
المعرفي المعربة لعنى يشرحوا اله المحمد المعرفي كثير مناح وبسطوعلم المعرفي المعرب على العليمرام المعرب المع

Presentation of size distribution

Evaluation of distribution width

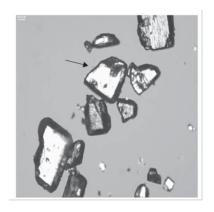
• The size distribution width can be estimated by determining **Span**

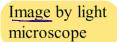
• **Note**: D₉₀, D₅₀, D₁₀ are values corresponding to 90, 50 and 10% in the cumulative undersize curve.

Particle size analysis methods

Microscope methods (direct metho)

Equivalent diameters


 d_a , d_p , d_F and d_M can be determined


Range of analysis

- Light microscope (1 1000 μ m)
- Scanning electron microscope ($0.05 1000 \mu m$)
- Transmission electron microscope (0.001 0.05 μm)

کل نوی مانه هختلنه من بقیس احجام مختلنه من محتلنه من مح

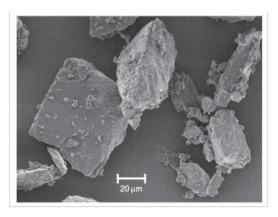
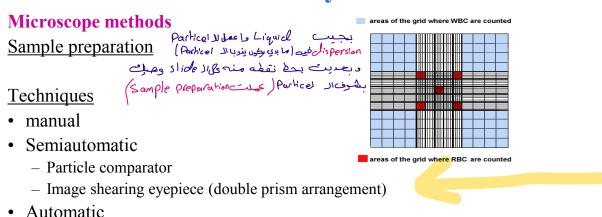
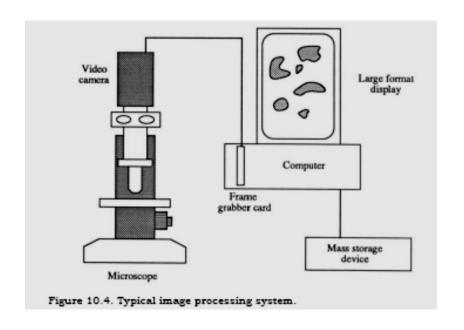



Image by scanning electron microscope(SEM)


23

Particle size analysis methods

 A video camera is used to transform the image to a microprocessor where manipulations and calculations are done

کامیرا مرکبه کارائی microscope کارون میرا میرا میرا میرا میرا کارون کا Compyter کارون کار

25

Particle size analysis methods

Sieve diameter (d_s)

Range of analysis

Available range: (5 - 125 000 µm)

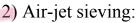
ISO range: (45 - 1000 μm)

Sample preparation

Dry sieving: for non cohesive powders

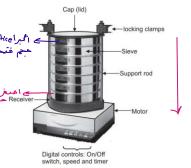
Wet sieving: for suspensions and cohesive powders

Particel -Size اقيس اله Powder على كال المحادة Particel -Size عمون بدي اقيس اله على عمود عمود عمود عمود عمود عمود المعادة عمود المعادة عمود المعادة ا


Sieve methods

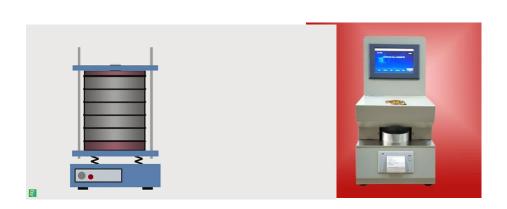
Techniques

1) Vibrated sieving; distribution as some


• Uses a sieve stack (usually 6 -8 sieves) م فقيمات الد العناه الد العناه الد العناه الد العناه الد العناه الد

• The Particles are retained on sieve mesh corresponding to the sieve diameter. منظون عرف منان ال مهجاك منظون منان الد مهجاك منظون المنان الم

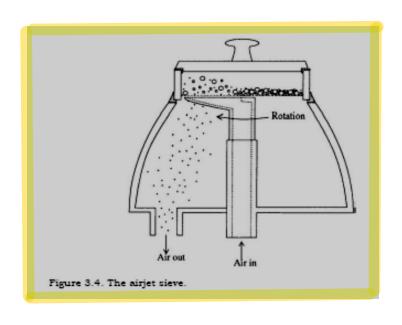
• Uses individual sieves starting from that of smallest aperture.


