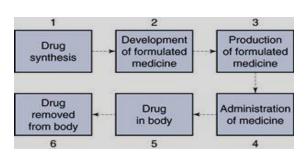


هذا التفريع من لمح الدكتور نزال مع مراحهه المحامره ها المكتورة إسل

Industrial Pharmacy 1 Introduction

Particle size analysis


Dr. Isra Dmour Credit: Prof. Nizar Al-Zoubi

Introduction

Categories of dosage forms

- 1. Solids: Powder, granulates, tablets, capsules
- **** Powder, granules
- 1. Liquids: solutions, Suspensions, emulsions, etc
- 2. Semisolids: creams, ointments, etc.
- 3. Gaseous **

Particle size and the lifetime of a drug

Particle size and the lifetime of a drug

Particle size influence

• mixing (content uniformity for potent drugs, segregation)

Powder المنافة و powder flow

المحالات المنافة و المنافق و المنافة و المنا

– Nitrofurantoin optimal particle size is 150 μm

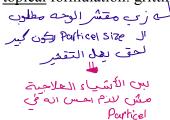
** practically insoluble in water

Particle size and the lifetime of a drug

Particle size influence

• The properties and behavior of various dosage forms:

Seg mantation عدا بدي Suspensions: sedimentation rate, texture, taste, rheology عدا بدي المحادية المح


parenteral suspensions: syringeability, injectability and بولون قليل المعادية sustained release.

المحادث الم

ophthalmic suspensions: irritation of the eye surface (small particle size is used)

inhalation aerosols: The position and retention of particles in the bronchopulmonary tract

<u>topical</u> formulation: grittiness (powder must be impalpable)

مثال على الدرس المورس المورس العلم و المورس العلم العلم المورس الدرس المادة المعدالة المورس الدرس المادة المورس الدرس المدرس المدرة المورس الدرس المدرة المورس الدرة المورس المدرة المورس المو

Est vine Ellibris Janis &

Effect of particle size on dissolution rate

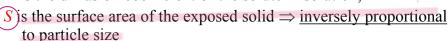
Noyes & Whitney equation:

ما ی ایعادیة آخناما بخیرکال 2

$$\frac{dM}{dt} = \frac{DS}{h} (C_s - C)$$

dM/dt: rate of dissolution

(Change of the dissolved amount with time)

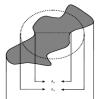

C_S is the solubility of solute

C is the concentration of solute at time, t

Cs-C =concentration gradient

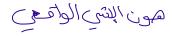
الهم سككار مأ

D is the diffusion coefficient of the solute in solution,

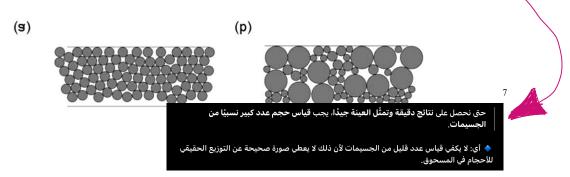


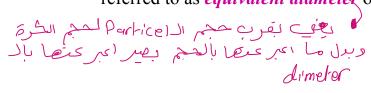
h is the thickness of the diffusion layer.

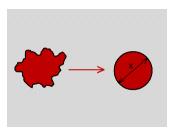
5


Particle size

- When determining the size of large solid usually we need to measure at **least three dimensions**.
 - When determining the size of regular particles like spheres or cubes, it is possible to describe the size using one dimension (diameter or length).
- If the particles <u>are mono-sized</u> (have the same size) then it is possible to describe the particle size by measuring one particle. عن المناطبة المناطبة




Particle size


- However powders generally are composed of particles that are:
 - irregular in shape
 - with different sizes
 - Are very small in size to allow measuring of dimensions
- In order to give good representation the size of relatively large number of particles should be determined.

Particle size

- For these reasons it is impractical to measure more than one dimension.
- For this reason, solids are considered to approximate to a **sphere**, which can then be characterized by determining its diameter.
- This is an <u>approximate</u> representation of the particle size and is referred to as *equivalent diameter* of the particle.

