
STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY مقرة في الإحتمال

Introduction to Probability

Prepared and Presented by: Dr Muna Oqal

قيم ، كا حمال شعير عن ٥ إلى 1

Introduction to Probability

Experiments, Outcomes, Events and Sample Spaces

What is probability?

Basic Rules of Probability

Probabilities of Compound Events

هادن مركب كثر من تتبيعة للصرن

Introduction to Probability

Why Learn Probability?

- Nothing in life is certain. In everything we do, we gauge the chances of successful outcomes, from business to medicine to weather.
- A probability provides a quantitative description of chances or likelihoods associated with various يزود الإجماعات بوجف كعت للاستالان والغراق المرتدطة بالنتائج outcomes.
- It provides a bridge between descriptive and inferential statistics. Probability 3

الاصلاد و ملة و على من الإحماد الاستدلال و الواعل.

Basic Probability Concepts

Experiment

• An **experiment** is the process by which an observation (or measurement) is obtained.

* حملی حمار کی الحمول علی ملافظات أو مقاسی تنقسم التجربة الی نوین :-

- Deterministic Vs non-Deterministic experiment
- Deterministic or Non-Random experiment
- ➤ Non-Deterministic or Random experiment

deterministic experiment -تكون نتيجته مؤكدة معربة عثرائية (برمعربة) non-determinsitic expermint -تكون نتيجته غير مؤكدة وتعتمد على نتائج الحدث

Experiment

- ➤ Deterministic or Non-Random experiment
 ➤ In deterministic experiment, the outcome can be predicted exactly in advance by using a mathematical mode that allows a perfect prediction of the phenomena's outcome. النتا رُج يمكن التنبؤ بها مسبقًا و برقة عبر تعوين الكيات المقاسة بالمعادلات الريا فهذه و الفيزياء
- Many examples exist in physics and science.
- Example: Force = mass* acceleration. So if we are given values for mass and acceleration, we exactly know the value of force.

Experiment (Phenomena)

تجربة عنم حتمية (علم المنة)

کسٹال دواستہ دشاط المکنونیات بد الدوزیو الکو ایسے للبیانات و عو بعیت علی ۱۹۲۰ ۱۹۲۰

- > Non-Deterministic or Random experiment
- In random experiment, no mathematical model exists that allows a perfect prediction of the experiment's outcome.
- In this case, we are unable to predict the outcomes, or they are not known exactly. However, in the long-run, the outcomes exhibit a statistical regularity, so we can describe the probability of the possible outcomes.

في التجربة العشوائية لا يوجد علاقات رياضية تسمح

بالتنبؤ الدقيق بالنتائج للتجربة

في هذه الحالة لا نقدر على التنبؤ بالنتائج أو معرفتها بدقة لكن على المدى الطويل سيظهر للنتائج انتظام إحصائي يجعلنا قادرين على وصف احتمالية حدوث النتائج المحتملة

Experiment (Phenomena)

Examples:

المعالمة ال case, we don't know exactly what we get, but in the long run we can calculate the probability and predict that 50% of the time we will get a head and 50% of the قانون :مجموع الاحتمالات time we will get a tail. =1 ...يساعدنا في إيجاد

احتمال مجهول لقيمة ما ce Mic 2. Rolling a die, so the outcomes عبر طرح مجموع الاحتمالات من 1 فنجد $S=\{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$ الاحتمال المجهول

> We are unable to predict an outcome, but in the long run, we can determine that each outcome will occur 1/6 احتمال ظهور الرقم 7 عند إلقاء حجر نرد=0 ، of the time. احتمال ظهور رقم أقل من 7=1 اي 6/6=1

We guessing but not certain

المنزر على التنبؤ بالنتيجة لكن يمكن حياه احما لية حروثها ,

The Sample Space (S)

• The sample space (\underline{S} or $\underline{\Omega}$) for a random phenomena (random experiment) is the set of all ١٨ الففاء الميني: هم جيع مناهم الحامث المستعلة للتجوية المسهائية possible outcomes.

تَعْلَمُ و إستناعلى النوع الأول

النهاء العين دحوى على:

- The sample space S may contain:

 1. A finite number of outcomes
- 2. A countably infinite number of outcomes, or ستطع عد ها لكن غير معدودة عن اعتيار مجرعة اعداد عن اردوار) و عناية المدور الما المدور ا
- 3. An uncountably infinite number of outcomes.

