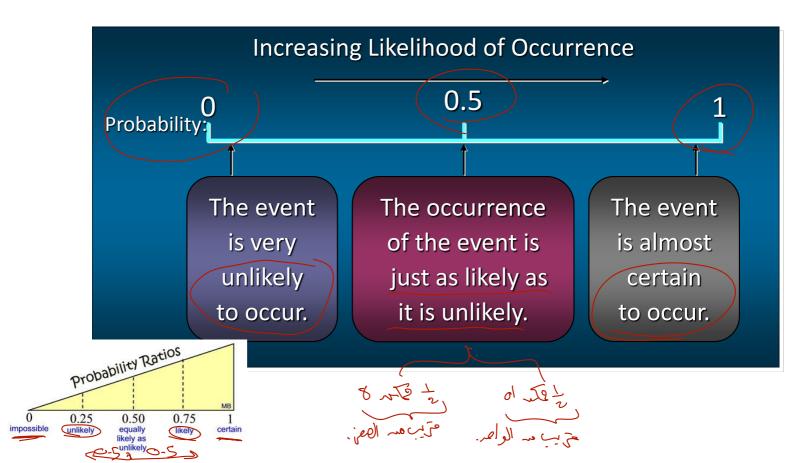


STATISTICS

MORPHINE ACADEMY

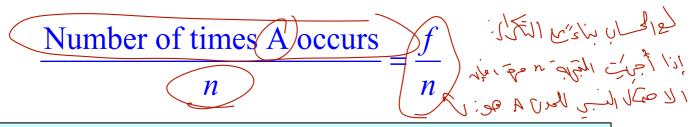
MORPHINE ACADEMY

Probability as a Numerical Measure of the Likelihood of Occurrence



The Probability of an Event

- The probability of an event A measures "how often" we think A will occur. We write P(A).
- Suppose that an experiment is performed n times. The relative frequency for an event A is



Let A be the event $A = \{o_1, o_2, ..., o_k\}$, where $o_1, o_2, ..., o_k$ are k different outcomes. Then

$$P(A) = P(o_1) + P(o_2) + \cdots + P(o_k)$$

Finding Probabilities

- Probabilities can be found using
 Estimates from empirical studies

 - Common sense estimates based on equally الدى. كا تقديم ال تعلى الم الله ما الله معالى مع likely events.

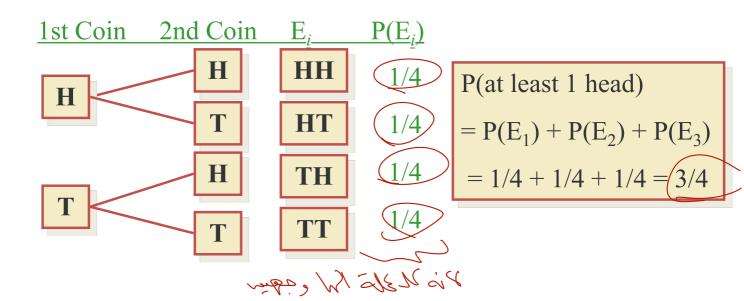
•Examples:

P(Head) = 1/2-Toss a fair coin.

 $\angle 10\%$ of the U.S. population has red hair.

Select a person at random. P(Red hair) = .10

 Toss two coins. What is the probability of observing at least one head?



 A bowl contains three M&Ms®, one red, one blue and one green. A child selects two M&Ms at random. What is the probability that at least one

is red?

