

STATISTICS

MORPHINE ACADEMY

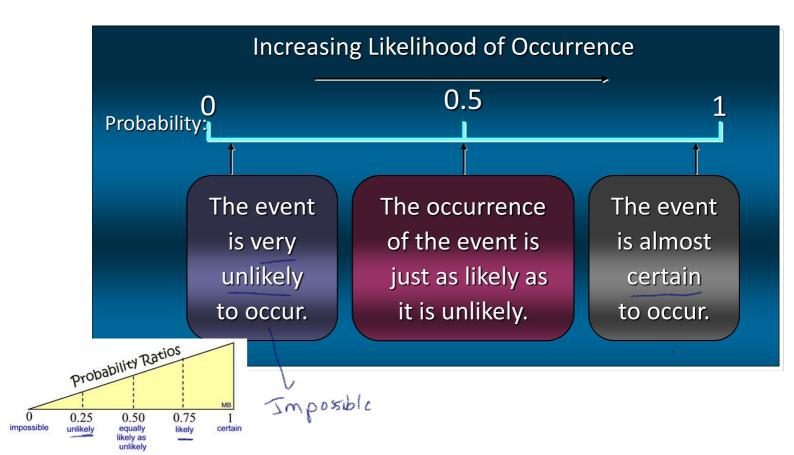
MORPHINE ACADEMY

The Probability of an Event

- P(A) must be between 0 and 1.
 - If event A can never occur, P(A) = 0. If event A always occurs when the experiment is performed, P(A) = 1.
- The sum of the probabilities for all simple events in S equals 1. $\mathcal{E}_{P(A)} = \mathcal{I}$

•The probability of an event A is found by adding the probabilities of all the simple events contained in A.

Probability as a Numerical Measure of the Likelihood of Occurrence



The Probability of an Event

- The probability of an event A measures "how often" we think A will occur. We write P(A).
- Suppose that an experiment is performed n times. The relative frequency for an event A is

$$\frac{\text{Number of times A occurs}}{n} = \frac{f}{n} = \frac{n}{\sum_{k=0}^{n} n}$$

Let A be the event $A = \{o_1, o_2, ..., o_k\}$, where $o_1, o_2, ..., o_k$ are k different outcomes. Then

$$P(A) = P(o_1) + P(o_2) + \cdots + P(o_k)$$

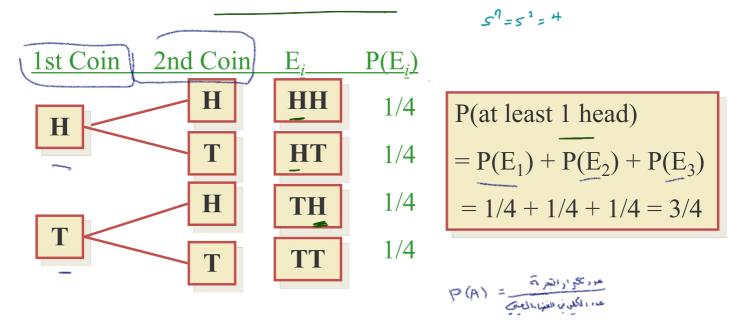
اكثر عالميت نجم

Finding Probabilities

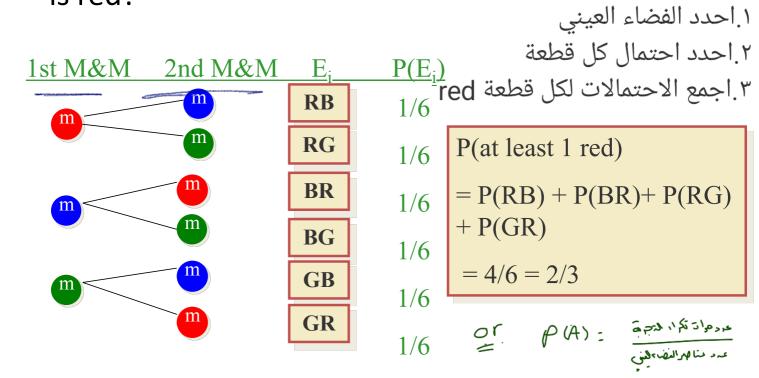
- Probabilities can be found using
 - Estimates from empirical studies
 - Common sense estimates based on equally likely events. عندما نرید حساب احتمال أما أن تقدره من relative frequency أو من
- •Examples: الاحتمالات المتساوية لعناصر التجربة عبر جمعهم
 - -Toss a fair coin. P(Head) = 1/2
 - −10% of the U.S. population has red hair.

