

STATISTICS

MORPHINE ACADEMY

MORPHINE ACADEMY

Pharmaceutical Statistics

Lecture 6 Part 1
Descriptive statistics
Measures of Dispersion

Prepared and Presented by Dr. Muna Oqal

Measures of Dispersion for Grouped Frequency Table

B. Calculate the value of the sample standard deviation (S) for the time travelled to the work for the pharmacists?

B. Variance and Standard deviation

- For each class interval multiply the frequency with each midpoint (fx). $P \times X$ Find the sum Σ (fx). E2.
- 3.
- Find the square value for ∑ (fx) in step 3. 4.
- Then divide the sum in step 4 by the sum of frequencies $(n=\sum f_i)$ as follow $\frac{(\sum fx)^2}{n}$ 5.
- Find the square value of the midpoint for each interval (x^2) 6.
- For each class multiply the frequency (f) with each squared midpoint $(X^2)=(fx^2)$ Find the sum $\sum fx^2$ (S^2) as follows 7.
- 8.
- Calculate the sample variance (S2) as follow:

$$S^2 = \frac{\sum fx^2 - \frac{(\sum fx)^2}{n}}{n-1}$$
 المُحتورة خالت انها \rightarrow الهُذَات انها \rightarrow المُحتورة خالت انها بن المعتال المحتورة على المحتورة خالت المحتورة خالت

Measures of Dispersion for Grouped Frequency Table

Solution:

Class	Midpoint (x)	f	x ²	fx	fx ²
1 to 10	5.5	8	30.25	44	242
11 to 20	15.5	14	240.25	217	3363.5
21 to 30	25.5	12	650.25	306	7803
31 to 40	35.5	9	1260.25	319.5	11342.25
41 to 50	45.5	7	2070.25	318.5	14491.75
Total		50		1205	37242.5

- To get the sample mean as follow = $\bar{X} = \sum \frac{fx}{n} = \frac{1205}{50} = 24.1$ The sum of fy is 1205
- The sum of fx is 1205
- The square value of ∑ (fx) is 1452025
- The sum of fx² is 37242.5.
- To get sample variance as follow $S^2 = \frac{\sum fx^2 \frac{(\sum fx)^2}{n}}{n}$

•
$$S^2 = \frac{37242.5 - \frac{1452025}{50}}{50 - 1} = 167.38$$
, then S.D = $\sqrt{167.38} = 12.93$

Stan. D

Pharmaceutical Statistics

Lecture 6 Part 2

Descriptive statistics

Measures of Position

Prepared and Presented by Dr. Muna Oqal

- The median and quartiles are specific examples of quantiles.
- Quantile systems that cut data into more than four ranges are really only useful where there are quite large numbers of observations. Such as quintiles, deciles and centiles (percentiles).
- There are four quintiles, which divide data into five ranges, nine deciles for ten ranges and 99 centiles that produce 100 ranges.
- The <u>ninth</u> decile is thus equivalent to the 90th centile and both indicate a point that ranks 10% from the top of a set of values.

Quantile systems

Quantile systems divide ranked data sets into groups with equal numbers of observations in each group. Specifically:

- 3 *Quartiles* divide data into four equal-sized groups.
- 4 Quintiles divide it (five ways. اداطان عندي على المالية الله المالية الما
- 9 *Deciles* divide it ten ways.
- 29 Centiles divide it 100 ways.

- A. Percentiles
- **B.** Quartiles
- C. Five Number Summary
- D. Boxplot

Finding the Score Given a Percentile

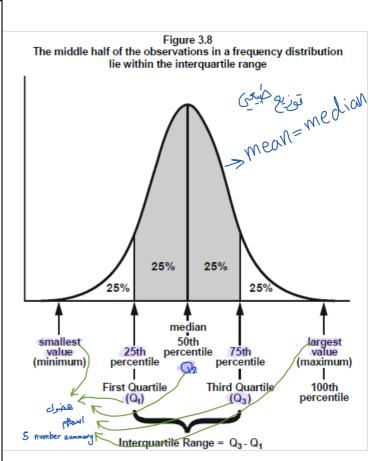
$$L = \frac{K}{100} \bullet n$$

- n total number of values in the data set \sim
- k percentile being used \neg
- L locator that gives the position of a value
- P_k k th percentile
- Then, you add 0.5 to find the exact position

Example: we want to know the 75th percentile of the ordered grades from smallest to largest, n=24

Solution:

Use


$$L = \frac{K}{100} \bullet n + 0.5$$

Then L=75 / 100 *24= 18 (position) + 0.5 = 18.5 which corresponds to (86+88)/2 = 87

The Quartiles

The quartiles are position measures used in the educational and health-related fields to indicate the position of a individual in group.

Quartiles are the values of observations in a data set, when arranged in an ordered sequence, that can divided the data set into four equal parts, or quarters, using three quartiles namely Q_1 , Q_2 and Q_3 each representing a quarter (fourth) of the population being sampled.

Definition

(a) First (lower) Quartile (Q1)

The first (lower) quartile (Q1) is the median of the bottom half of the ordered observation for a data set (to the left of the median), or it is the median of the data set (lies at or below the median (MD)).