Equivalent diameters

Projected perimeter diameter (d_n)

• The diameter of a circle that has the same perimeter as the projected image of the particle. Lesowie Leliasis da

Pashicel II

Projected area diameter (d_a)

• The diameter of a circle that has the same area as the projected image of Particel 1

diameter, d_n Projected area diameter, d. ى طالعة من الدائرة اک لفہ اللون *ل* ان*هوف* انطا نفس المساحة الفائسه داحل العارَّةِ إِي اللَّون

dimeter is only

Equivalent diameters حبيف Partice المعقدة على المحالة المحالة

Feret's diameter (d_E)

The mean distance between two eparallel tangents to the projected

particle perimeter

Martins diameter (d_M)

The mean length of the chord separating the projected particle into two equal areas.

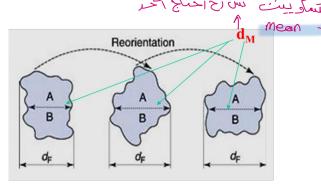
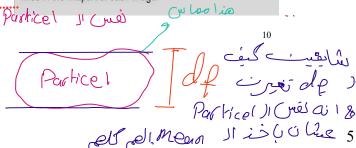
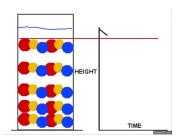



Fig. 10.3 Influence of particle orientation on statistical diameters. The change in Feret's diameter is shown by the distances, d_F; Martins diameter d_M corresponds to the dotted lines in the midpart of each image.

Equivalent diameters

Volume diameter (d_v)


• The diameter of a <u>sphere</u> that has the same <u>volume</u> as the particle.

Stokes diameter (d_{st})

• The diameter of a sphere that has the same sedimentation rate as the particles

Sieve diameter (d_s)

• The particle dimension that passes through a square aperture

11

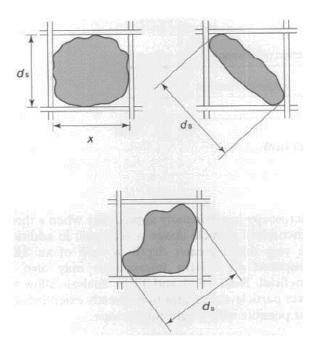
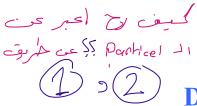
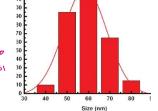



Fig. 10.7 Sieve diameter d_s for various shaped particles



Description of particle size

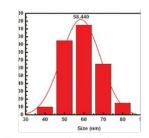
Mean particle size

• The mean particle size of an analyzed sample can be considered as a rough description for the size of sample. من طریق اخت بجیسی الا محاسم دیاخت صند کلمید ویاخت ا

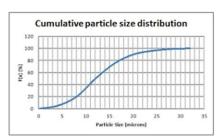
ما رح تبیت من اکل محزاد عدیت بطیر آفارنه به Partice - size کا mean ما رح تبیت من اکل محزاد واقل محزاد اردی المعلامات المعام الکل محزاد المحداد المعام المحداد المحداد

- The distribution of particles into different size ranges can be plotted in the form of histogram.
- A histogram presentation allows different particle size distributions to be compared.
- The value of the peak is the **mode** (highest frequency)

 مع المقيمة الذكائر متطواراً المعلمة المعالم المعال


13

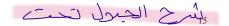
Presentation of size distribution


1) Frequency distribution data

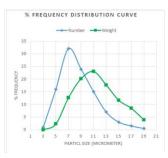
2) Cumulative frequency distribution data

They are either <u>under size</u> or <u>oversize</u>

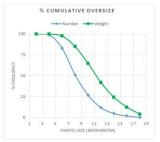
1) Frequency distribution data


2) Cumulative frequency distribution data

SSC umulative under siz المستفيد من من الد over size mean المرق عيمة عبيمة المركب الم


Presentation of size distribution I Q C 5 @

Number and weight distributions


- Frequently, we are interested in obtaining data based on a weight, rather than a <u>number</u> distribution.
- This can be obtained directly by methods such as <u>sieving</u> and <u>sedimentation</u>.
- Number distribution can be **converted** to weight distributions and vice versa.