Select a person at random. P(Red hair) = .10

 Toss two coins. What is the probability of observing at least one head?



• A bowl contains three M&Ms®, one red, one blue and one green. A child selects two M&Ms at random. What is the probability that at least one is red?



Counting Rules

 If the simple events in an experiment are equally likely, you can calculate

$$P(A) = \frac{n_A}{N} = \frac{\text{number of simple events in A}}{\text{total number of simple events}}$$

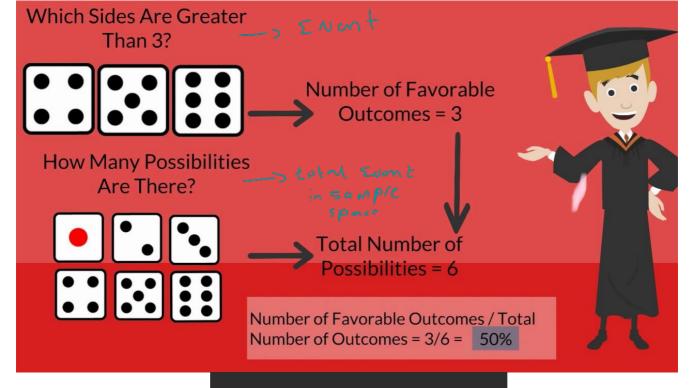
• You can use **counting rules** to find n_A and N.

A Counting Rule for Multiple-Step Experiments

If an experiment consists of a sequence of k steps in which there are n_1 possible results for the first step, n_2 possible results for the second step, and so on, then the total number of experimental outcomes is given by $(n_1)(n_2) \dots (n_k)$.

A helpful graphical representation of a multiple-step experiment is a tree diagram.

في منطفات نستعلها لفهم إلمثمالات



Counting Rule for Permutations

A second useful counting rule enables us to count the number of experimental outcomes when n objects are to be selected from a set of N objects, where the order of selection is important.

 \triangleright Number of <u>Permutations</u> of N Objects Taken n at a Time

$$P_n^N = n! \binom{N}{n} = \frac{N!}{(N-n)!}$$

where:
$$N! = N(N-1)(N-2) \dots (2)(1)$$

 $n! = n(n-1)(n-2) \dots (2)(1)$
 $0! = 1$

Permutations

The number of ways you can arrange
 n distinct objects, taking them r at a time is

$$P_r^n = \frac{n!}{(n-r)!}$$

where n! = n(n-1)(n-2)...(2)(1) and $0! \equiv 1$.

Example: How many 3-digit lock combinations can we make from the numbers 1, 2, 3, and 4?

The order of the choice is important!

$$P_3^4 = \frac{4!}{1!} = 4(3)(2) = 24$$

Example: A lock consists of five parts and can be assembled in any order. A quality control engineer wants to test each order for efficiency of assembly. How many orders are there?

The order of the choice is important!

$$P_5^5 = \frac{5!}{0!} = 5(4)(3)(2)(1) = 120$$

Counting Rule for Combinations

A third useful counting rule enables us to count the number of experimental outcomes when n objects are to be selected from a set of N objects.

Number of Combinations of N Objects Taken n at a Time

$$C_n^N = \binom{N}{n} = \frac{N!}{n!(N-n)!}$$

where:
$$N! = N(N-1)(N-2) \dots (2)(1)$$

 $n! = n(n-1)(n-2) \dots (2)(1)$
 $0! = 1$

Combinations

The number of distinct combinations of *n* distinct objects that can be formed, taking them *r* at a time is

 $C_r^n = \frac{n!}{r!(n-r)!}$

Example: Three members of a 5-person committee must be chosen to form a subcommittee. How many different subcommittees could be formed?

