

STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Pharmaceutical Statistics

Lecture 7

Descriptive statistics

Measures of Position

Prepared and Presented by
Dr. Muna Oqal

mat min 19.1921 Q2 0.1. mean mol sie lo

Measures of Position

The Five-Number Summary (FNS)

The five-number summary (FNS) is a set of descriptive measures that provide information about a data set. It consists of the following five numbers:

- 1. The minimum (smallest observation) (Min).
- 2. The lower quartile or first quartile (Q_1) .
- 3. The median (the middle value) or second quartile (Q₂)
- 4. The upper quartile or third quartile (Q_3) .
- 5. The maximum (largest observation) (Max).

Measures of Position

FNS: Min, Q₁, Q₂, Q₃, Max

وصف انتشار او تباین تحدید اذا کانت قیم شاذة

- FNS helps:
- To describe the spread or variation (approximate distribution shape) of the data.
- To determine whether or not any data points are outliers (extreme values).

The 5-number summary

Example 5 12 14 17 21

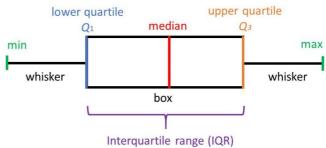
So, if these are a scores on a 22 point quiz from a class...

- The lowest score in the class was 5 points
- 25% of students earned 12 or fewer points (75% earned 12 or more)
- 50% of students earned 14 or fewer points (50% earned 14 or more) - the median
- 75% of students earned 17 or fewer points (25% earned 17 or more)
- The highest score in the class was 21 points

The 5-number summary

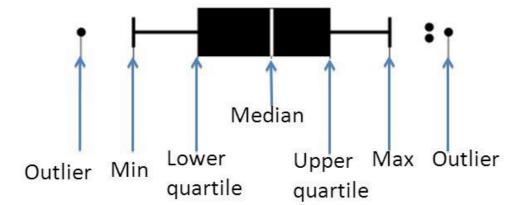
Example

 Find the 5-number summary of the following data (which are salaries (in millions) of an NBA team:

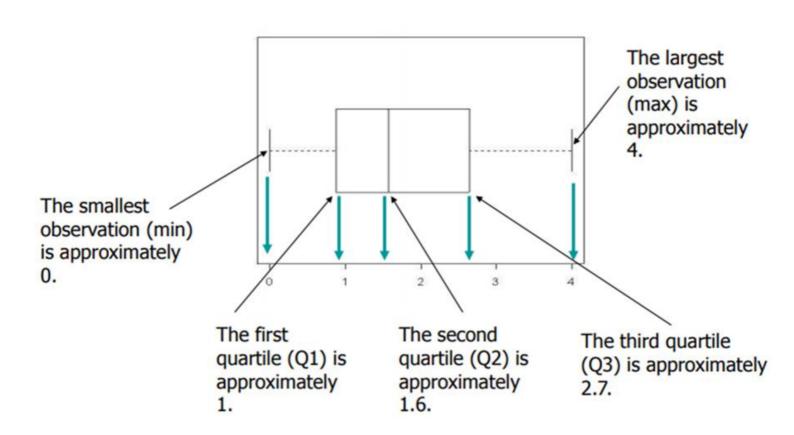

 Go to the next slide to check your work.

17.1	2.1
5.8	2.0
5.0	1.0
4.5	1.0
4.3	0.8
4.2	0.7
3.1	0.3

Construction of Boxplot

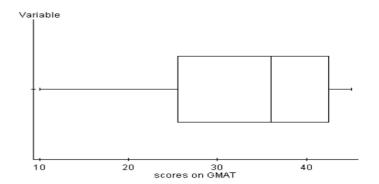

- To construct a Boxplot for a data set you have to do the following steps:
- 1. Determine the FNS.
- 2. Find the value of IQR. Q3-Q1
- 3. Draw a horizontal line and draw a box above it with the right and left ends of the box at the location of Q_1 and Q_2 .
- 4. Divide the box into two parts by drawing a vertical line through the box at the location of the median (Q_2) .
- 5. Draw a horizontal line called a whisker from the left end of the box to the minimum value and then draw another horizontal line or whisker from the right end of the box to the maximum value.

بعتبر القيمة كبيرة شاذة اذا كانت الكبر من lower FNS و بعبتر القيمة الصغيرة شاذة اذا كانت اصغر من Lower FNS



How to read a box-and-whisker plot.

- نقاط يلي خارج سياج هي شاذة Dots outside of the box and whiskers are outliers.
- Maximum and minimum values are shown at the ends of each whisker. نهاية صندوق
- The upper and lower quartiles are the ends of the box.
- The median is the line in the middle of the box.
- The max, min, LQ, UQ, and Median make up the "Five Number Summary".


Example Boxplot

Example

- Verbal GMAT scores of 12 students: 10, 22, 24, 27, 31, 33, 39, 40, 42, 43, 44, 45
- 31, 33, 39, 40, 42, 43, 44, 45 - The 5-number summary is: 10 25.5 36 42.5 45
- Now the box-plot is constructed as follows:
 - The line inside the box indicates the median.
 - The left side of this box indicates the lower quartile (Q1).
 - The right side of this box indicates the upper quartile (Q3).
 - A straight line is then drawn from the lowest value of this distribution to the box (at Q1) and another straight line from the box (at Q3) to the highest value of this distribution.

