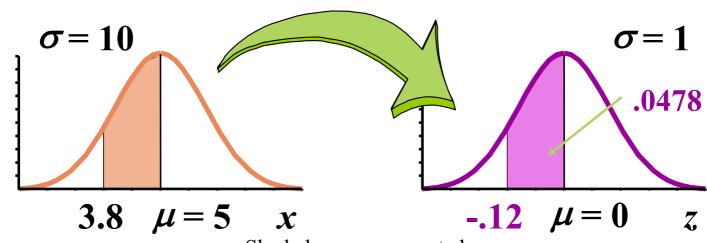
. ارج معرول الموزيع العبر العبار لأيل الاحتمانية المسراعات (2 > 5) م لك قيمة 5.

· العبول يعلَّلُ المنفية مداريا (ه.) الى م العاد

. لنام بس متمية (5>5>,5) P: P(Z, 12 (Z,) = P(Z \le Z,) - P(Z \le Z,) · llen 18m on 5 (x(Z)9: P(Z >Z) = 1 - P(Z \le 2) · استخدم المتنافر (كأنه المنتن صميًا لا) لاذا لن الأمر: P(Z>2)=P(Z<-Z)

Top To So

$P(3.8 \le x \le 5)$


$$z = \frac{x - \mu}{100} = \frac{3.8 - 5}{100} = -.12$$

Z score for -.12= 0.4522 P(-.12 \le z \le 0) =0.5-0.4522 =0.0478

Normal

Distribution

Standardized Normal Distribution

$$P(2.9 \le x \le 7.1)$$

$$z = \frac{x - \mu}{\sigma} = \frac{2.9 - 5}{10} = -.21$$

$$z = \frac{x - \mu}{\sigma} = \frac{7.1 - 5}{10} = .21$$
Normal
Distribution
$$\sigma = 10$$

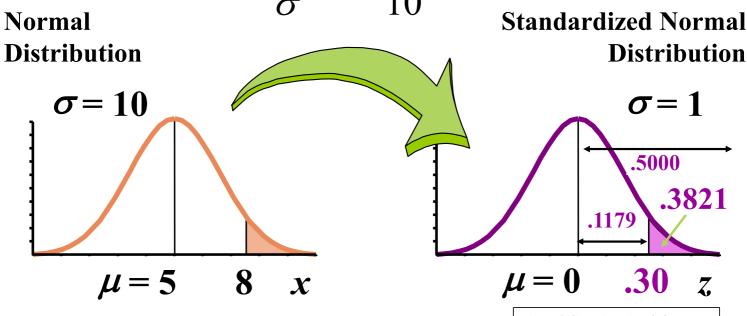
$$\sigma = 1$$

$$10$$
Standardized Normal
Distribution
$$\sigma = 1$$

2.9 5 7.1 x

 $P(-.21 \le z \le 0.21)$ =0.1664

Shaded area exaggerated

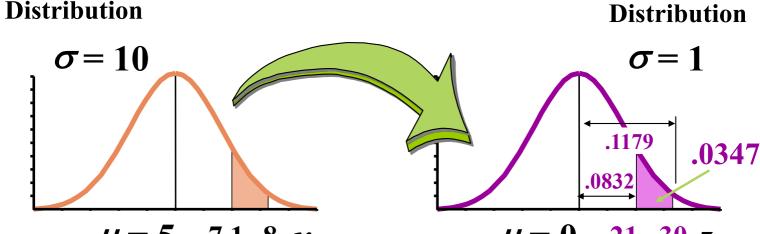

=0.5832-0.4522

.0832 .0832

0 .21

$$P(x \ge 8)$$

$$z = \frac{x - \mu}{\sigma} = \frac{8 - 5}{10} = .30$$


Shaded area exaggerated

 $P(z \ge 0.3) = 1 - P(z \le 0.3)$ =1- 0.6179 = 0.3821

Non-standard Normal $\mu = 5$, $\sigma = 10$: $P(7.1 \le X \le 8)$

$$z = \frac{x - \mu}{\sigma} = \frac{7.1 - 5}{10} = .21$$

$$z = \frac{x - \mu}{\sigma} = \frac{8 - 5}{10} = .30$$
Normal
Standardized Normal

 $\mu = 5$ 7.1 8 x $\mu = 0$.21 .30 zShaded area exaggerated

P(0.21 \le z \le 0.3)
=0.6179 - 0.5832

=0.0347

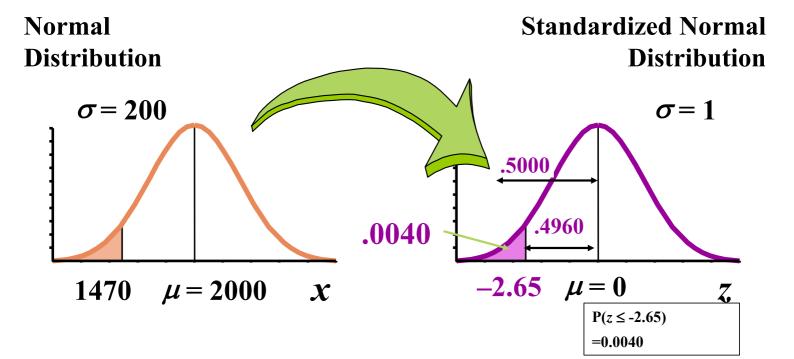
lad obsis of logic 18 few.