						(7)	(8)	(9)	(10)
		(3) Number				Cumulative	Cumulative	Cumulative	Cumulative
		of particles				percent	percent	percent	percent
	(2) Mean of	in each			(6) Percent	frequency	frequency	frequency	frequency
(1) size	size range,	size range,	(4) Percent		nd3	undersize	undersize	oversize	oversize
range	d (μm)	n	n	(5) nd3	(Weight)	(Number)	(Weight)	(Number)	(Weight)
2.0-4.0	3	2	1	54	0.03	1	0.03	100	100
4.0-6.0	5	32	16	4000	2.31	17	2.34	99	99.97
6.0-8.0	7	64	32	21952	12.65	49	14.99	83	97.66
8.0-10.0	9	48	24	34992	20.16	73	35.15	51	85.01
10.0-12.0	11	30	15	39930	23.01	88	58.16	27	64.85
12.0-14.0	13	14	7	30758	17.72	95	75.88	12	41.84
14.0-16.0	15	6	3	20250	11.67	98	87.55	5	24.12
16.0-18.0	17	3	1.5	14739	8.49	99.5	96.04	2	12.45
18.0-20.0	19	1	0.5	6859	3.95	100	99.99	0.5	3.96
		Σ n = 200	100	173534	99.99				

16

SPan (3)

// clas	(2) Mean of	(3) Number of particles in each	(4) Barrant		(6) Percent	(7) Cumulative percent frequency	(8) Cumulative percent frequency	(9) Cumulative percent frequency	(10) Cumulative percent frequency
(1) size range	size range, d (μm)	size range, n	(4) Percent n	(5) nd3	nd3 (Weight)	(Number)	undersize (Weight)	(Number)	oversize (Weight)
2.0-4.0	3	2	1	54	0.03	1	0.03	100	100
4.0-6.0	5	32	16	4000	2.31	17	2.34	99	99.97
6.0-8.0	7	64	32	21952	12.65	49	14.99	83	97.66
8.0-10.0	9	48	24	34992	20.16	73	35.15	51	85.01
10.0-12.0	11	30	15	39930	23.01	88	58.16	27	64.85
12.0-14.0	13	14	7	30758	17.72	95	75.88	12	41.84
14.0-16.0	15	6	3	20250	11.67	98	87.55	5	24.12
16.0-18.0	17	3	1.5	14739	8.49	99.5	96.04	2	12.45
18.0-20.0	19	1	0.5	6859	3.95	100	99.99	0.5	3.96
		Σ n = 200	100	173534	99.99				

العامود رحم "1"

رج سطون Particel size rang في Particel size rang ويح المعامود رقم "2"

 $3 = \frac{6}{2} = \frac{2+4}{2}$ July 1 sold Rang & mean SI LET &) $5 = \frac{10}{2} = \frac{4+6}{2}$ 91

العامود رقم " إلى ال

رح بیکون فنیه عدد ۱۱ Particel المحودة باله particel المعاد منعنی بح بیکون ۱۲مه ۱ و متر المعاد المعا

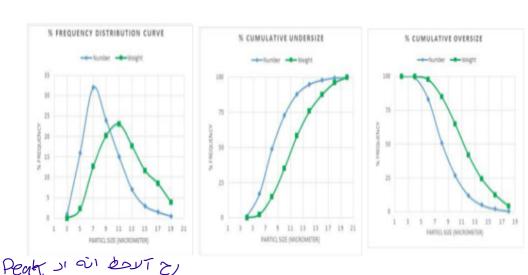
عامود رقم "4"

(200) 3 sole (2 lema) 2) clema) 2) clema) 2) $(2 \cos 32 \cos 32 \cos 32) \cos 32 \cos 32)$ of $(2 \cos 32) \cos 32 \cos 32)$ $(2 \cos 32) \cos 32 \cos 32)$

لى ابدى المسب اله المورون المعالم (Cumulative undersize) المعامود 4 واشوف المعاملة المح المحمود المعاملة المع