(b) Second Quartile (Q2)

The second quartile (Q2) is the median of the data set, that is, Q2= MD. It separates the lowest 50% of the data from highest 50%.

(c) Third (Upper) Quartile (Q3)

The third (upper) quartile (Q3) is the median of the top half of the ordered observations for a data set (to the right of the median), or it is the median of the data set (lies at or above the median (MD)).

A. The Quartiles for Raw Data (ungrouped data)

To find the quartiles for a set of raw data, do the following:

- 13) Arrange the data set from the smallest to highest (ordered array).
- 2. Calculate the median (MD=Q2) for the data set.
- 3. For the half of the data set to the left of the MD calculate their median to get the first quartile (Q1).
- 4. For the half of the data set to the right of the MD, calculate their median to get the third quartile (Q3).

عريقة <u>2</u> للح

Since $Q_1 = P_{25}$, $Q_2 = P_{50}$, $Q_3 = P_{75}$, so we can find Q1, Q2, and Q3 as following:

$$\mathbf{Q1}=25\%=25/100*15=3.75+0.5=4.25^{th}$$
 (position), which corresponds to $\mathbf{10}$ ((10+10)/2). $\mathbf{Q2}=50/100*15=7.5+0.5=8^{th}$ (position), which corresponds to $\mathbf{20}$. $\mathbf{Q3}=75/100*15=11.25+0.5=11.75^{th}$ (position),

5 10 10 **10** 10 12 15 **20** 20 25 30 **30** 40 40 60

which corresponds to 30 ((30+30)/2).

Conclusion

- ➤ This means that 25% of the tablets need less than 10 minutes to disintegrate.
- > 50% of the tablets need 20 minutes to disintegrate.
- ➤ Before 30 minutes 75% of all tables were disintegrated.
- > 25% only of these tablets need more than 30 minutes to disintegrate.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ntegral me (mi	A SALES OF THE SALES	equency	
N. S. Control	5		1	
ě	10		4	
	12		1	
	15		1	
	20		1	
V -	25		2	
. 10	30		2	1
1 · .	40		2	
	60		1	
	Tota		15	

Since $Q_1 = P_{25}$, $Q_2 = P_{50}$, $Q_3 = P_{75}$, so we can find Q1, Q2, and Q3 as following:

Q1=25%=25/100*20 = 5 + 0.5 = 5.5th (position), which corresponds to
$$((15+15)/2)=15$$
.

Q2=50/100*20= 10 +0.5 = 10.5th (position), which corresponds to $((20+25)/2)=22.5$.

Q3=75/100*20= 15+0.5 = 15.5th (position), which corresponds to $((40+45)/2)=42.5$.

Median (Q2)

Conclusion

- > This means that 25% of the capsules need less than 15 minutes to disintegrate.
- > 50% of the capsules need 22.5 minutes to disintegrate.

- were disintegrated الكبدول الكبدول الاقساد 42.5 minutes 75% of all capsules were disintegrated.
- > 25% only of these capsules need more than 42.5 minutes to disintegrate.

2 4 3
•
3
1
2
2
1
2 .
1
1

• Solution:

Step-1: Calculate the value of cumulative frequency (cf) as follows:

	Number of Accidents (x)	Frequency (f)	cf
	2	5	5
Q1	7	19	3 24 24
Q2	12	13	ر المار ا
Q3	17	8	ingles 45
	22	5	50
	Total	50	

• Conclusion:

The results mean that:

☐ 25% of weeks have less than 7 accidents and 75% of weeks have more than 7 accidents.

■ 50% of weeks have less than 12 accidents and 50% of weeks have more than 12 accidents.

☐ 75% of weeks have less than 17 accidents and 25% of weeks have more than 17 accidents.

C. The quartiles for grouped frequency table

For the second quartile (Median) (Q2=MD)

Step-1: Construct the cumulative frequency distribution.

Step-2: Determine the second quartile class interval (Second Quartile Class),

that is, the first class having cumulative frequency (cf) greater than or equal to (n/2).

Step-3: Find the second quartile (Q2) by using the following formula:

$$\mathbf{Q}_2 = \mathbf{L}_2 + \left(\frac{\left(\frac{n}{2}\right) - cf_2}{f_2}\right)^* \mathbf{i}$$

Where:

n= the total number of frequencies.

cf₂= cumulative frequency prior to the second quartile class interval.

i = the class interval width.

 L_2 = the lower boundary (limit) of the second quartile class interval.

f₂= the frequency of the second quartile class interval.

C. The quartiles for grouped frequency table

For the third quartile (Q3)

Step-1: Construct the cumulative frequency distribution.

Step-2: Determine the third quartile class interval (Third Quartile Class),

that is, the first class having cumulative frequency (cf) greater than or equal to (3n/4).

Step-3: Find the third quartile (Q2) by using the following formula:

$$\mathbf{Q}_3 = \mathbf{L}_3 + \left(\frac{\binom{3n}{4} - cf_3}{f_3}\right)^* \mathbf{i}$$

Where:

n= the total number of frequencies.

cf₃= cumulative frequency prior to the third quartile class interval.

i = the class interval width.

