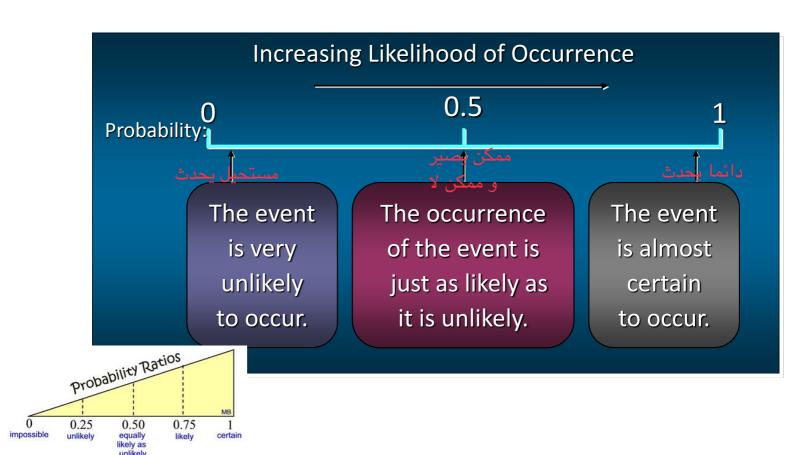


STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Probability as a Numerical Measure of the Likelihood of Occurrence



The Probability of an Event

- The probability of an event A measures "how often" we think A will occur. We write P(A).
- Suppose that an experiment is performed *n* times. The relative frequency for an event A is

$$\frac{\text{Number of times A occurs}}{n} = \frac{f}{n}$$

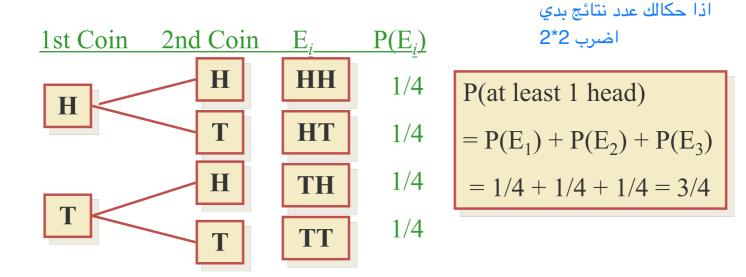
Let A be the event $A = \{o_1, o_2, ..., o_k\}$, where $o_1, o_2, ..., o_k$ are k different outcomes. Then

$$P(A) = P(o_1) + P(o_2) + \dots + P(o_k)$$

Example احنا خلينا نتعامل معاه

زي توجيهي بالوراثة

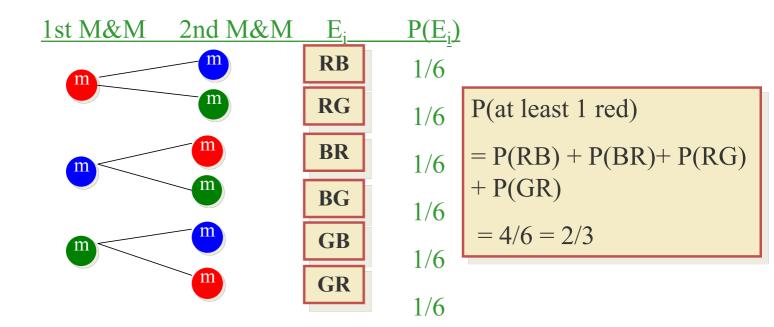
 Toss two coins. What is the probability of observing at least one head?



(Hith) (H

Example

 A bowl contains three M&Ms®, one red, one blue and one green. A child selects two M&Ms at random. What is the probability that at least one is red?



Counting Rules

 If the simple events in an experiment are equally likely, you can calculate

$$P(A) = \frac{n_A}{N} = \frac{\text{number of simple events in A}}{\text{total number of simple events}}$$

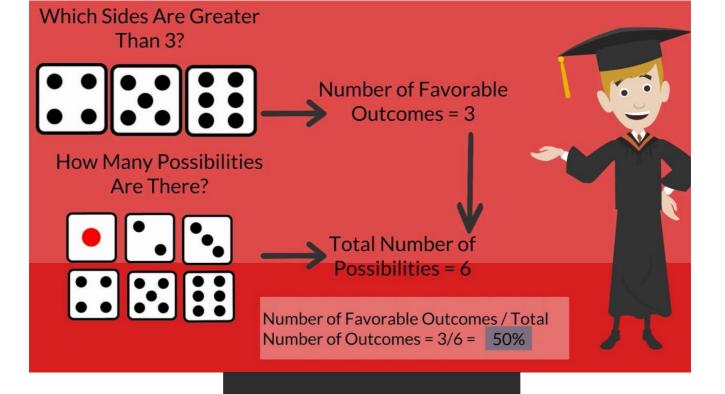
• You can use **counting rules** to find n_A and N.

A Counting Rule for Multiple-Step Experiments

If an experiment consists of a sequence of k steps in which there are n_1 possible results for the first step, n_2 possible results for the second step, and so on, then the total number of experimental outcomes is given by $(n_1)(n_2) \dots (n_k)$.

A helpful graphical representation of a multiple-step experiment is a <u>tree diagram</u>.