The order of the choice is not important!

$$C_3^5 = \frac{5!}{3!(5-3)!} = \frac{5(4)(3)(2)1}{3(2)(1)(2)1} = \frac{5(4)}{(2)1} = 10$$

• A box contains six M&Ms®, four red and two green. A child selects two M&Ms at random. What is the probability that exactly one is red?

The order of the choice is not important!

$$C_2^6 = \frac{6!}{2!4!} = \frac{6(5)}{2(1)} = 15$$

ways to choose 2 M & Ms

$$C_1^2 = \frac{2!}{1!1!} = 2$$

way sto choose

1 green M&M.

$$C_1^4 = \frac{4!}{1!3!} = 4$$

way sto choose

1 red M&M.

 $4 \times 2 = 8$ ways to choose 1 red and 1 green M&M.

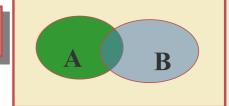
P(exactly one red) = 8/15

Calculating Probabilities for Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, A and B, the probability of their union, **P(A U B)**, is اول قانون للاتحاد بين حدثين=اذا كانوا الاحتمالين

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

A-B Mythody exclusive
$$P(AUB) = P(A) + P(B)$$



Addition Law

The <u>addition law</u> provides a way to compute the probability of event *A*, or *B*, or both *A* and *B* occurring.

The law is written as:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

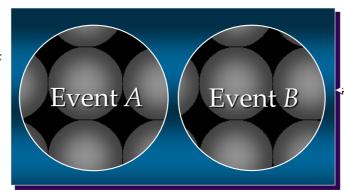
Mutually Exclusive (Disjoint) Events

Two events are said to be mutually exclusive if the events have no sample points (outcomes) in common.

Two events are mutually exclusive if, when one event occurs, the other cannot occur (They can't occur at the same time. The outcome of the random experiment cannot belong to both A and B

If events *A* and *B* are mutually exclusive, $P(A \cap B) = 0$.

Mutualy exclusive event



Sample

- Space S لا يو جم نعاملع

Mutually Exclusive Events

If events *A* and *B* are mutually exclusive, $P(A \cap B) = 0$.

The addition law for mutually exclusive events is:

$$P(A \cup B) = P(A) + P(B)$$

there's no need to include " $-P(A \cap B)$ "

Mutually Exclusive (Disjoint) Events

• Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa.

•Experiment: Toss a die

-A: observe an odd number

Not Mutually Exclusive

–B: observe a number greater than 2

-C: observe a 6

–D: observe a 3

Mutually Exclusive B and C? B and D?

Example: Additive Rule

Example: Suppose that there were 120 students in the classroom, and that they could be classified as follows:

A:	brown	hair	
	The contract of the contract o	A SPECIAL PROPERTY OF THE PARTY	, m

$$P(A) = 50/120 < \frac{malc}{4cmalc}$$

B: female

$$P(B) = 60/120$$

	Brown	Not Brown
Male	20	40
Female/	30)	30

$P(A \cup B) = P(A) +$	$P(B) - P(A \cap B)$
= 50/120 + 60/120 -	30/120
= 80/120 = 2/3	(Maryon or On Control of Control

مے احتمال انہ بکون ا نئی , شعرعا بنی A B

A Special Case

عالمة خامهة

When two events A and B are **mutually exclusive,** $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

A: male with brown hair P(A) = 20/120

B: female with brown hair P(B) = 30/120

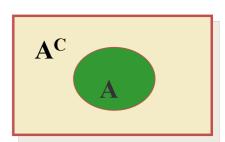
	Brown	Not Brown
Male	20	40
Female	30	30

A and B are mutually exclusive, so that

$$P(A \cup B) = P(A) + P(B)$$

= 20/120 + 30/120
= 50/120

Calculating Probabilities for Complements



We know that for any event A:

$$P(A \cap A^{C}) = 0$$

- Since either A or A^c must occur, $P(A \cup A^c) \neq 1$
- so that $P(A \cup A^c) = P(A) + P(A^c) = 1$

$$P(A^C) = 1 - P(A)$$
 حبموے الا مِمَا لاک

Select a student at random from the classroom. Define:

A: male	
P(A) = 0	
(B) female	A J Teoro

	Brown	Not Brown
Male	20	40
Female	30	30

A and B are complementary, so that

$$P(B) = 1 - P(A)$$

= 1-60/120 = 40/120

Calculating Probabilities for Intersections

• we can find $P(A \cap B)$ directly from the table. Sometimes this is impractical or impossible. The rule for calculating $P(A \cap B)$ depends on the idea of independent and dependent events. يمكن حساب التقاطع بين الحوادث مباشرة لكن هذا الشيء غير عملي ومستحيل

بالغالب ...فالقانون يعتمد على استقلالية الحادث من عدمه

Two events, A and B, are said to be **independent** if and only if the probability that event A occurs does not change, depending on whether or not event B has التقاطع يعتمد على نوع الحادث هل هو independent event of dependent

Conditional Probabilities

المطلوب في السهة ال

 The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$

"given"

اک أنه منت

لما اقول كادثين مستقلين independent event ... فهذا يعني حدوث الاول لا يؤثر بقيمة الاحتمال للحادث الثاني مثل الحمل ولما اقول dependent event يعني حدوث الحدث يؤثر على قيمة احتمال الحادث الثانى مثل سحب الكرات بشكل عشوائى دون إرجاع

Conditional Probability

- The probability of an event given that another event has occurred is called a <u>conditional probability</u>.
- The conditional probability of \underline{A} given \underline{B} is denoted by $P(A \mid B)$.

A conditional probability is computed as follows:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Law

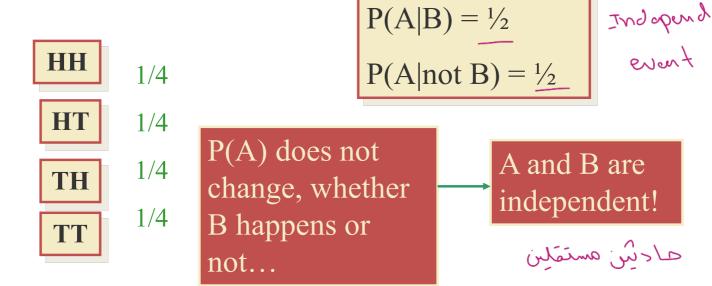
The <u>multiplication law</u> provides a way to compute the probability of the intersection of two events.

The law is written as:

$$P(A \cap B) = P(B)P(A \mid B)$$

-A: head on second toss

B: head on first toss



Independent Events

If the probability of event *A* is not changed by the existence of event *B*, we would say that events *A* and *B* are independent.

Two events A and B are independent if:

$$P(A \mid B) = P(A)$$

or

$$P(B \mid A) = P(B)$$

P(A) does change, depending on whether B happens or not...

A and B are dependent!

Defining Independence

• We can redefine independence in terms of conditional probabilities:

Two events A and B are **independent** if and only if

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

Otherwise, they are dependent.

• Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

Multiplication Law for Independent Events

The multiplication law also can be used as a test to see if two events are independent.

The law is written as:

$$P(A \cap B) = P(A)P(B)$$

The Multiplicative Rule for Intersections

 For any two events, A and B, the probability that both A and B occur is

$$P(A \cap B) = P(A) P(B \text{ given that A occurred})$$

= $P(A)P(B|A)$

• If the events **A** and **B** are independent, then the probability that both **A** and **B** occur is

$$P(A \cap B) = P(A) P(B)$$

In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?

Define H: high risk N: not high risk

```
P(\text{exactly one high risk}) = P(HNN) + P(NHN) + P(NNH)
```

- = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
- $= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)^2 = .243$

Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = 0.49 and P(H|F) = 1.08. Use the Multiplicative Rule: $P(\text{high risk female}) = P(H \cap F)$ = P(F)P(H|F) = .49(.08) = .0392