

# STATISTICS



MORPHINE ACADEMY

MORPHINE ACADEMY

## Pharmaceutical Statistics Lecture 3 **Descriptive statistics Indicators of central tendency** Prepared and presented by Dr. Muna Oqal Mode.median .mean

### Important Characteristics of Data Description

- تشير 1. **Centre**: A representative or average value that indicates where the middle of the data set is located منتصف
  - 2. Variation: A measure of the amount that the values vary among مقياس لمقدار اختلاف قيم فيما بينها themselves
  - 3. **Distribution**: The nature or shape of the distribution of data (such as bell-shaped, uniform, or skewed)
  - القيم الشاذة 4. **Outliers**: Sample values that lie very far away from the vast majority of other sample values

طبعا موع كيفي بحدد اذا هااي قيم شباذة او لا بعمل حسابات و بعدين بعرف

## **Measures of Central Tendency**

- A measure of central tendency is a measure which indicates where the value at the center or middle of a data set is.
- The three most commonly used measures of central tendency are: Mean, Median, and Mode.



### **DESCRIBING DATA**

| MEAN   | Average or arithmetic mean of the data                           |
|--------|------------------------------------------------------------------|
| MEDIAN | The value which comes half way when the data are ranked in order |
| MODE   | Most common value observed                                       |

- In a normal distribution, mean and median are the same
- If median and mean are different, indicates that the data are not normally distributed
- The mode is of little if any practical use

### Mean

• For the population mean of N values: X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>,......, X<sub>N</sub>, the mean is calculated as:

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

- which is usually unknown, that's why we use the sample mean to estimate or approximate it.
- For the sample mean of n values (ungrouped or raw data) (: X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>,....., X<sub>n</sub>, the mean is calculated as:

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

الحمدلله

# Sample mean of grouped or classified data (data that is placed in intervals)

Unlike listed data, the individual values for grouped data are not available and you are not able to calculate their sum. So to calculate the mean of grouped data in frequency table, the following procedure is used:

- Find the midpoint for each class interval (X<sub>i</sub>, i=1,2,...,K)
   For each class multiply the frequency with each midpoin
- 2. For each class multiply the frequency with each midpoint  $(f_i * X_i)$ .
- Find the sum ∑ (f<sub>i</sub>\*X<sub>i</sub>)
  - 4. Divide the sum in step-3 by the sum of frequencies  $(n=\sum f_i)$  to get the sample mean as follow:
- get the sample mean as follow:

  5. Mean=  $\sum (f_i * X_i) / n$ Mean فترة

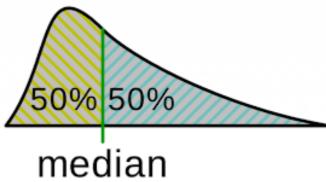
ے <u>۔ي</u> المثال

### **Worked Example**

To better represent the problem and its solution, a table can be drawn as follows:

| Driving Times (minutes) | Number of Teachers <i>f</i> | Midpoint Of Class x | Product xf |
|-------------------------|-----------------------------|---------------------|------------|
| 0 to less than 10       | 3                           | 5                   | 15         |
| 10 to less than 20      | 10                          | 15<br>15            | 150        |
| 20 to less than<br>30   | 6                           | 25                  | 150        |
| 30 to less than<br>40   | 4                           | 35                  | 140        |
| 40 to less than<br>50   | 2                           | 45                  | 90         |

For the population, N=25 and  $\sum xf=545$ , so using the formula  $\mu=\sum xf/N$ , the mean would again be  $\mu=545/25=21.8$ 


### Median (MD)

 When ordering the data, it is the observation that divide the set of observations into two equal parts such that half of the data are before it and the other are after it (in other words, the number of values greater than the median is equal to number of values is less than the median).

• The median either will be a specific value in the data set or will fall between two values.

قيمة محددة

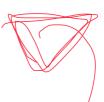
يقع بين قيمتين



### The Median of Grouped Data-Simple Frequency Table

### Example

The Gulf Pharmaceutical Industries Company in UAE planning to improve safety plan in its factory. For this, accident data for the last 50 weeks was compiled. These data were listed into the simple frequency table as shown below:


| Number of Accidents (x) | 900 | 7  | 12 | 17 | 72 |
|-------------------------|-----|----|----|----|----|
| Number of Weeks (f)     | 5   | 22 | 13 | 8  | 7  |



Calculate the median (MD) for the number of accidents per week?

ما عندي وحدة بتساوي ٢٥ اذا بدي اشوف وحدة اكبر منها فورا يلي هي ٢٧ بس

7٧ مش جواب نهائي انتبهي =الجواب النهائي 7



### Solution

Step-1: We calculate the value of cumulative frequency (cf) as follows:

| No. of Accidents (x) | Frequency, f | cf | ī           |
|----------------------|--------------|----|-------------|
| 2                    | 5            | 5  | 7           |
| 1)                   | 22           | 27 | 5+22        |
| 12                   | 13           | 40 | 5+22+13     |
| 17                   | 8            | 48 | 5+22+13+8   |
| 22                   | 2            | 50 | 7           |
| Total                | 50           |    | 5+22+13+8+2 |

Step-3: The median (MD) is the first value having cumulative frequency (cf) greater than or equal to 25, then from the table, the value of the median is MD = 7.

