
MELTING POINT LE MEASUREMENT

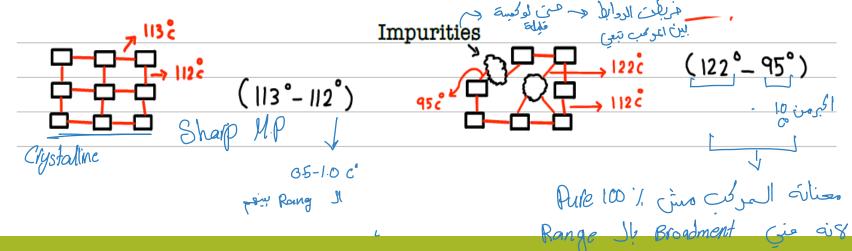
9 - 16:35 pin

Ali Salama

أول 8min بالفيديو الدكتور حكى عن اله Safefy Rules والدوات بشكل سريع

ال الله کال لاب کازم یکی معنا الله کال الله کال

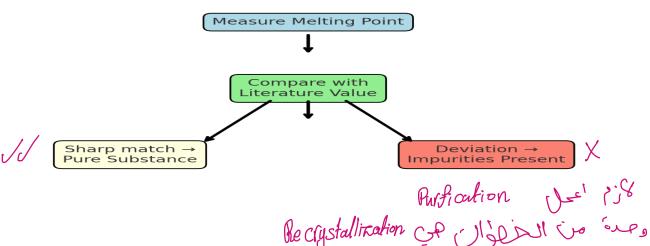
Definition


لكل مادة درجة معينة The melting point is the specific temperature at which a solid turns into a liquid. At this stage, the intermolecular forces holding the crystal lattice together are broken, allowing the particles to move freely. The melting point of a substance depends largely on the type and strength of the forces within \$ 500 000 its structure, which explains why different molecules have different melting points. المالة السائلة

Characteristics of Pure Compounds

م بتكون الجزئيان مري<mark>ب </mark>

- A pure crystalline organic compound usually exhibits a sharp and narrow melting range, typically within 0.5–1.0 °C. When impurities are present,
- *even in very small amounts, they disturb the lattice structure. This results in a lower melting point and a broader temperature range during melting.


Therefore, impurities directly affect how precise and sharp the melting process appears.

Importance of Measuring Melting Point

• Measuring the melting point is not only a way to identify compounds but also a practical test of purity. For researchers and chemists, a sharp melting point close to the literature value indicates a pure substance, while deviations suggest contamination or the presence of other compounds. Thus, it serves as both a quality control tool and a method of confirming identity.

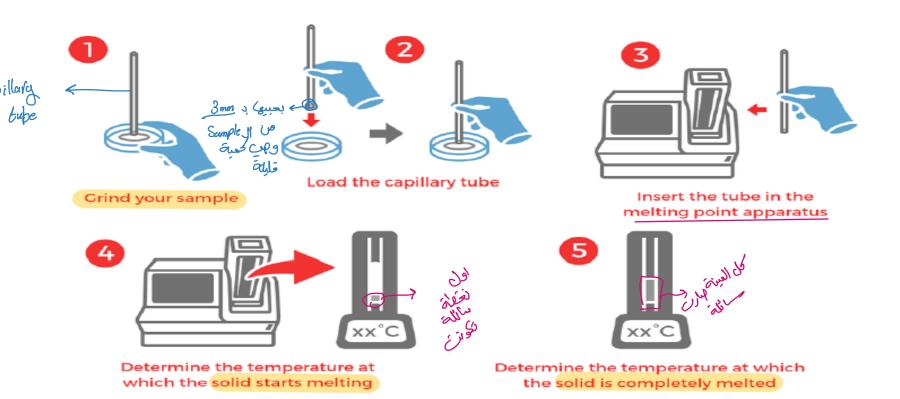
Melting Point as Purity Test and Identification

لم يعرفهن تجوي مالاثري يعن المادة مو أد عز ري

Measurement Method

1

- To measure the melting point, a small quantity of powdered sample (about 3 mm) is packed into a thin-walled capillary tube that is sealed at one end.
- This tube is attached to a thermometer and placed into a heating bath. The bath is heated slowly, and the observer records two key temperatures: the
 - point where the first drop of liquid appears, and the point where the entire
- y sample has melted.


[a-b]
Rounge
0.5-1.0 c° > Ave W

Sample Preparation and Accuracy

Accurate melting point measurement requires careful preparation.

The sample should always be finely crushed to increase its surface area, allowing heat to penetrate evenly. Thin-walled tubes are preferred since they conduct heat efficiently and avoid delays that may broaden the melting range. Finally, a fresh capillary should be used each time, as heating can cause decomposition and alter the results.