رسم التخطيطي تمثيلا بيانيا مفيدا لتجربة متعددة



الحمدلله

هون بحكيلك قديش عندي رقم اكبر من ٣في حجر نرد =٣ طيب بدي احتمالية هسا بقسم هاي ثلاث ع عدد الكلب للاحتمالات يلي هو سية

Addition Law

The <u>addition law</u> provides a way to compute the probability of event *A*, or *B*, or both *A* and *B* occurring.

The law is written as:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

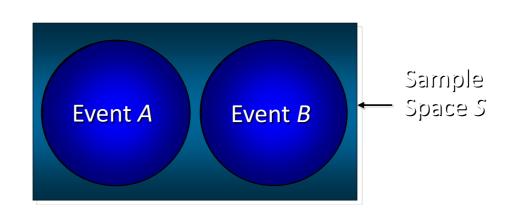
حديثين متنافين اذا ما كان عندي نقاط مشتركة

Two events are said to be <u>mutually exclusive</u> if the events have no sample points (outcomes) in common.

Two events are mutually exclusive if, when one event occurs, the other cannot occur (They can't occur at the same time. The outcome of the random experiment cannot belong to both A and B

If events A and B are mutually exclusive, $P(A \cap B) = 0$.

اذا كان حدثين متنافين اذا احتمالية تقاطعهما صفر



Mutually Exclusive Events

If events A and B are mutually exclusive, $P(A \cap B) = 0$.

The addition law for mutually exclusive events is:

$$P(A \cup B) = P(A) + P(B)$$

there's no need to include " $-P(A \cap B)$ "

بطل في عندي ناقص احتمالية تقاطهما لاتو اصلا صفر

اللهم يا مقلب القلوب ثبت قلوبنا على دينك

A: observe an odd number

Not Mutually Exclusive

—B: observe a number greater than 2

–C: observe a 6

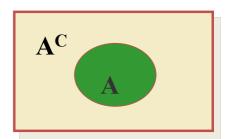
–D: observe a 3

Mutually Exclusive

B and C?

B and D?

Calculating Probabilities for Complements



We know that for any event A:

$$P(A \cap A^{C}) = 0$$

- Since either A or A^c must occur,
 P(A ∪ A^c) =1
- so that $P(A \cup A^{c}) = P(A) + P(A^{c}) = 1$

$$P(A^{C}) = 1 - P(A)$$

Example

Select a student at random from the classroom. Define:

A: male

P(A) = 60/120

B: female

	Brown	Not Brown
Male	20	40
Female	30	30
DACI	_	_

A and B are complementary, so that

$$P(B) = 1 - P(A)$$

= 1 - 60/120 = 49/120

انا عندي 60 زلمة شو متممة تبعته انه ما ييكون عندي ستين زلمة يعنى يكون عندي بنات

Calculating Probabilities for Intersections

• we can find $P(A \cap B)$ directly from the table. Sometimes this is impractical or impossible. The rule for calculating $P(A \cap B)$ depends on the idea of **independent and dependent events.**

Two events, **A** and **B**, are said to be **independent** if and only if the probability that event **A** occurs does not change, depending on whether or not event **B** has occurred.

Conditional Probabilities

 The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$
"given"

Conditional Probability

The probability of an event given that another event has occurred is called a <u>conditional probability</u>.

The conditional probability of <u>A given B</u> is denoted by $P(A \mid B)$.

A conditional probability is computed as follows:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Law

The multiplication law provides a way to compute the probability of the intersection of two events.

The law is written as:

$$P(A \cap B) = P(B)P(A \mid B)$$

Dependent بستخدم هذا قانم:

سواء B صازت و خلصت و لا لسا ما بأثر عشان هيك بستخدم Independent p(A)*p(B)

Independent Events

If the probability of event A is not changed by the existence of event B, we would say that events A and B are independent. اذا ما تغير احتمال A في وقوع B اذا الحدثين مستقلين

Two events A and B are independent if:

$$P(A \mid B) = P(A)$$

or

$$P(B|A) = P(B)$$

P(A) does change, depending on whether B happens or not...

A and B are dependent!

Defining Independence

• We can redefine independence in terms of conditional probabilities:

Two events A and B are **independent** if and only if

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

Otherwise, they are dependent.

• Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

The Multiplicative Rule for Intersections

 For any two events, A and B, the probability that both A and B occur is

$$P(A \cap B) = P(A) P(B \text{ given that A occurred})$$

= $P(A)P(B|A)$

• If the events **A** and **B** are independent, then the probability that both **A** and **B** occur is

$$P(A \cap B) = P(A) P(B)$$

Example 1

In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?

Define H: high risk N: not high risk

P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH)
= P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
=
$$(.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)^2 = .243$$

Example 2

Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08. Use the Multiplicative Rule:

P(high risk female) = $P(H \cap F)$

= P(F)P(H|F) = .49(.08) = .0392

طيب سؤال مهم: كيف عرفت انه سؤال بده تقاطع مش اتحاد لانو جمعلى حدثين مع بعض یاها انثی و عالیة خطورة و ما حكالي or يعني بده سؤال يتحقق شرطين معا في نفس of go girl die volonges · 49= 5201

08-200° by organ i vie 1:1 عرفت الها تون بر ركو لقر

· 49 \$. 68 =