لانستطرعة ها , هي عير معمودة على ويق ارناس مالات مالات الحاسة إلى المالاتها بت

MORE EXAMPLES PLEASE =

The Sample Space (S)

- as de consider + 18 milles in the inter
- Examples of a sample space (S)
- 1. Tossing a coin. Outcomes, $S = \{\text{Head, Tail}\} \subseteq \{\text{H, T}\}\$
- 2. Tossing two coins once. Outcomes $S = \{HH, HT, TH, TT\}$. So number of outcomes = n(S) = 2*2=4.
- 3. Tossing three coins once. Then, outcomes: S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- Number of outcomes = n(S) = 2*2*2 = 8 or S^n .
- 4. Rolling a die, then outcomes $S = \{1, 2, 3, 4, 5, 6\}$, So number of outcomes = n(S) = 1*6 = 6.

Yeall and to an = and allered rank

The Sample Space (S)

5. Rolling two dice, the outcomes are:

احتال ظهور آ من دجو بن نزد و من دجو بن نزد و الالا

So number of outcomes S = n(S) = 6*6 = 36

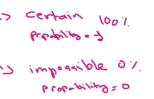
The mn Rule

- If an experiment is performed in two stages, with m ways to accomplish the first stage and n ways to accomplish the second stage, then there are mn ways to accomplish the experiment.
- This rule is easily extended to k stages, with the number of ways equal to

$$n_1 n_2 n_3 \dots n_k$$

Example: Toss two coins. The total number of

simple events is:
$$2 \times 2 = 4$$

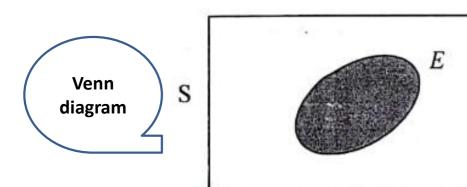

Examples

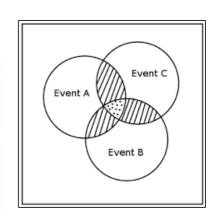
Example: Toss three coins. The total number of simple events is: $2 \times 2 \times 2 = 8$

Example: Toss two dice. The total number of simple events is: $6 \times 6 = 36$

Example: Two M&Ms are drawn from a dish containing two red and two blue candies. The total number of simple events is: $4 \times 3 = 12$

The Event (E)





An Event, E

الحي حري من الفعاء السيني (هو درج معن و له احتقال و تنبة)

- The event, which is denoted by E, is any subset of the sample space, S, so it is any set of outcomes (not necessarily all outcomes) of the random phenomena.
- The event, E, can be denoted by A, B, C, D,....

Types of Events

أ لواع العوادي في الله حموالات :-

- There are four types of events as follows:
- 1. Null (impossible) event (Φ) دير عز الاستعالة عوى المستعالة على المستعالة عوى المستعالة على المس

2. Entire (sure or certain) event(S) مرد و بین کا کیر جدیک کے عدوہ کا عدوہ کے اس اسلامات کا کیا ہے۔

3. Simple event

حرن سيط ے اي حرن له نيجه و اهرة محربي حجر رد و المهر الدر لا

4. Compound event

حدل مرمحت ہے ہے ہن ہد اکثر من عندی الدیتجة مثل رفي هجر نرد و الحصول على اعد اد مددية درمتم هده

١١٥٠ يمون ١١ حتال على - ع = (١١٥)

× عزد رافي حجو الرح الا

certain event - 7 is dolone, gots

impoccible

ظهر العدد ٢

Types of Events

- 1. The **null** event (the empty event) (ϕ) , never occurs, impossible.
 - $\phi = \{ \}$ = the event that contains no outcomes

2. The **entire** (sure or certain) event, the sample space (S), S = the event that contains all outcomes So the sure event, S, always occurs.

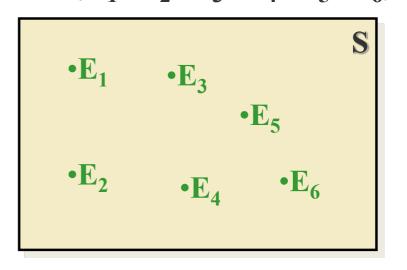
Types of Events

- 3. A **simple** event is the outcome that is observed on a single repetition of the experiment.
- One and only one simple event can occur when the experiment is performed.
- Simple event is denoted by E with subscript, e.g. E₁, E₂, ...etc.