• <u>Vacuum</u> is applied to encourage particles to pass through sieves.

الـ nelen:اله (حجم الفتحات) نقل

ملس خائدة ال tei-vibration ال air عنام الم Seive المحادد الم Seive المعادد المعاندة المعادد ا

(2) open od ima Ilaquis Acrhon Ilaquis



Vibrated sieving:

https://youtu.be/6wmROluoNuo?si=fzWVHaBAiJzfHP50

Air-jet sieving:

https://youtu.be/FynV8YfaKOo?si=C7rGFoIYCJdEuzZb

29

رج الاحظ بصدا الجدول لا Rang بلش من الحبير عشان صلف قعم السحدة odersiz بالرسية

رح تضاء نقسها (4) حون الجرول بلمك من الـــ Rong لا Porticel من الـالمجر Sieve size mean of Sieve fractions Nominal 250 µm Cumulative Cumulative range (µm) size range aperture 180 µm undersize size (µm) oversize 125 µm wt (g) wt% >250 0.02 99.96 0.04 0.04 250 90 µm 180-250 215 2.96 96.99 3.01 مون رح يطلع سن 1.32 180 63 µm 125-180 152.5 4.23 9.50 125 87.49 12.51 av Percent wieght 90-125 66.30 33.70 45 µm 107.5 9.44 21.19 90 63-90 76.5 13.1 29.41 63 36.89 63.11 Powdorstois le lo Base 45-63 11.56 25.95 45 10.93 89.07 216 sieve 15 4.87 10.93 0 100 Sum=44.54 Partice 11 x1 Sieve y dimeter Si 100.00 75.00 % frequency 50.00 25.00 0.00 50 100 125 150 175 200 225 250 275 Particle size (micrometer) 30

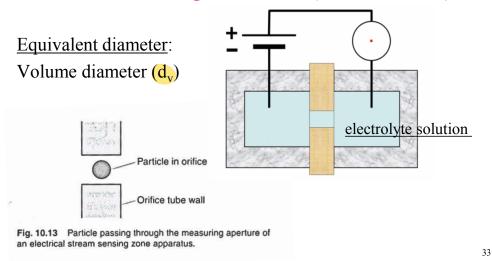
Standards for powders based on sieving

• Standards for pharmaceutical powders are provided in **pharmacopoeiae**, which indicate the degree of <u>coarseness</u> or <u>fineness</u> depending on percentage passing or not passing through certain sieves.

• e.g	. BP
-------	------

Table 12.1 Powde Pharmacopoeia	r grades spe	cified in British	
Description of grade of powder	Coarsest sieve diameter (µm)	Sieve diameter the which no more the 40% of powder mass (µm)	nan
Coarse	1700	355	exist is the distribution (coarse
Moderately coarse	710	250	Coarse
Moderately fine	355	180	
Fine	180	_	
Very fine	125	_	31

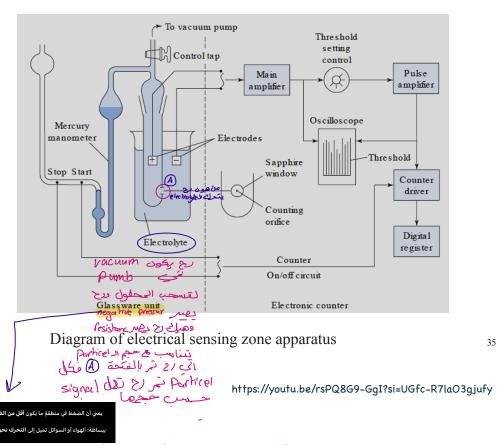
Standards for powders based on sieving


- In this case it is required that the maximum diameter of at least 90% of the particles must be no greater than $5 \mu m$ and that none of the particles should have diameters greater than 50 μm .

indirect is method is it

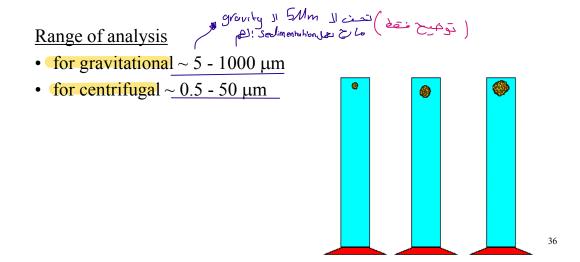
Particle size analysis methods

Electric stream sensing zone method (Coulter counter)