Boxplot

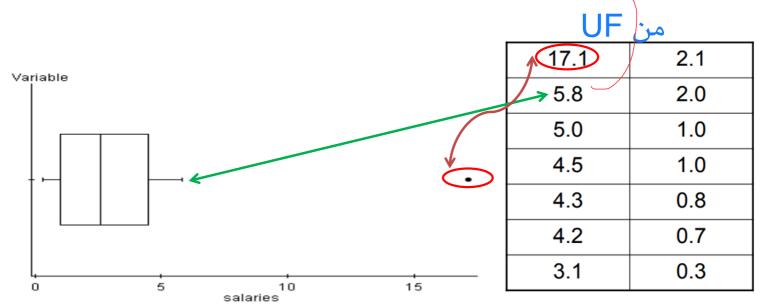
Testing Our Way to Outliers

Back to the example which presents the salaries (in millions) of an NBA team and the FNS for the data set was found to be 0.0 2.6 4.5 17.1

حددناه فوق

- The 17.1 million dollar salary is quite high.
- Is it an outlier among the data?

Testing Our Way to Outliers


- Recall the summary: 0.3 1.0 2.6 4.5 17.1
- The IQR = 4.5 1.0 = 3.5
- Check for the high outlier:
- So the Upper Fence=4.5+1.5(3.5)= 9.75

- Is 17.1 more than 1.5IQR above the 3rd quartile (4.5)?
- طلعت ۱۷.۱ اكبر من UF ف ? 1.5(3.5) + 4.5 ف العدت ۱۸.۱ اكبر
- Yes, so the \$17.1 million salary is an outlier on the team's payroll.

Modified Boxplot

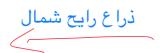
Boxplot & Skewness

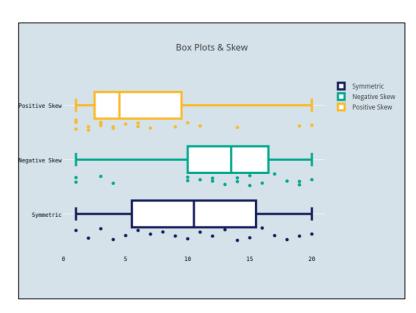
- The quartiles and boxplot are used to identify the approximate shape for the distribution of the data set as following:
- ➤ If only Q_2 - Q_1 = Q_3 - Q_2 , then the approximate shape is symmetric or Bell-shaped.
- ➤ If Q_2 - Q_1 > Q_3 - Q_2 , then the approximate shape is Left-skewed (- ve).
- $ightharpoonup Q_2-Q_1 < Q_3-Q_2$, then the approximate shape is Right-skewed (+ ve).

Boxplot & Skewness

Normal Distribution

(Quartile 3 - Quartile 2) = (Quartile 2 - Quartile 1)


Positive Skew


(Quartile 3 - Quartile 2) > (Quartile 2 - Quartile 1)

Negative Skew

(Quartile 3 - Quartile 2) < (Quartile 2 - Quartile 1)

Example

The FNS for the weekly salaries in JD for a random sample of 22 pharmacists selected from the records of the ministry of health

Construct a boxplot for the data above?

Q1=182 Q2=221.5 Q3=319 Min=111 Max=439

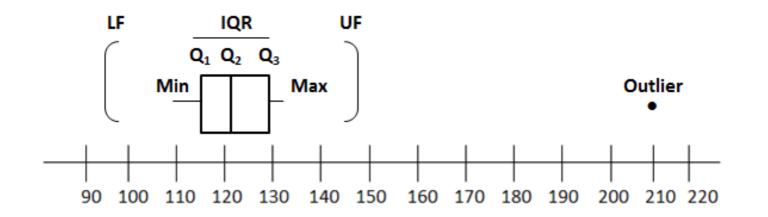
IQR= 319-182= 137 Q3-Q1

Range=439-111=328

LF=182-1.5(137)= -23.5

UF=319+1.5(137)=524.5

Example


The systolic blood pressure in mmHg for a random sample of size 9 middle aged patients selected from king Abdullah University Hospital (KAUK) were as follows:

122, 129, 113, 119, 124, 132, 210, 110, 116

Construct a boxplot for the data above?

- Solution:
- 1. Ordered data from smallest to highest value
- 110, 113, 116, 119, 122, 124, 129, 132, 210
- 2. Min = 110 Max=210 Range=210-110=100
- 3. $Q_1=116$ $Q_2=122$ $Q_3=129$
- 4. IQR=129-116=13
- 5. LF=96.5 UF=148.5

- Conclusion
- > Approximate shape is right-skewed (+ve), as $Q_2-Q_1=6$ $< Q_3-Q_2=7$.
- > The value 210 mmHg is greater than the UF (148.5), then this value is considered an outlier value.

The rewards for hard-working is success; never lose focus, good luck on your coming exam

