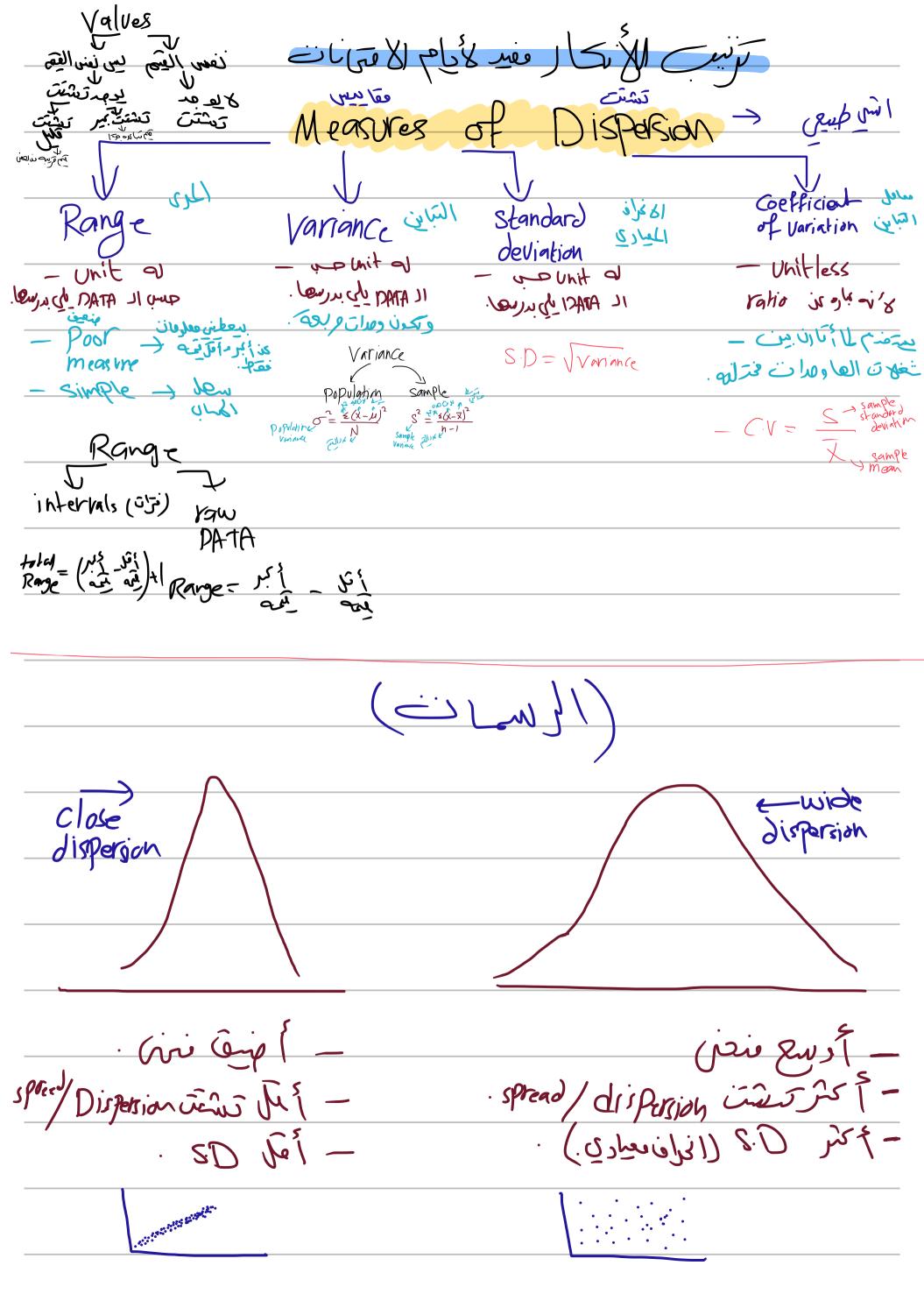



# STATISTICS




MORPHINE ACADEMY

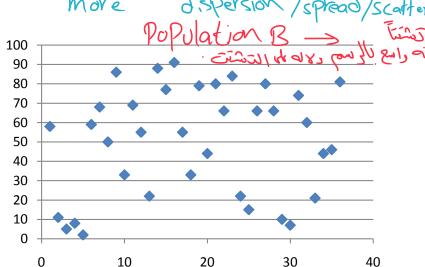
MORPHINE ACADEMY

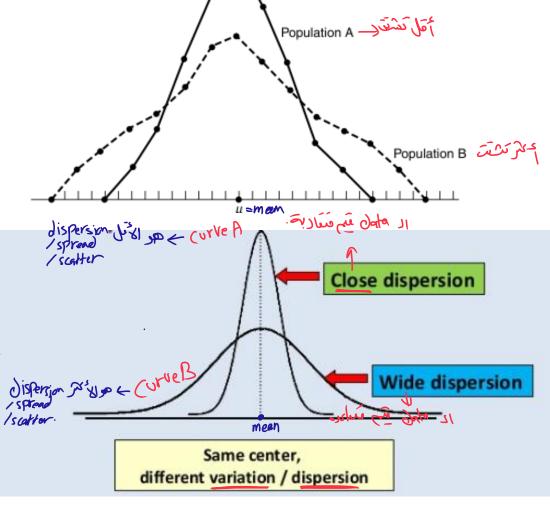
# Pharmaceutical Statistics Lecture 5 Descriptive statistics Measures of Dispersion Prepared and Presented by

Prepared and Presented by Dr. Muna Oqal



## Measures of Dispersion


Dispersion I mil Jose Persion PATA


- Measures of dispersion characterise how spread out the distribution is, i.e., how variable the data are. It conveys information about the amount of variability present in a set of data.
- Note: If all the values are the same, there is no dispersion; if they are not all the same, dispersion is present in the data. If the values close to each other the amount of Dispersion small. If the values are widely scattered, the Dispersion is greater.
- Other terms used synonymously with dispersion include variation, spread, and scatter.

مرادفات

More variability
more dispersion/spread/scatter

Population B, which is more variable than population A.





**Less variability** 

100

0

0

40 المقالة على المطالعة على ال

20

10

40

30

Two frequency distributions with equal means but different amounts of dispersion.

# Indicators of dispersion

6 Xto 81

- Variation in experiments or in any assay is due to several reasons as several reasons as several reasons as
- The instrument used for analysis. 

  الكاداه المحالة ا
- The analyst performing the assay. 

  الثاني + مكن يَحِن عِل مركز بشفه الله على مركز بشفو الله على مركز بشفه الله على مركز بشفو الله على مركز بشفو والثاني مش موكل وحدن سزداد عندي اله ممزيه الا
- The particular sample chosen.
- > Unidentified error commonly known as noise.