Particle size analysis methods

Electric stream sensing zone method (Coulter counter)

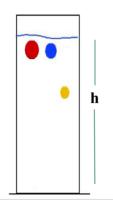
Principle of measurement


- Powder samples are dispersed in an <u>electrolyte solution</u> to form a very dilute suspension.
- The particle suspension is drawn through an orifice where electrodes are situated on either side and surrounded by electrolyte solution.
- As the particle travels through the <u>orifice</u>, it displaces its own volume of electrolyte solution.
- The <u>change in electrical resistance</u> between the electrodes is proportional to the volume of the particle (volume of electrolyte displaced)

(Particel Je cosiglo of Jelacholyte air beland of pourlar Jensey

Particle size analysis methods

Sedimentation methods


Sedimentation methods

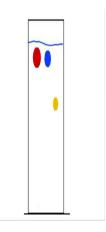
Equivalent diameter: Stokes diameter (d_{st})

• Stokes equation:

$$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$

- $\cdot \mathbf{d}_{st}$ = Stokes diameter,
- η = viscosity of fluid,
- • \mathbf{h} = height or sedimentation distance,
- ρ_s = density of solid,
- • ρ_f = density of fluid,
- $\cdot \mathbf{g}$ = the acceleration due to gravity,
- $\cdot \mathbf{t} = time$

قطر الخام (Stock diameter) هو **قطر المادة الأصلية** قبل تشغيلها أو تشكيلها. بمعنى آخر: هو **القطر الابتدائ**ي لقطعة المعدن أو القضيب قبل أن تُزال منها أجزاء للحصول على الشكل والقياس المطلوب.


♦ مثال: إذا أردت صنع عمود قطره النهائي 18 مم، قد تبدأ بمادة خام قطرها 20 مم لتسمح بعملية التشغيل.

Particle size analysis methods

Sedimentation methods

Principles of measurement

- Particle size distribution can be determined by examining the powder as it <u>sediments</u> out.
- The powder is dispersed uniformly or introduced as a thin layer in a fluid.
- Techniques can be divided into two main categories.

طرق الترسيب (Sedimentation methods**):** تُستخدم هذه الطريقة لقياس **توزيع حجم الجسيمات** في المساحيق، أي لمعرفة هل الجسيمات صغيرة أم كبيرة وما نسبتها.

🔷 مبدأ القباس:

تعتمد على أن الجسيمات عندما توضع في **سائل** (مثل الماء)، تبدأ **بالترسيب إلى الأسفل** بفعل الجاذبية.

> • الجسيمات الكبيرة تترسب بسرعة أكبر. • الجسيمات الصغيرة تترسب ببطء.

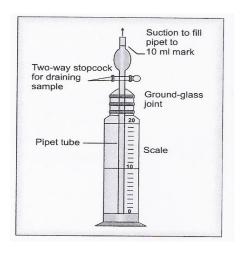
من خلال **مراقبة سرعة الترسيب** يمكن حساب أ**حجام الجسيمات المختلفة** في العينة.

• طريقة العمل

• يُخلط المسحوق جيدًا في السائل حتى تتوزع الجسيمات بشكل متجانس أو في طبقة رقيقة.

• بعد ذلك، يُقاس زمن الترسيب أو معدل انخفاض الجسيمات.

Suspension Il Cramo 2, Pipette 11

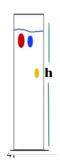

Sedimentation methods

Pipette method (Andreasen pipette)

- In this method known volumes of the suspension are withdrawn, at various time intervals, from bottom (lower set limit).
- The amount of solid is determined in each volume.
- The particle diameter corresponding to each time period is calculated
- trom Stokes' law.

 The amount of solid determined for each time interval is the weight fraction having particles of sizes more than the size obtained by the Stokes' law for that time period.

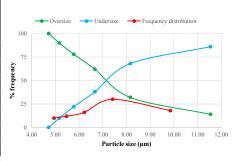
(الفترات المحددة) 6ime Intervel الكي طلعت بعد كل الفترات المحددة) وي الفترات المحددة) وي في الفترات المحددة) وي في الفترات المحددة المحددة المحددة المحددة المحددة الفترات المحددة ال


https://youtu.be/vmqFjLOGR5A?