The set of all simple events of an experiment is called the sample space, S. البسيط هو النتيجة الواحدة التي ستظهر عند القيام بالتجربة مرة واحدة فقط

4. Compound event is the outcome that contains more than one simple event when the experiment is performed.

الحادث المركب يحتوي على اكثر من نتيجة عند القيام بتجربة


Example

- The die toss:
- Simple events: Sample space:

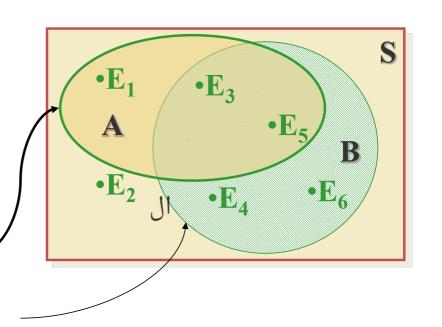
Sample space:

 $S = \{E_1, E_2, E_3, E_4, E_5, E_6\}$

Event

• An **event** is a collection of one or more **simple events.**

Compound Evente


• The die toss:

-A: an odd number

-B: a number > 2

$$A = \{E_1, E_3, E_5\}$$

$$B = \{E_3, E_4, E_5, E_6\}$$

Examples of Event

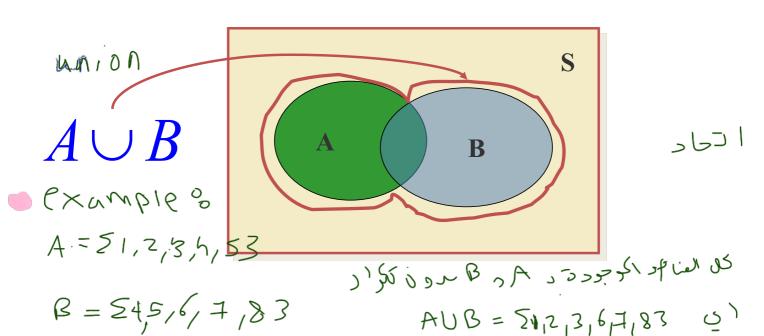
إلقاء حجر النرد

- Rolling a die, then outcomes, S = {1, 2, 3, 4, 5, 6}
- \triangleright A = The event that the number comes up is greater than 5 = {6} which is simple event.
- **B** = The event that the number comes up is an even number = $\{2, 4, 6\}$, which is a compound event. and add number
- ightharpoonup C = Then event that the number comes is less than 7 = $\{1, 2, 3, 4, 5, 6\}$, which is a sure event.
- \triangleright **D** = The event that the number comes up is greater than $6 \neq \{\} = \phi$, which is an impossible event.

Event Relations

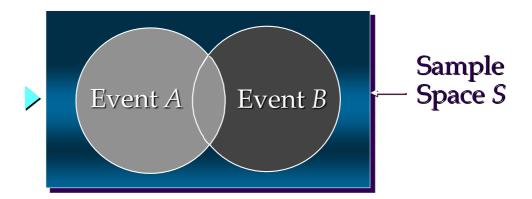
Some Basic Relationships of Probability

There are some <u>basic probability relationships</u> that can be used to compute the probability of an event without knowledge of all the sample point probabilities.


Union of Two Events	تعاد هاد ش ای جسمالمنا مر ما عدر انمسکش د
Intersection of Two Events	الستاحلع بـ ، لمسن جمر ، لمشتر تحة بين ها د شن
Complement of an Event	ما دڻ هتتم
Mutually Exclusive Events	لهداندا ليحتمسه ن أن اله

Union of Two Events

 The union of two events, A and B, is the event that either A or B or both occur when the experiment is performed. We write

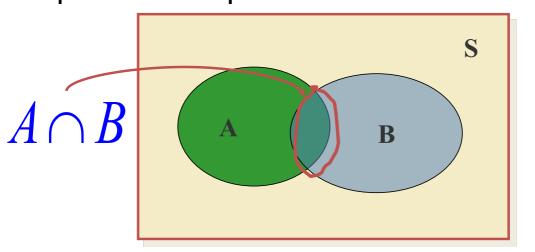

 $A \cup B$

Union of Two Events

- The <u>union</u> of events A and B is the event containing all sample points that are in A or B or both.
- \succ The union of events A and B is denoted by $A \cup B$.