1) Theorem on sour sour log X 18 5 things

المعيار 🌣	التوزيع الطبيعي القياسي \$\times\$	التوزيع الطبيعي غير القياسي ♦ (Non-standard)
تعریف	$\mu=0$ توزيع طبيعي بمتوسط $\sigma=1$ وانحراف معياري	توزیع طبیعي بمتوسط μ وانحراف معیاري σ یختلفان عن 0 و1.
رمز	$Z \sim N(0,1).$	$X \sim N(\mu, \sigma).$
حاجة للتحويل	لا حاجة، القيم جاهزة كـ Z مباشرة.	Z يجب تحويل القيم X إلى $Z=rac{X-\mu}{\sigma}$ باستخدام
استخدام جدول Z	يُستخدم مباشرة لإيجاد $P(Z \leq z)$	يُستخدم بعد التحويل إلى Z لإيجاد الاحتمالية.
أمثلة على الحساب	$:\!P(0 < Z < 1.96)$ لحساب الجدول مباشرة (0.4750).	لحساب $P(3.8 \leq X \leq 5)$ مع $\sigma=10$, $\mu=5$ احسب $Z=0$ و $Z=-0.12$. $0.5-0.4522=0.0478$
تعقيد الحساب	أقل تعقيدًا لأن القيم جاهزة.	أكثر تعقيدًا بسبب الحاجة للتحويل أولاً.
الرسم البياني	منحنی مرکز حول 0 مع انحراف معیاري 1.	منحنی قد یکون مرکزًا حول أي قیمة σ مختلف.

Solution* $P(2000 \le x \le 2400)$

$$z = \frac{x - \mu}{\sigma} = \frac{2400 - 2000}{200}$$
Normal
Distribution
$$\sigma = 200$$


$$\mu = 2000 \quad 2400 \quad x$$

$$Standardized Normal
Distribution
$$\sigma = 1$$

$$4772$$$$

Solution* $P(x \le 1470)$

$$z = \frac{x - \mu}{\sigma} = \frac{1470 - 2000}{200} = -2.65$$

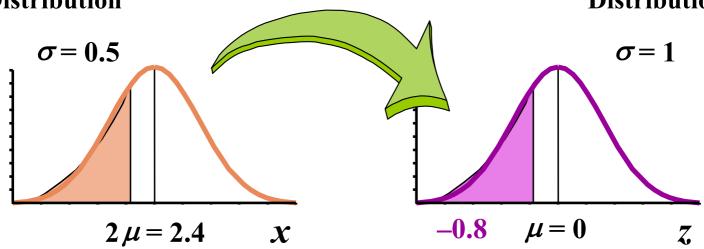
Example

A survey in Jordan indicates that pharmacies use their computers in an average of 2.4 years before upgrading to a new machine. The standard deviation is 0.5 year. A pharmacy is selected at random. Find the probability that the pharmacy will use it for less than or equal 2 years before upgrading. Assume that the variable X is normally distributed?

Continued

Solution

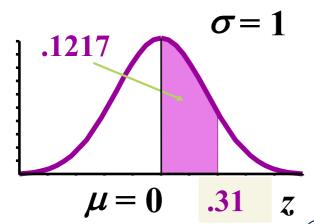
We need to find $P(X \le 2)$ as follows: $(x-\mu)/\sigma = (2-2.4)/0.5 \ne -0.8$


So
$$P(z \le -0.8) = 0.2119$$

$$Z = \frac{X - M}{6} = \frac{2 - 2 \cdot M}{6 \cdot 5} = (-0.8)$$

Normal

Distribution



Finding z-Values for Known Probabilities

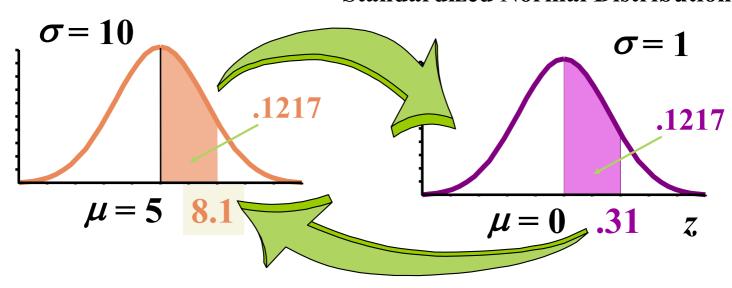
What is Z, given

$$P(z) = .1217?$$

Shaded area exaggerated

z	0	0.01	0.02
+0	.50000	.50399	.50798
+0.1	.53983	.54380	.54776
+0.2	.57926	58317	.58706
+0.3	.61791	.62172	.62552
	1		

The probability between the z and the mean =0.1217


$$0.1217 + 0.500 = 0.6217$$

So it is corresponding to 0.31

Finding x Values for Known Probabilities

Standardized Normal Distribution

$$x = \mu + z \cdot \sigma = 5 + (.31)(10) =$$

$$Z = \frac{x - x}{5} = \frac{2 - 2 \cdot x}{5} = -0.8$$

2 /min's and 5: P(Z.0. ≈ (8.0-25) P(Z.0.