is an inherent characteristic experimental observations.





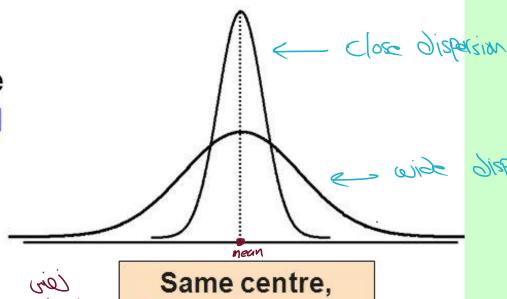
# Measures of Dispersion /spread /scatter



#### Variation

الانمان المعياري

Range


(5)

Variance

Standard Deviation

Coefficient of Variation

 Measures of variation give information on the spread or variability or dispersion of the data values.



different variation / dispresion

Basic Business Statistics, 11e @ 2009 Prentice-Hall, Inc.

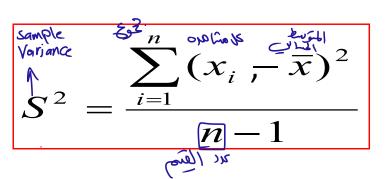
Chap 3-3

## 1.The Range (R):

- The **R** is the difference between the largest and smallest value in a set of observations.
- Range = (X)Largest value- Smallest value
- **Properties of the R**
- Simplicity of its computation
- Poor measure of dispersion, as its value is concerned only onto two values, so imparts minimal information about a data set and therefore is of limited use.

  - 43,66,61,64,65,38,59,57,57,50. (raw DATA)
  - Find Range?
  - Range=66-38=28

## 2.The Variance:


It measure dispersion relative to the scatter of the values about Statistic Jamps July Sample Ji is view of \*

Porameter lease Population Ilio less de adeous \*

 $N \rightarrow \text{count-}f$   $N \rightarrow \text{count-}f$  Values  $Varjance \rightarrow S^2$ 

the mean.

a) Sample Variance:



 $|\overline{x}|$  = is sample mean

n = count of values for the sample

b) Population Variance  $(\sigma)^2$ :

Population

Variance

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}$$

where  $Mu(\mu)$  is Population mean

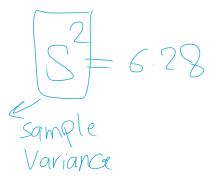
#### آ القانون يدجي جا هن. آ المطلوب أجد كل اش بالقانون

#### 2. The Variance:

#### **EXAMPLE:**

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

• Find Sample Variance of ages (5,7,8,12,6,9,11,6).