 L_3 = the lower boundary (limit) of the third quartile class interval.

f₃= the frequency of the third quartile class interval.

Example:

The following frequency table represents the daily sales volume in JD for a period of 30 days selected from the sales records of given pharmacy in Jordan:

Class (sales volume in JD)	53 - 56	57 - 60	61 - 64	65 - 68	69 - 72	3 group
Number of Days (f)	3	5	9	7	6	

Find the quartiles Q_1 , Q_2 , and Q_3 for the sales volume in JD?

Solution

Step-1: calculate the value of cumulative frequency (cf) as follows:

Class Interval (Daily Sales Voume in JD)	fi	cf _i	
53 - 56	3	3	
57 - 60	5	8	Q1 Class
61 - 64	9	17	Q2 Class
65 - 68	7	24	Q3 Class
69 - 72	6	30	
Total	30		

Step-2: Calculate the interval width (i)

i=57-53=4 so i=4

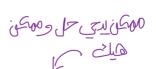
Step-3: calculate the value of the Q1 a follows:
 n/4= 30/4 = 7.5, then (57-60) is the first quartile class, then

$$Q_1 = L_1 + \left(\frac{\binom{n}{4} - cf_1}{f_1}\right)^* i = 56.5 + \left(\frac{7.5 - 3}{5}\right)^* 4 = 60.1 \text{ JD}.$$

Step-4: calculate the value of the Q2 a follows:

n/2 = 30/2 = 15, then (61-64) is the second quartile class (median class), then

$$Q_2 = L_2 + \left(\frac{\binom{n}{2} - cf_z}{f_z}\right)^* i = 60.5 + \left(\frac{15 - 8}{9}\right)^* 4 = \underline{63.61 \text{ JD.}}$$

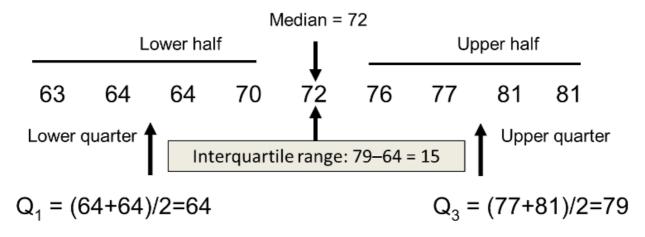

Step-5: calculate the value of the Q3 a follows:

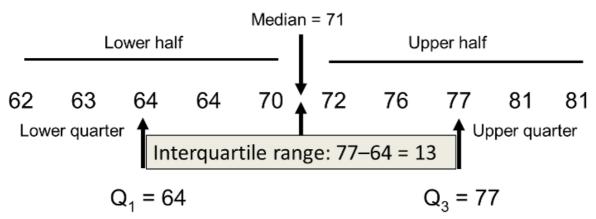
3n/4=(3*30)/4= 22.5, then (65-68) is the third quartile class, then

$$Q_3 = L_3 + \left(\frac{\left(\frac{3n}{4}\right) - cf_3}{f_3}\right)^* i = 64.5 + \left(\frac{22.5 - 17}{7}\right)^* 4 = 67.64 \text{ JD}.$$

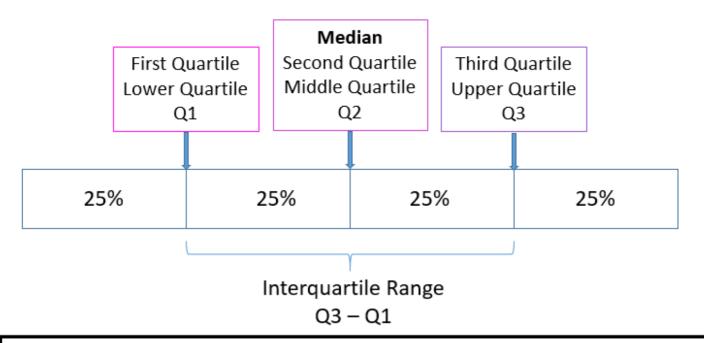
Conclusion

For this pharmacy, the results mean that:


> 25% of days have sales volume less than 61.1 JD and 75% of days have sales volume more than 61.1 JD.


> 50% of days have sales volume less than 63.61 and 50% of days have sales volume more than 63.61 JD.

> 75% of days have sales volume less than 67.64 JD and 25% of days have sales volume more than 67.64 JD.


The Interquartile Range (IQR)

- The interquartile range (IQR) is a robust measure of variation that is based on the quartiles.
- The IQR is defined as the range of middle 50% of observations in the data set.
- It is the difference between the third quartile (Q3) and the first quartile (Q1), and it is found by using following formula:

Median and Quartiles

Median and inter-quartile range are robust indicators of central tendency and dispersion

The median (second quartile) and inter-quartile range can be used as an alternative method for describing the central tendency and dispersion of a set of measured data. Both are robust and can be useful where there are occasional extreme values.