Median (MD) = 7 accidents per week.

### The Median of Grouped Data-Frequency Table (Distribution)

### Example:

The following frequency table represents the time in minutes of 50 pharmacists to their work selected from the records of a given Pharmaceutical Industries Company in Jordan:

| Time to travel to<br>work | Frequency |
|---------------------------|-----------|
| 1-10                      | 8         |
| 11 - 20                   | 14        |
| 21 - 30                   | 12        |
| 31 - 40                   | 9         |
| 41 - 50                   | 7         |



Calculate the median (MD) for the time traveled to the work for pharmacists of this Pharmaceutical Industries Company?

### Solution

1st Step: Construct the cumulative frequency distribution for the data as

| Time to Travel to work Class | Frequency<br>(f) | Cumulative Frequency<br>(cf) |
|------------------------------|------------------|------------------------------|
| 1 – 10                       | 8                | 8                            |
| 11 – 20                      | 14               | 22                           |
| 21-30                        | 12               | 34                           |
| 31 – 40                      | 9                | 43                           |
| 41 – 50                      | 1                | 50                           |

class median is the 3rd class 30-21=9+1=10

 $L_m = 20.5$  and i = 10

Conclusion Thus, 25 persons take less than 23 minutes to travel to work and another 25 persons take more than 23 minutes to travel to work.

inutes 
$$= \underbrace{25 - 22}_{\text{ersons}} + \left(\frac{25 - 22}{12}\right)$$
ersons 
$$= \underbrace{23}$$

# The Mode : المنوال:

- ، منون الاكثر تكرارا
- Mode is the value which occurs most frequently.
- If all values are different there is no mode. اذا كانت جميع قيم مختلفة ما عندي منوال
- Sometimes, there are more than one mode.
- It can be used for quick estimation and for identifying the most common observation.
- It can be unimodal, bimodal, or multimodal
- Example:

For the same random sample, the value 28 is repeated two times, so it is the mode.

### Properties of the Mode:

- Sometimes, it is not unique.
- It is a robust measure, not affected by extreme values (outliers)
- It may be used for describing qualitative data.
- It can be calculated for both quantitative and qualitative data, while mean and median for the quantitative data only. بقدر احسب فيه بيانات كمية و

نوعية ، بس المتوسط و الوسيط س بيانات الكمية

### The Mode of Raw Data and Simple Frequency Table

Example

A survey on the Ministry of Health showed the following distribution for the number of tablets sold in May 2018 for five types of medications used to treat blood pressure:

| Medicine Name | Number of Tablets Sold |
|---------------|------------------------|
| Almor         | 632                    |
| Lasix         | 1425                   |
| Aldacton      | 878                    |
| Indicardin    | 95                     |
| Diovan        | 471                    |

mode هو اكثر واحد يستخدم و هو Lasix

### Solution

Since the category with the highest frequency is Lasix, then the mode for the number of tablets sold in May 2018 for the five types of medications used to treat blood pressure is the Lasix drug.

### The Mode of Grouped Data (Frequency Table)

 For the grouped data in a frequency table, the modal class is the class with the largest (highest) frequency).
 To find the mode for grouped data, use the following formula:

$$Mode = L_{mo} + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)i$$
 المثال

where

- L<sub>mo</sub> = Lower boundary (limit) of the modal class.
- • $\Delta_1$  = The difference of frequency between modal class and class before it.
- $^{\bullet}\Delta_2$  = The difference of frequency between modal class and class after it.
- •i = class width.

The following frequency table represents the time in minutes of 50 pharmacists to their work selected from the records of a given Pharmaceutical Industries Company in Jordan:

| Time to travel to<br>work | Frequency |
|---------------------------|-----------|
| 1-10                      | 8         |
| 11 - 20                   | 14        |
| 21 - 30                   | 12        |
| 31 - 40                   | 9         |
| 41 - 50                   | 7         |

Calculate the mode for the time traveled to the work for pharmacists of this Pharmaceutical Industries Company?