1st M&M 2nd M&M $P(E_i)$ **RB** 1/6 RG P(at least 1 red) = P(RB) + P(BR) + P(RG)BR 1/6 BG 1/6 $=4/6 \neq 2/3$ **GB** GR رم كل زوج اله اصمال كال (كأبه هنال في الواله ويميمه اصرا 2 بترسم)

Counting Rules

ا المال equally likely, you can calculate

$$P(A) = \frac{n_A}{N} = \frac{\text{number of simple events in } A}{\text{total number of simple events}}$$

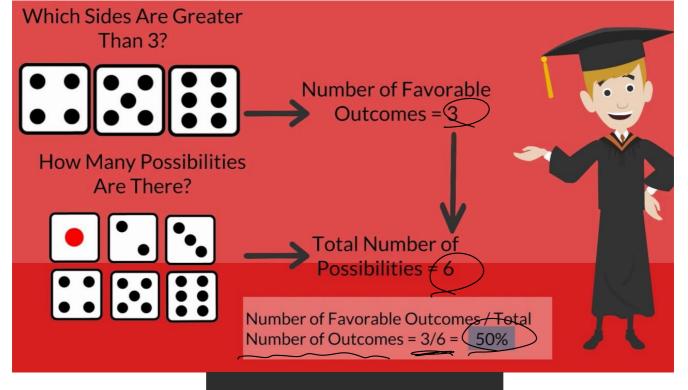
• You can use **counting rules** to find n_A and N.

A Counting Rule for Multiple-Step Experiments

If an experiment consists of a sequence of k steps in which there are n_1 possible results for the first step, n_2 possible results for the second step, and so on, then the total number of experimental outcomes is given by $(n_1)(n_2) \dots (n_k)$.

A helpful graphical representation of a multiple-step experiment is a tree diagram.

رقي اذا كات الجربية متكور مد عدة معولًا، عالم العدد للنام يعبد الاعتالات يوكل علون.



Counting Rule for Permutations

ے بدیم هاي الفاعرة كا لكور لات الاجتراجم.

Um W. 7.

A second useful counting rule enables us to count the \nearrow number of experimental outcomes when n objects are to be selected from a set of N objects, where the order of selection is important.

 \triangleright Number of <u>Permutations</u> of N Objects Taken n at a Time

$$P_n^N = n! \binom{N}{n} = \frac{N!}{(N-n)!}$$

where:
$$N! = N(N-1)(N-2) \dots (2)(1)$$

 $n! = n(n-1)(n-2) \dots (2)(1)$
 $0! = 1$

Calculating Probabilities for

Calculating Probabilities to Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, A and B, the probability of their union, $P(A \cup B)$, is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Addition Law

The <u>addition law</u> provides a way to compute the probability of event *A*, or *B*, or both *A* and *B* occurring.

The law is written as:

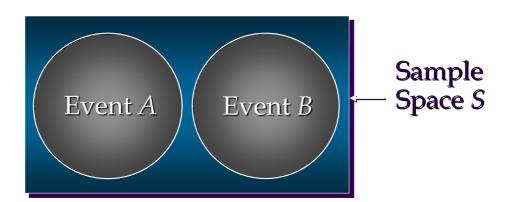
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually Exclusive (Disjoint) Events

Two events are said to be <u>mutually exclusive</u> if the events have no sample points (outcomes) in common.

Two events are mutually exclusive if, when one event occurs, the other cannot occur (They can't occur at the same time. The outcome of the random experiment cannot belong to both A and B

If events A and B are mutually exclusive, $P(A \cap B) = 0$.



Mutually Exclusive Events

If events *A* and *B* are mutually exclusive, $P(A \cap B) = 0$.

The addition law for mutually exclusive events is:

$$P(A \cup B) = P(A) + P(B)$$

there's no need to include " $-P(A \cap B)$ "

Mutually Exclusive (Disjoint) Events

• Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa.

Experiment: Toss a die
A: observe an odd number
B: observe a number greater than 2
C: observe a 6
D: observe a 3
Exclusive
B and C?
B and D?