Measurement Method

Conclusion

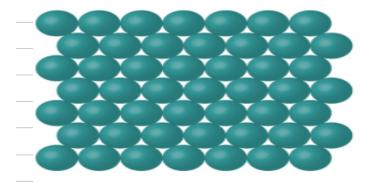
• The melting point is a reliable fingerprint for identifying and testing the purity of organic solids. A sharp melting point indicates a pure compound, while impurities cause depression and broadening of the range. By following proper preparation and measurement techniques, scientists can ensure accurate and reproducible results, making melting point analysis one of the most useful tools in organic chemistry.

RECRYSTALLIZATION

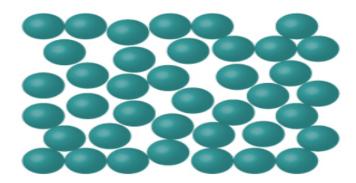
16:36 -23:04 min Ali Salama

Definition

• Recrystallization is the most widely used method for purifying solid organic compounds. In this technique, an impure solid is dissolved in a solvent and then allowed to slowly crystallize as the solution cools. The impurities remain dissolved in the solvent while the compound forms a pure, ordered crystal lattice.


Crystallization vs المساح بندس Precipitation 3- معاد مهده بندس المساح ا

· Crystallization differs from precipitation. Crystallization involves a slow,


selective formation of an ordered crystal structure that excludes impurities,

producing a pure compound. In contrast, precipitation happens rapidly and

2 often produces an amorphous solid with many trapped impurities inside the lattice.

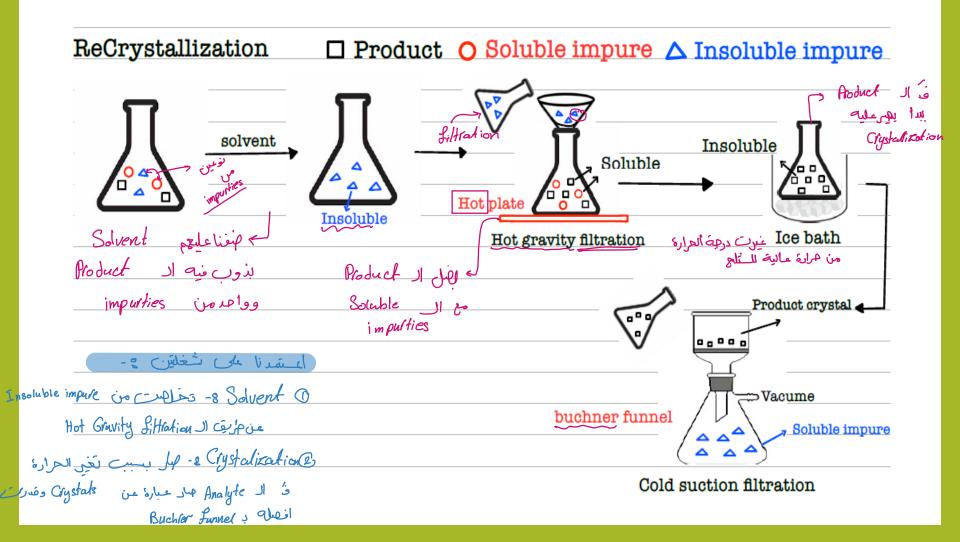
Crystalline

Amorphous

ن المراقع المر

Principle of Recrystallization

لِحتقدعلی کما


• The process depends on solubility changes with temperature. Most solids are more soluble in hot solvent and less soluble at lower temperatures. By heating the solvent, the impure solid dissolves completely; as the solution cools, the desired compound crystallizes while impurities remain in solution.

Steps of Recrystallization

- 1. Choose a suitable solvent. موجود تعدت با
- 3. Filter out insoluble impurities.
- 4. Slowly cool to allow crystals to form.
- 5. Filter and collect the purified crystals.
- 6. Wash the crystals to remove any residual impurities.

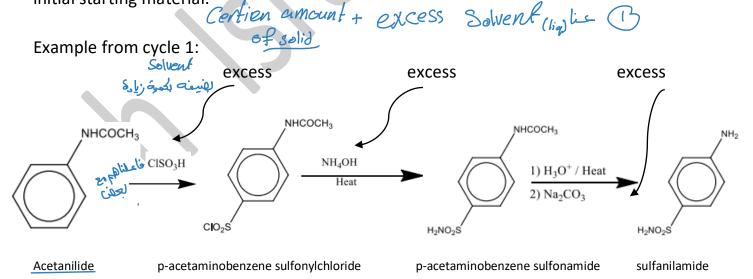
Steps of Recrystallization

→ Choosing the Right Solvent

- The compound should be highly soluble in hot solvent but sparingly soluble at room temperature.
- Impurities should either remain dissolved at room temperature or be insoluble in hot solvent.
- The solvent must not react with the compound.
- The solvent should be volatile so it can be easily removed after crystallization.

Conclusion

Recrystallization is a reliable purification method for solid compounds. By
 exploiting differences in solubility, it separates the desired product from
 impurities. Careful solvent selection and slow crystallization are essential for
 obtaining pure, crystalline compounds suitable for further analysis or use.