#### **Solution:**

$$\overline{x}$$
 = (5+7+8+12+6+9+11+6)/8 = 8

- $S^2 = [(5-8)^2 + (7-8)^2 + (8-8)^2 + (12-8)^2 + (6-8)^2 + (11-8)^2 + (6-8)^2]$ / 7
- $S^2 = 9+1+0+16+4+1+9+4 / 7$

$$\bullet = 44/7$$

$$\bullet$$
 = 6.28



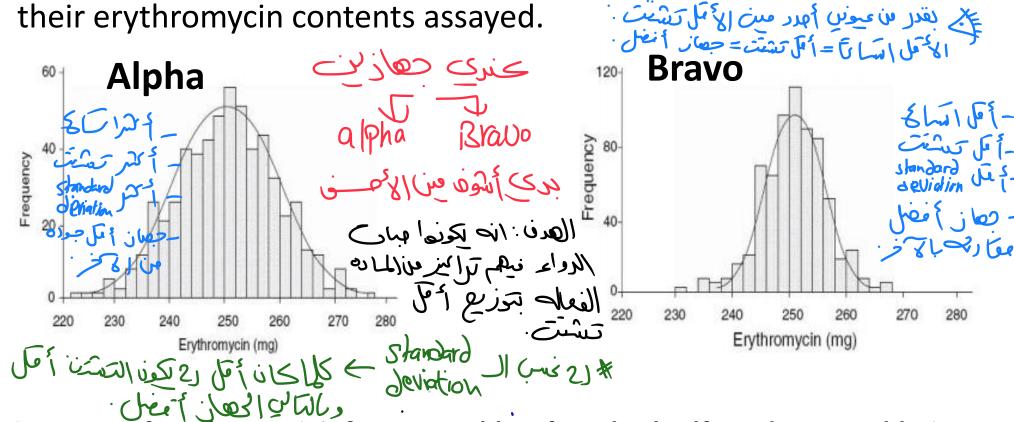
#### 3. The Standard Deviation:

• The variance represents squared units and, therefore, is not an appropriate measure of dispersion when we wish to express this concept in terms of the original units.

• To obtain a measure of dispersion in original units, we merely take: the square root of the variance.

the square root of variance=  $\sqrt{Variance}$ 

A. Sample Standard Deviation =  $S = \sqrt{S^2}$ 


A. Population Standard Deviation =  $\sigma = \sqrt{\sigma^2}$ 

عن دین آجت تکوه ال المحلوم الا محکاری المحلوم الا محکاری المحلوم الا محلوم المحلوم ال

على أما قائد بعمل تعنيع عديد نفل محديد نفل مح

Example: We have two tableting machines ('Alpha' and 'Bravo') producing erythromycin tablets with a nominal content of 250 mg.
 Five hundred tablets are randomly selected from each machine and

 Five hundred tablets are randomly selected from each machine and their erythromycin contents assayed.



Histogram of erythromycin of 500 mg tablets from both Alfa and Bravo tableting machines; respectively.

#### **The Standard Deviation**

• An 'indicator of dispersion' is required in order to convey this difference in variability, which is **standard deviation**.

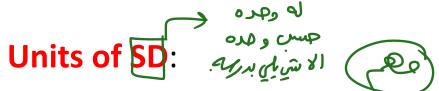
| Alpha machine                     |                          |                                     | Bravo machine                     |                   |           |
|-----------------------------------|--------------------------|-------------------------------------|-----------------------------------|-------------------|-----------|
| Erythro<br>content                | Deviation<br>from        | Deviation                           | Erythro content                   | Deviation<br>from | Deviation |
| (mg)                              | mean                     | squared                             | (mg)                              | mean              | squared   |
| 249                               | 0.3                      | 0.09                                | 251                               | -0.1              | 0.01      |
| 242                               | -6.7                     | 44.89                               | 247                               | -4.1              | 16.81     |
| 252                               | 3.3                      | 10.89                               | 257                               | 5.9               | 34.81     |
| 235                               | (-13.7)                  | 187.69                              | 250                               | -1.1              | 1.21      |
| 257                               | 8.3                      | 68.89                               | 254                               | 2.9               | 8.41      |
| 244                               | -4.7                     | 22.09                               | 251                               | -0.1              | 0.01      |
| 264                               | 15.3                     | 234.09                              | 252                               | 0.9               | 0.81      |
| 249                               | 0.3                      | 0.09                                | 255                               | 3.9               | 15.21     |
| 255                               | 6.3                      | 39.69                               | 244                               | -7.1              | 50.41     |
| 240                               | -8.7                     | 75.69                               | 250                               | -1.1              | 1.21      |
| Mean                              | nam + SD                 | Total                               | Mean                              | Mean ± SD         | Total     |
| 248.7                             | nem ± SD<br>248.7 ± 8.72 | 684.1                               | 251.1                             | 251.1 ± 3.72      | 128.9     |
| Sum of squared deviations = 684.1 |                          |                                     | Sum of squared deviations = 128.9 |                   |           |
| 684.1/9 = 76.01                   |                          |                                     | 128.9/9 = 14.32                   |                   |           |
| SD = square root 76.01            |                          | $\overline{SD}$ = square root 14.32 |                                   |                   |           |