يوم الأحد بسأل الدكتورة إذا مطالبين بالحسابات بين عطيت الحل من اله Ai العقمة الجالة

• A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec.

$$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$


Time	Particle size	Size range	Mean of size range	wt of sample collected	wt	Cumulative undersize	Cumulative Oversize
(se c)	(µm)	(µm)	(µm)	(g)	(%)	(%)	(%)
600	11.54	>11.54		0.7	14	86	14
1200	8.16	8.16-11.54	9.85	0.9	18	68	32
1800	6.66	6.66-8.16	7.41	1.5	30	38	62
2400	5.77	5.77-6.66	6.22	0.8	16	22	78
3000	5.16	5.16-5.77	5.47	0.6	12	10	90
3600	4.71	4.71-5.16	4.94	0.5	10	0	100
	•			$\Sigma = 5$		•	•

• A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec.

	00	
	•	
_		

Time	Particle size	Size range	Mean of size range	wt of sample collected	wt	Cumulative undersize	Cumulative Oversize
(se c)	(µm)	(µm)	(µm)	(g)	(%)	(%)	(%)
600	11.54	>11.54		0.7	14	86	14
1200	8.16	8.16-11.54	9.85	0.9	18	68	32
1800	6.66	6.66-8.16	7.41	1.5	30	38	62
2400	5.77	5.77-6.66	6.22	0.8	16	22	78
3000	5.16	5.16-5.77	5.47	0.6	12	10	90
3600	4.71	4.71-5.16	4.94	0.5	10	0	100
				$\Sigma = 5$			

1. فهم المعطيات

- المادة: وZnO
- \bullet $^3
 ho_s=5.60~\mathrm{g/cm}$ كثافة الجسيمات
- $ho_f = 1.01 \; {
 m g/cm}$ كثافة الوسط
- $\eta = 0.01~\mathrm{g/(cms)}$ (1 centipoise) لزوجة الوسط
- $oldsymbol{\cdot} h=20~\mathrm{cm}$ ارتفاع عمود السائل في أندرياسن
- $^2g = 981 \text{ cm/s}$ عجلة الجاذبية
- التركيز: 5 جرام ₂ZnO في 550 مل ماء + سترات الصوديوم. •

2. قانون ستوكس المستخدم

$$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$

حيث:

- d_{st} = (بالسنتيمتر) قطر الجسيم
- رمن الترسيب بالثواني = t
- الارتفاع الذي تسقطه الجسيمات (20 سم) = h

3. حساب الثوابت

$$\rho_s - \rho_f = 5.60 - 1.01 = 4.59 \text{ g/cm}^3$$

$$18nh = 18 \times 0.01 \times 20 = 3.6$$

$$(a - a_s)a = 4.59 \times 981 = 4502.79$$

$$\frac{18\eta h}{(a_1 - a_2)a} = \frac{3.6}{4502.79} \approx 7.997 \times 10^{-4} \text{ cm}^2$$

إذن:

$$d_{st}(\mathrm{cm}) = \sqrt{\frac{7.997\times10^{-4}}{t}}$$

أو:

$$d_{st}(\mu m) = 10^4 \times \sqrt{\frac{7.997 \times 10^{-4}}{t}}$$

$$d_{st}(\mu m) = 10^4 \times \sqrt{\frac{0.0007995}{t}}$$

$$d_{st}(\mu m) \approx \sqrt{\frac{79.97}{t}}$$

4. حساب أقطار الجسيمات في الجدول

t = 600 s

$$d = \sqrt{\frac{79.97}{600}} \approx \sqrt{0.13328} \approx 0.3651 \text{ cm} = 36.51 \ \mu m$$

لكن في الجدول مكتوب μ m 11.54, وهذا يعني أن الارتفاع d ليس 20 سم لكل العينات، بل ربما تم أخذ العينة من الارتفاع h=2 (مثلاً) في الحسابات الفعلية.

: لنفحص: إذا كان $h=2~{
m cm}$ بدلاً من 20 سم، فإن

$$18\eta h = 18 \times 0.01 \times 2 = 0.36$$

$$\frac{0.36}{4502.79}\approx 7.997\times 10^{-5}$$

$$d(\mu m) = 10^4 \times \sqrt{\frac{7.997 \times 10^{-5}}{t}} = \sqrt{\frac{7.997}{t}}$$

:t = 600 J

$$d = \sqrt{\frac{7.997}{600}} \approx \sqrt{0.013328} \approx 0.11544 \text{ cm} = 11.544 \ \mu m$$

وهو ما ينطبق مع الجدول.