The modal class is the interval 11 - 20 because it has the largest

frequency, then we have:
$$L_{mo} = 10.5, \quad \Delta_1 = (14-8) = 6, \quad \Delta_2 = (14-12) = 2 \quad \text{and} \quad i = 10.5$$

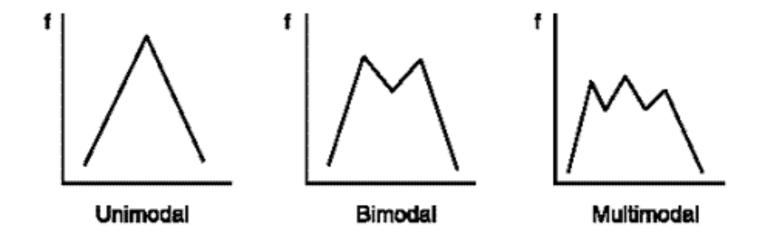
$$L_{mo} = 10.5, \quad \Delta_1 = (14-8) = 6, \quad \Delta_2 = (14-12) = 2 \quad \text{and} \quad i = 10.5$$

$$L_{mo} = 10.5, \quad \Delta_1 = (14-8) = 6, \quad \Delta_2 = (14-12) = 2 \quad \text{and} \quad i = 10.5$$

$$L_{mo} = 10.5, \quad \Delta_1 = (14-8) = 6, \quad \Delta_2 = (14-12) = 2 \quad \text{and} \quad i = 10.5$$

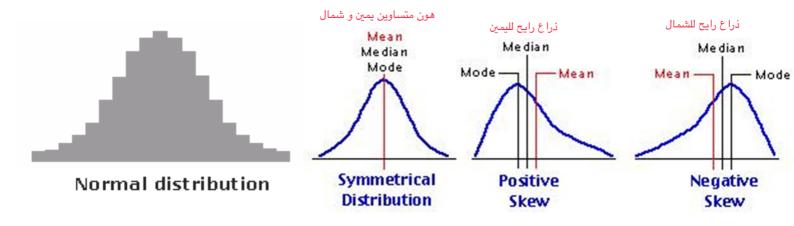
$$L_{mo} = 10.5, \quad \Delta_1 = (14-8) = 6, \quad \Delta_2 = (14-12) = 2 \quad \text{and} \quad i = 10.5$$

### The Mode of Grouped Data (Frequency Table)


Use the below formula to calculate the mode:

$$\mathsf{Mode} = L_{mo} + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)i$$

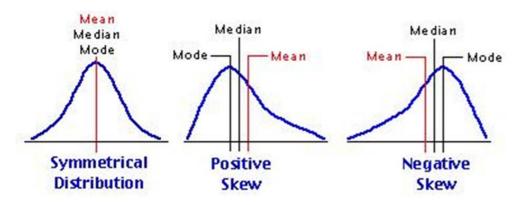
Mode = 
$$10.5 + \left(\frac{6}{6+2}\right)10 = 18 \text{ minutes}$$


### **Some Definitions**

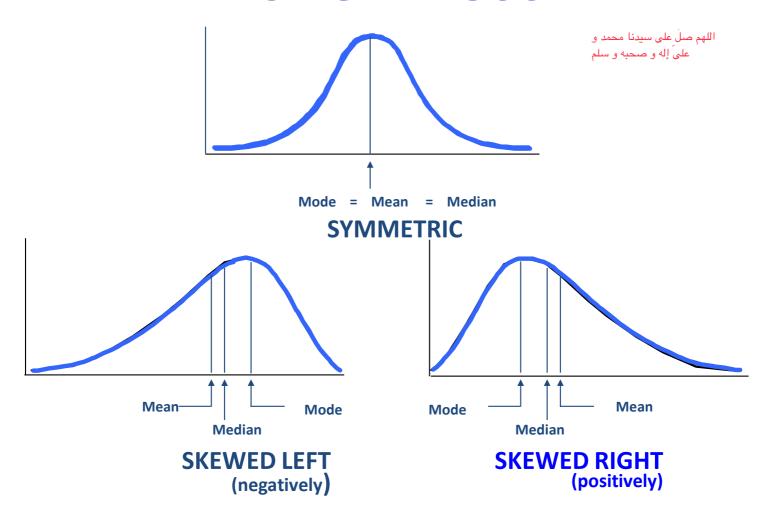
- Distributions (of a variable) tells us what values the variable takes and how often it takes these values.
- Unimodal- having a single peak
- Bimodal-having two peak
- Symmetric-left and right half are mirror images



### How Mean, Median, and Mode are related?


- A comparison of the mean, median, and mode can reveal information about the distribution shape
- A bell-shaped (normal) distribution is symmetric
  - Data values are evenly distributed on both sides of the mean
  - Unimodal (one peak)
  - Mean ≈ Median ≈ Mode




### How Mean, Median, and Mode are related?

 Left-skewed (or negatively) distribution has the majority of data values to the right of the mean and cluster at the upper end of the distribution, with the tail to the left

Mean < Median < Mode</li>



# Skewness



### Which Measure of Central Tendency is best?

- There is no single best answer to that question because there are no objective criteria for determining the most representative measure for all data sets
- Avoid the term "average", instead use the actual measure of central tendency that is calculated (mean, median, mode)
- Use the advantages and disadvantages stated above to decide which measure of central tendency is best.
- Large sample values tend to inflate the mean. This will happen if the histogram of the data is right-skewed.
- The median is not influenced by large sample values and is a better measure of centrality if the distribution is skewed.
- If mean=median=mode then the data are said to be symmetrical