Intersection of Two Events

• The **intersection** of two events, **A** and **B**, the event that both A **and** B occur when the experiment is performed. We write **A** ∩ **B**.

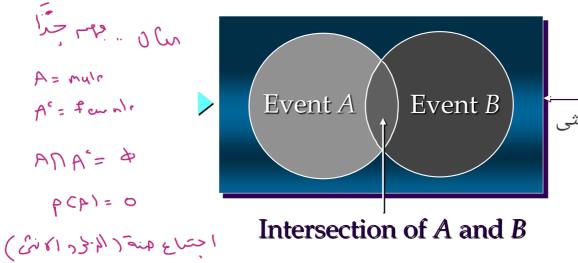

العنا جر اطمشتركة

العف B م A 'سِ

A = 52 M153

8 = 52,43

ANB = 22,63



• If two events A and B are mutually exclusive, then $P(A \cap B) = 0$.

Intersection of Two Events

- The <u>intersection</u> of events A and B is the set of all sample points that are in both A and B.
- The intersection of events *A* and *B* is denoted by $A \cap B$.

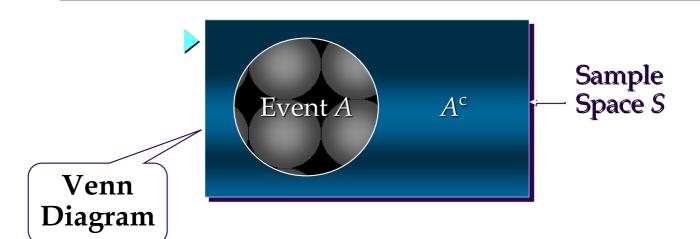
Sample — Space *S* اجتماع صفة الذكر والأنثى أو إجتماع ظهور عدد

فردي وزوجي عند إلقاء حجر النرد/أيضا

المتممة أمثلة على

אינא של בייסין בייסין בייסין בייסין בייסין בייסין בייסין בייסין אינא בייסין בייסיין בייסין בייסיין בייסין בייסיין בייסין בייסין בייסין בייסיין בייסין בייסין בייסין בייסין בייסין בייסין בייסין בייסיין בייסייייין בייסיין בייסי

Complement of an Event


• The **complement** of an event **A** consists of all outcomes of the experiment that do not result in event A. We write \mathbf{A}^{C} or $\overline{\mathbf{A}}$.

Complement of an Event

- The <u>complement</u> of event A is defined to be the event consisting of all sample points that are not in A.
- \triangleright The complement of A is denoted by A^{c} .

Example

- Select a student from the classroom and record his/her hair color and gender.
 - -A: student has brown hair
 - B: student is female Bre Por 2000 Mutual
- ϵ C: student is male Mutually exclusive; B = C^{C}
 - •What is the relationship between events **B** and **C**?
 - •A^C:) Student does not have brown hair

A or A

andar Ji > 2 - ral (A) is

- •B \cap C: Student is both male and female = \emptyset
- $\mathbf{B} \mathbf{\mathcal{C}}$: Student is either male and female = all students = \mathbf{S}

كل الشعبة

کن عِزْء مِی المستطیل بیش که مناهر النهاد العین کا Venn Diagrams and Probability و vent ا

Recall the example on gender and pierced ears. We can use a Venn diagram to display the information and determine probabilities.

	Pierce	d Ears?			7	< /
Gender	Yes	No	Total		1	X
Male	19	71	90		71	(19)
Female	84	4	88	-		
Total	103	75	178	785		X

Define events A: is male and B: has pierced ears.

Coold. Nyenes table

Region in Venn diagram	In words	In symbols	Count
In the intersection of two circles	Male and pierced ears	$A \cap B$	19
Inside circle A, outside circle B	Male and no pierced ears	$A \cap B^{c}$	71
Inside circle B, outside circle A	Female and pierced ears	Sem al AC \cap B	84
Outside both circles	Female and no pierced ears	$A^{c}\cap B^{c}$	4

عون احدد حس الإحتمال

Probability Rules

Event Relations

- Key words to recognise which event relation you should perform:
- 1. Union: if you see the word or or at least one of the two event occurs.
- 2. Intersection: if you see the word and or both events occur.
- 3. Complement: f you see the word not.