إذن الارتفاع \hbar المستخدم في الحساب هو 2 سم، وليس 20 سم (ربما لأن فتحة سحب العينة ليست في الفتاع \hbar القاع بل على ارتفاع 2 سم من القاع).

5. حساب توزيع الحجم التراكمي

- الوزن الكلي: 5 جرام •
- في كل وقت t يتم سحب عينة من الارتفاع t والجسيمات التي قطرها أكبر من t يتم سحب عينة من الارتفاع t المستوى لذا العينة تحتوي على الجسيمات الأصغر من t
- لكن في طريقة أندرياسن، تؤخذ العينة من الأسفل (على ما أعتقد) وبالتالي الجسيمات التي تستقر أسرع تكون في الأسفل أولاً.

في الجدول:

لذلك العمود الأخير Cumulative Oversize = تراكمي أكبر من الحجم = مجموع النسب المثوية للوزن للعينات السابقة (الأكبر حجمًا).

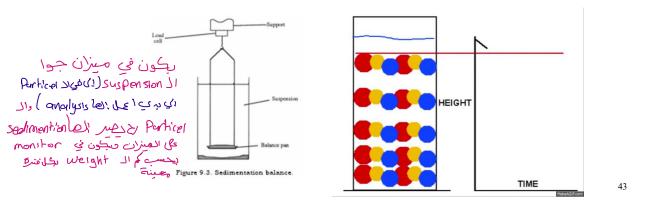
6. تفسير الأعمدة

- Time: زمن أخذ العينة.
- Particle size (µm): d_{st} من المحسوب من $t=2~{
 m cm}$.
- Size range: و $d(t_i)$ المدين بين $d(t_{i-1})$.
- Mean of size range: لرسم) متوسط المدى histogram).
- wt of sample collected (g): وزن العينة المسحوبة في ذلك الوقت.
- · wt %: النسبة المئوية للوزن في ذلك المدى الحجمي.
- Cumulative undersize %: تراكمي أكبر من الحجم = 100 تراكمي أصغر من الحجم
- Cumulative Oversize %: تراكمي أكبر من الحجم.

5. حساب توزيع الحجم التراكمي

- الوزن الكلي: 5 جرام •
- في كل وقت d، يتم سحب عينة من الارتفاع d والجسيمات التي قطرها أكبر من d قد اختفت من ذلك المينة تحتوى على الجسيمات الأصغر من d...
- لكن في طريقة أندرياسن، تؤخذ العينة من الأسفل (على ما أعتقد) وبالتالي الجسيمات التي تستقر أسرع تكون في الأسفل أولاً.

في الجدول:

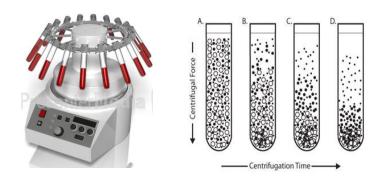

عند t=600 عند الجسيمات التي لم تصل بعد = أصغر من 11.54 μ m لكن العينة المسحوبة وزنها t=600 عند t=600 من أصل 5 جرام، أي 14% من الوزن هي جسيمات أكبر من 11.54 t=600 أنانية). أكبر من 600 ثانية).

لذلك العمود الأخير Cumulative Oversize = تراكمي أكبر من الحجم = مجموع النسب المئوية للوزن للعينات السابقة (الأكبر حجمًا).

Sedimentation methods

Balance method

The increase in weight of sedimented particles falling onto a balance pan suspended in the fluid is recorded with time. **Gravity**

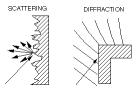


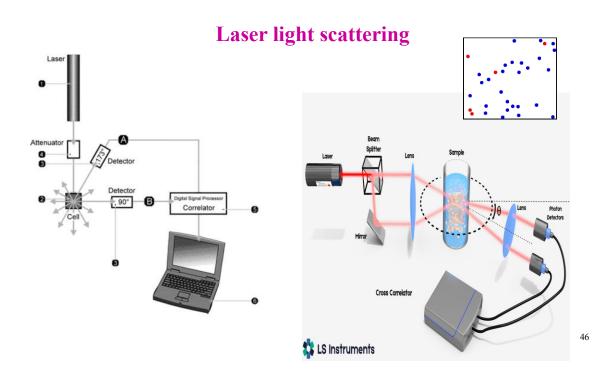
Sedimentation methods

Alternative technique

• It is the application of centrifugal sedimentation to make quicker the sedimentation of small particles.