أواد 16 ورج يهر المجوع 49 ومبكمل

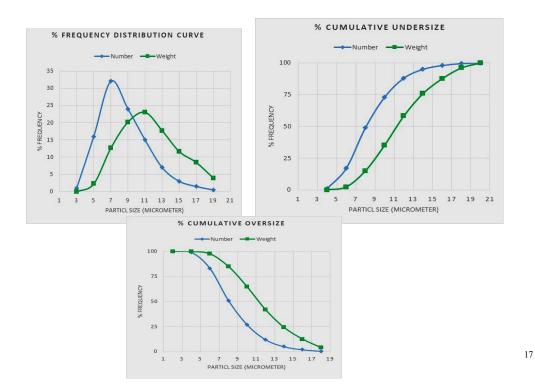
عامود رقم" ٩


الد مجامع منها لا ا و بعد ا - 10 و بعد الحال من نفس العامود (۱۱) من نفس العامود (۱۱) من الد منها لا الحرام الد عود الحرام الد منها لا الحرام الد عود الحرام الد عود الحرام الد عود الحرام منها لا الحرام الحرام منها لا الحرام الحرام منها لا الحرام الحر

عامود رقم "5"

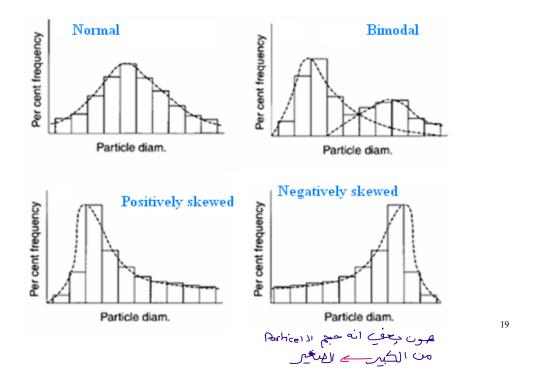
رح آخد ال ۱۱ میں عامود 4 واخریکا بمطیب ادلی من عامود 2 (2=۱ و قدل) مے 2 x (3) = 1 و اور قریم "8"

نفس عامود 7 بس رح آخذالقیم من عامود ح


نفس عامود 9 بس رح آخذالميم من عامود كل

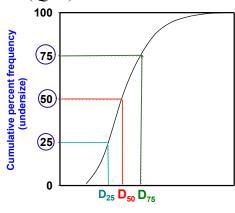
الغنشالط (إدا لعدمة

حبب الوزن


Peak is Le Cumulative 11 4

Description of particle size

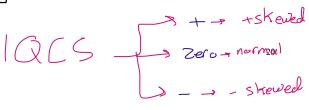
Types of distributions


- *Normal distribution*: The mode separates the curve into two symmetrical halves.
- *Positively skewed*: A frequency curve with an elongated tail towards the <u>higher size</u> range.
- *Negatively skewed*: A frequency curve with an elongated tail towards the <u>lower size</u> range.
- *Bimodal*: The frequency curve containing two peaks (two modes)

Presentation of size distribution

Evaluation of degree of skewness

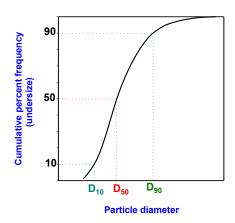
• The degree of skewness can be estimated by determining interquartile coefficient of skewness (*IQCS*)

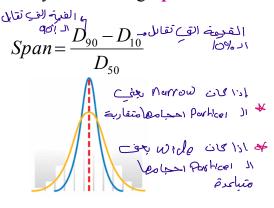


Particle diameter

$$IQCS = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})}$$

Cumulative frequency distribution curves.


Point D_{50} corresponds to the median diameter; D_{25} is the lower quartile point and D_{75} is the upper quartile point.



Presentation of size distribution

Evaluation of distribution width

• The size distribution width can be estimated by determining Span

• **Note**: D₉₀, D₅₀, D₁₀ are values corresponding to 90, 50 and 10% in the cumulative undersize curve.

Particle size analysis methods

Microscope methods

Equivalent diameters

 d_a , d_p , d_F and d_M can be determined

Range of analysis

- Light microscope (1 1000 μm)
- Scanning electron microscope (0.05 1000 μm)
- Transmission electron microscope (0.001 0.05 μm)