# انتحن حبان دوای تحکی علی ترانیز مناکماده النعاله تشتیعا عمل دوای مناکماده النعاله تشتیعا همان دوای منالع مناکماده النعاله تشتیعا النحن مناکماده النعالی النحن الن

• The Alpha machine produces rather variable tablets and so several of the tablets deviate considerably (e.g. -13.7 or +15.3 mg) from the overall mean. So producing a <u>high</u> final SD (8.72 mg).

النجن حباق دواد کُفک تراکیز من المانه ابتناعله تشتعا اعل من (م اله mem ا

 In contrast, the Bravo machine is more consistent and individual tablets never have a drug content much above or below the overall average.


 The small figures in the column of individual deviations, leading to a <u>lower</u> SD (3.78 mg).

lower dispersion

### **Reporting Standard deviation**

#### Reporting the SD:

- The ± symbol is used in reporting the SD
- > The symbol ± reasonably interpreted as meaning more or less.
- > ± is used to indicate variability.
- With the tablets from our two machines, we would report their drug contents as:
- Alpha machine: 248.7±8.72 mg (SD)
- Bravo machine: 251.1±3.78 mg (SD)



- The SD is not a unitless number. It has the same units as the individual pieces of data.
- Since our data consisted of erythromycin contents measured in milligrams, the SD is also in milligrams.

# المال المولاد على المولاد على المولاد على المولاد على المولاد المولاد على المولاد على المولاد على المولاد على المولاد المولاد المولاد على المولاد المولد المول

The standard deviation is useful as a measure of variation within a given set of data.

- In this case is a measure of relative variation rather than absolute variation is required. Such a measure is found in the <u>coefficient of variation</u>, which expresses the standard deviation as a percentage of the mean.

Coefficient of variation expresses variation relative to the magnitude of data

## 4.The Coefficient of Variation (C.V):

• Is a measure use to compare the dispersion in two sets of data which is independent of the unit of the measurement.

$$C.V = \frac{S^{3} \sin \alpha r \delta}{\overline{X}} (100)$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \sin \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \sin \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos \alpha r \delta}{\overline{X}} \cos \alpha r \delta$$

$$= \frac{S^{3} \cos$$

- S: Sample standard deviation.
- $\overline{X}$ : Sample mean.

 Suppose two samples of human males yield the Sample 1 dispersion following data:

Sampe1

11year-olds 25-year-olds Age

Mean weight 145 pound 80 pound

Standard deviation 10 pound 10 pound

Question: examine the sample that h

A comparison of the standard deviations might lead one to conclude that the two samples possess equal variability.

#### **Solution:**

- C.V (Sample1)= (10/145)\*100= 6.9
- C.V (Sample2)= (10/80)\*100= 12.5

Then, it is clear that <u>Sample2</u> (age of 11-years old) has more variation than <u>Sample1</u> (25-year-olds).

In other words, variation is much higher in the sample2 than sample1.

## Now you got quite a different impression.

#### **Coefficient of Variation**

- Since the coefficient of variation is independent of the scale of measurement so:
- It is a useful statistic for comparing the variability of two or more variables (results) measured on different scales. for example, use the coefficient of variation to compare the variability in weights of one sample of subjects whose weights are expressed in pounds with the variability in weights of another sample of subjects whose weights are expressed in kilograms
- It is useful in comparing the results obtained by different persons who are conducting investigations involving the same variable.
- Because the coefficient of variation is a ratio, it is unitless (unlike the SD).