بعدكم مسرعة الدورات


Laser light scattering methods


Equivalent diameters: Area diameter, d_a , volume diameter, d_v .

Principle of measurement: Interaction of laser light with particles

1) Fraunhofer diffraction

- This is based on forward scatter (small angle change) of laser light by particles, which is detected, amplified and analyzed by microprocessor.
- Range of analysis = 0.5 1000 nm
- Sample is liquid orair-suspendedd

Laser light scattering methods

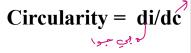
2) Photon correlation spectroscopy (PCS)

- It is termed also Dynamic light scattering (DLS)
- This is based on the Brownian movement (random motion of small particles or macromolecules caused by the collisions with the smaller molecules of the suspending fluids).
- Range of analysis $\sim 0.001 1 \, \mu m (\text{Nano Partice})$
- PCS analyses the constantly changing patterns of laser light scattered or diffracted by particles in Brownian movement and monitors the rate
- Calculation of size is based on Stokes-Einstein equation:

$$D = \frac{1.38 \times 10^{-12} T}{3\pi n d} m^2 s^{-1} \qquad d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$

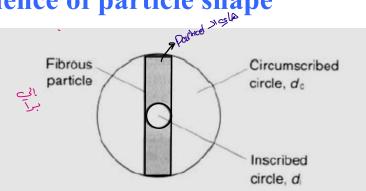
- T = absolute temperature, d = diameter, η = viscosity of liquid,
- D = Brownian diffusion

Jinc - Dinc Jinc - D dec Ninc - D dec

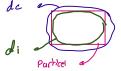

Selection of particle size analysis method

Factors to be taken into consideration:

- 1. Size range of powder (نعے مل شفتوا کل طرقیة Range of powder
- Amount of sample عروات كميه الحاط If sample is very small we can use microscopy but we can not use sieving
 - في طرق التحليل رح راخذ وقت طويل زي ج Speed of analysis و طرق وقت قليل زيد جهاي
- مدته التائع ... رح المدين المائع ... Accuracy of results المعنى الطرق المعنى الطرق ... Cost

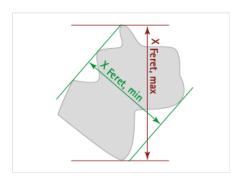

 - Physical nature of material (like Agglomeration and cohesiveness)

Influence of particle shape


Partice I Ishap ان المحلل الا المحلل الا needle المحلل الا Zero

امل اذا كان اله جماع لله المحالا Particel المرب للسكل الدائرة الله المأل المائرة الله المحالة المرب الله المحالة المح

Fig. 10.6 A simple shape factor is shown which can be used to quantify circularity. The ratio of two different diameters (d_i/d_c) is unity for a circle and falls for a<u>cicular particles</u>.


49

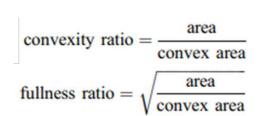
Particle shape descriptors

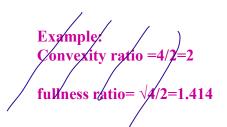
Aspect ratio

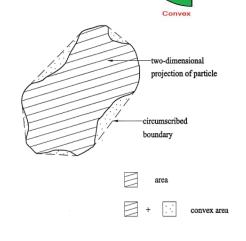
- The ratio of the minimum to the maximum Feret diameter is another measure for the particle shape.
- = df_{min}/df_{max}

Particle shape descriptors

Sphericity


• The sphericity S is the ratio of the surface area of a sphere (with the same volume as the given particle) to the surface area of the particle:


Shape	Spherecity		
Tetrahedrop	0.671		
Cube	0.806		
Dodeca- hedron	0.910		


الكرَويّة (Sphericity) هي نسبة مساحة سطح كرة تملك نفس حجم الجسيم إلى مساحة سطح الجسيم نفسه، وتُستخدم لقياس مدى انتظام شكل الجسيم. قيمة الكروية تكون 1 للجسيم الكروي تمامًا، وتقل عن 1 كلما ابتعد الشكل عن الكرة.

Particle shape descriptors

Convexity and fullness ratio