 (المعنوة الم

De Moivre's Laws

1.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

وته این بلا حقالات ل دیسر مرکز

The event A or B does not occur if the event A does not occur and the event B does not occur.

2.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

The event A and B does not occur if the event A does not occur or the event B does not occur.

Rules

- Roles involving the empty set (φ) and the entire event (S)
- 1. $A \cup \underline{\phi} = A$
- 3. $A \cap \varphi = \varphi$
- 5. $A \cap \bar{A} = \Phi$ 6. $A \cup \bar{A} = \bar{S}$

Events and Their Probabilities

An <u>event</u> is a collection of sample points.

The <u>probability of any event</u> is equal to the sum of the probabilities of the sample points in the event.

If we can identify all the sample points of an experiment and assign a probability to each, we can compute the probability of an event.

Assigning Probabilities to Events

Probability of an event P(E): "Chance" that an event will occur

- Must lie between 0 and 1
- "0" implies that the event will not occur
- "1" implies that the event will occur

الاحتمال يقع بين 0-1

Types of Probability: انواع وطرق حساب الاحتمالات

الحدث المستحيل وقوعه احتماله 0 الحدث احتماله 1 مؤكد حدوثه

- Objective
 - ✓ Relative Frequency Approach = المعرفة عن المعرفة ا
 - من حدث ما مكل عدما و احتقال علمادي به Equally-likely Approach بي حدث ما مكل عدما و احتقال علمادي به
- Subjective --> يعتمد على التنبؤ والخبرة --> subjective -->

Relative Frequency Approach: Relative frequency of an event occurring in an infinitely large number of trials

Time Period	Number of Male Live Births	Total Number of Live Births	Relative Frequency of Live Male Birth
1965	1927.054	3760.358	0.51247
1965-1969	9219.202	17989.360	0.51248
1965-1974	17857.860	34832.050	0.51268

a.p = 4 = E E F

Equally-likely Approach: If an experiment must result in n equally

likely outcomes, then each possible outcome must have probability 1/n of occurring.

Examples:

- 1. Roll a fair die = 🚽
- 2. Select a SRS of size 2 from a population

كنيرات الطعس

اختيار عنفدين من مينة المجتقع

Subjective Probability: A number between 0 and 1 that reflects a person's degree of belief that an event will occur

Example: Predictions for rain

احتيال بعتبه على اكتفاد الشخف

Assigning Probabilities

Classical Method

Assigning probabilities based on the assumption of <u>equally likely outcomes</u>

Relative Frequency Method

Assigning probabilities based on experimentation or historical data

Subjective Method

Assigning probabilities based on judgment

لانستخدم الحمايات

Classical Method

If an experiment has *n* possible outcomes, this method

would assign a probability of 1/n to each outcome.

- **Example**
- Experiment: Rolling a die
- Sample Space: $S = \{1, 2, 3, 4, 5, 6\}$

Probabilities: Each sample point has a

1/6 chance of occurring

الطريقة التقليدية ...لتجربة لها عدد نتائج محددة تكون الاحتمالات متساوية لكل عنصر فى التجربة =n/1

Relative Frequency Method

Each probability assignment is given by dividing the frequency (number of days) by the total frequency (total number of days).

	the trade of the first of the latest state of the place o	Control of the Contro
Number of	Number	relative foognone
Polishers Rented	<u>of Days</u>	<u>Probability</u>
0	J (= 4)	.10
1	6	.15
2	18	.45 4/40
3	10	.25
4	<u>2</u>	.05 1.00
	EF= 40	1.00

Subjective Method

Productive Repend on experence not Chalation
Applying the subjective method, an analyst made the following probability assignments.

Exper. Outcome	Net Gain or Loss	<u>Probability</u>
(10, 8)	\$18,000 Gain	.20
(10, -2)	\$8,000 Gain	.08
(5, 8)	\$13,000 Gain	.16
(5, -2)	\$3,000 Gain	.26
(0, 8)	\$8,000 Gain	.10
(0, -2)	\$2,000 Loss	.12
(-20, 8)	\$12,000 Loss	.02
(-20, -2)	\$22,000 Loss	.06