Example: Additive Rule

Example: Suppose that there were 120 students in the classroom, and that they could be classified as follows:

A: brown hair

$$P(A) = 50/120$$

B: female

$$P(B) = 60/120$$

	Brown	Not Brown
Male	20	40
Female	30	30

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 50/120 + 60/120 - 30/120$$

$$= 80/120 = 2/3$$

A Special Case

When two events A and B are **mutually exclusive,** $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

A: male with brown hair P(A) = 20/120

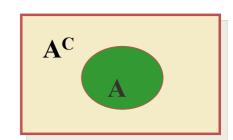
B: female with brown hair P(B) = 30/120

	Brown	Not Brown
Male	20	40
Female	30	30

A and B are mutually exclusive, so that

$$|P(A \cup B) = P(A) + P(B)$$
= 20/120 + 30/120
= 50/120

Calculating Probabilities for Complements



We know that for any event A:

$$P(A \cap A^{c}) = 0$$

Since either A or A^c must occur,

$$P(A \cup A^{c}) = 1$$

• so that $P(A \cup A^{c}) = P(A) + P(A^{c}) = 1$

$$\mathbf{P}(\mathbf{A}^{\mathbf{C}}) = \mathbf{1} - \mathbf{P}(\mathbf{A})$$

Select a student at random from the classroom. Define:

A: male

P(A) = 60/120

B: female

	Brown	Not Brown
Male	20	40
Female	30	30

A and B are complementary, so that

$$P(B) = 1 - P(A)$$

= 1 - 60/120 = 40/120

Conditional Probabilities

 The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$
"given"
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$

Conditional Probability

- The probability of an event given that another event has occurred is called a <u>conditional probability</u>.
- The conditional probability of \underline{A} given \underline{B} is denoted by $P(A \mid B)$.

A conditional probability is computed as follows:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Law

The <u>multiplication law</u> provides a way to compute the probability of the intersection of two events.

The law is written as:

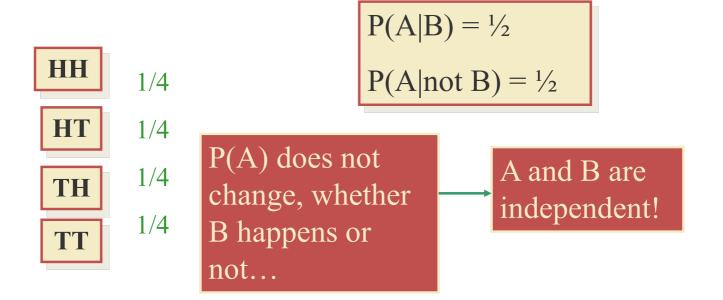
$$P(A \cap B) = P(B)P(A \mid B)$$

1'gill Bytad gest of less of land!

Black A Less of land!

Black A Less of land!

- Toss a fair coin twice. Define
 - —A: head on second toss
 - −B: head on first toss



Independent Events

If the probability of event *A* is not changed by the existence of event *B*, we would say that events *A* and *B* are independent.

Two events *A* and *B* are independent if:

$$P(A \mid B) = P(A)$$

or

$$P(B \mid A) = P(B)$$

P(A) does change, depending on whether B happens or not...

A and B are dependent!

Multiplication Law for Independent Events

The multiplication law also can be used as a test to see if two events are independent.

The law is written as:

$$P(A \cap B) = P(A)P(B)$$

معلم استنام قانور العنابي الحال الشاط مدًا هلا لهر المتربر اذا كانوا منعلما ولأ.

The Multiplicative Rule for Intersections

For any two events, A and B, the probability that both A and B occur is

$$P(A \cap B) = P(A) P(B \text{ given that A occurred})$$

= $P(A)P(B|A)$

• If the events **A** and **B** are independent, then the probability that both **A** and **B** occur is

$$P(A \cap B) = P(A) P(B)$$

In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?

Define H: high risk N: not high risk

```
P(\text{exactly one high risk}) = P(HNN) + P(NHN) + P(NNH)
```

- = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
- $= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)^2 = .243$

Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08. Use the Multiplicative Rule:

 $P(high risk female) = P(H \cap F)$

$$= P(F)P(H|F) = .49(.08) = .0392$$