Example

The daily sales volume in JD for a given pharmacy in Jordan is normally distributed with a mean of 67 JD per day and a standard deviation of 4 JD per day. Find the daily sales volume x corresponding to z-score 1.96, -2.33, and 0?

- z = 1.96, x = 67+1.96(4) = 74.84 JD per day
- z = -2.33, x = 67 + (-2.33)(4) = 57.68 JD per day.
- > z = 0, x = 67 + 0(4) = 67 JD per day.
- Notice that 74.84 JD is above the mean, 57.68 JD is below the mean, and 67 JD is equal to the mean.

$$74.84 \ J = x: 1.96 = \frac{7.84}{4} = \frac{74.84 - 67}{4} = Z = \chi - M$$

$$57.68 \ J = \chi: -2.33 = \frac{-9.32}{4} = \frac{57.68 - 67}{4} = Z = \chi - M$$

 $675 = \%:0 = \frac{67-62}{4} = 7 = \frac{7-4}{6}$

. V. / se is 1 2.33 / see 1 = 351 = 37.12 *

(eig): \$48.47 civil, eèles Dieme! ver (109.1 logle aed, v).

Other Discrete Distributions: Poisson

Characteristics of a Poisson Random Variable

ع يتكوم مد عدد الموان التي تين عما حمن وعيد ية وحدة زمه او علمة.

- 1. Consists of counting number of times an event occurs during a given unit of time or in a given area or volume (any unit of measurement).
- 2. The probability that an event occurs in a given unit of time, area, or volume is the same for all units.
- 3. The number of events that occur in one unit of time, area, or volume is independent of the number that occur in any other mutually exclusive unit.
- 4. The mean number of events in each unit is denoted by λ.

) ve lée Paisson Randon Variable Titer en zer Nahr hij Sit and and sean . 500 por 600 8) 20 / [as/ oi oro is coro (is/ sol 2) 1 - 1 - 2 - iv (عدر الاحداث لي عصب براحري مسقلت عدد الاحداث لية وحداث عبليمة. 2 = - 2 M 6 2 M 12 - 5 1 4

Poisson Probability Distribution Function

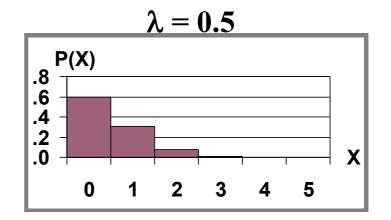
$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$\mu = \lambda$$

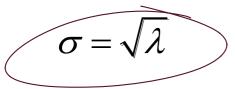
$$\sigma^2 = \lambda$$

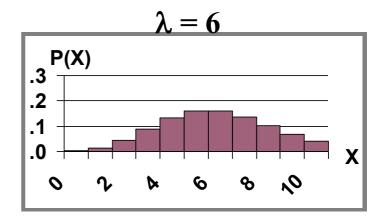
$$p(x) = \text{Probability of } x \text{ given } \lambda$$

$$\lambda = \text{Mean (expected) number of events in unit } e = 2.71828 \dots \text{ (base of natural logarithm)}$$


$$x = \text{Number of events per unit}$$

Poisson Probability Distribution Function


مِمْلُ معرا صول الامهال له وصرة أنعه اوصامع الم


Mean

$$\mu = E(x) \neq \lambda$$

Standard Deviation

Poisson Distribution Example

Customers arrive at a rate of 72 per hour.
What is the probability of 4 customers arriving in 3 minutes?

Poisson Distribution Solution

72 Per Hr. = 1.2\Per Min. = 3.6 Per 3 Min. Interval

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$p(4) = \frac{(3.6)^4 e^{-3.6}}{4!} = .1912$$

Thinking Challenge

You work in Quality Assurance for an investment firm. A clerk enters 75 words per minute with 6 errors per hour. What is the probability of 0 errors in a 255-word bond transaction?

Poisson Distribution Solution: Finding λ^*

- 75 words/min = (75 words/min)(60 min/hr) = 4500 words/hr
- 6 errors/hr = 6 errors/4500 words = .00133 errors/word
- In a 255-word transaction (interval): $\lambda = (.00133 \text{ errors/word})(255 \text{ words})$ = .34 errors/255-word transaction

Poisson Distribution Solution: Finding p(0)*

$$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$p(0) = \frac{(.34)^{0} e^{-.34}}{0!} = .7118$$