Percent Yields Calculations

- Many synthesis require more than one reaction, with each reaction yielding an isolated compound before the final product is reached. Each individual step in the sequence has a percent yield, and the total synthesis has an **overall yield** calculated from the steps yields
 - <u>Limiting reagent</u>: the reagent that is present in the smallest equivalent stoichiometric amount and limits how much product will be produced. It determines the maximum amount of product(theoretical yield) that will be formed.

- Overall yield =
 # wyield for step1 *
 # wyield for step3 *
 # wyield for step3

 # wyield for step3

 # wyield for
- Each individual step has a relatively high efficiency, but the overall efficiency is low. Each subsequent reaction further reduces the actual amount of product that is formed from the initial starting material.

1. You have 3 steps for this reaction, so you have to find percent yield for each step then multiply them to find the overall yield for the synthesis.

2. In this cycle the other reactants were used in excess so your main reactant will be the rate limiting reactant.

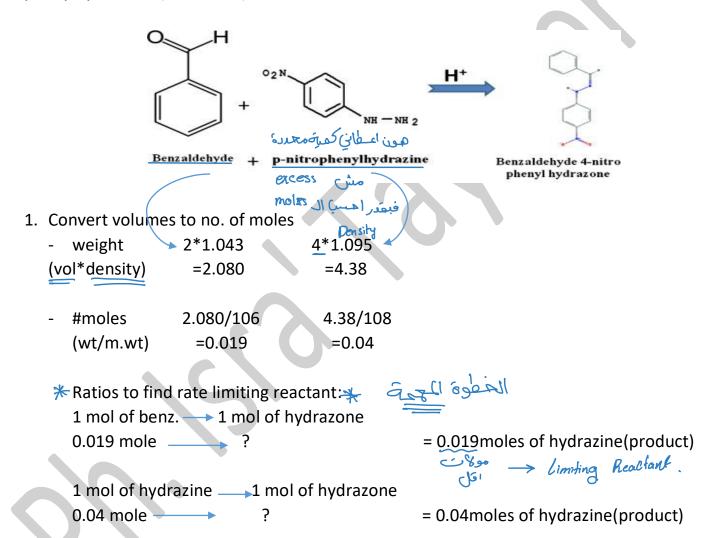
For Step 1:

Acetanilide + chlorosulfonic acid ----> p-acetaminobenzene sulfonylchloride *Amount used 15 g excess(no need to calculate) *No. of moles (15/135.17)(wt/m.wt) excess مابغراه کالگای مابغراه کالگای نعماه (0.111 moles) So rate limiting reactant is acetanilide goduct عدد مولانه = ال المحلية القاعل على يعني ١٥٥٧ عدد مولانه على المحلية القاعل على يعني ١٥٥٠ عدد مولانه على المحلية القاعل على المحلية التقاعل التقاعل المحلية المحلية المحلية المحلية المحلية المحلية المحلية ال No. of moles of product =No. of moles of acetanilide (ratio 1:1) =0.111 moles Theoretical yield = 0.111*233.67(m.wt of product) = 25.93 g عدد مولات * M.W % yield = actual mass yield *100% theoretical yield

Let's assume that when you weighed your product after drying in the next lab and was

16 g (this 16 g is your actual yield)

actual/theoretical So % yield for this step is equal to (16/25.93) *100% = 61.7%


** Make the same calculations for the second two steps, then multiply them to find the overall yield.

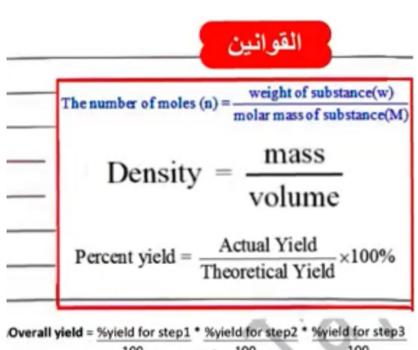
tow liquids

Example 2 (if the reactant not in excess)

Calculate the % yield if 2 ml of benzaldehyde(density =1.043, m.wt =106) were reacted with 4 ml of phenylhydrazine ((density =1.095, m.wt=108) in order to synthesize phenylhydrazone (m.wt=196)

So benz. Is the rate limiting reactant(lower no. of moles of product). so no. of moles of product =0.019 moles

Theoretical yield = 0.019 *196(m.wt of product)= 3.72g


Assume that you weighed your product and was equal to 2g So %yield = 2/3.72 *100% =53.76%

+ مثال فناف الدكنور

المادلة المعادلة Al=100 {BG-6712gm {ABG wt.90 } Actual ut=7gm 2 Al abra -2 NBra 1/4 yeld 9 H.d. 779/ma (Mul. 1598,960) Hul. 293.79/mol } رع بوجد # md Al = wt /A wt is yell ede -> C/20 se puis 100/77 . 0.06 mol factor de فعط لتديد ج #mol Brz wt/Mad 004 (المانع يلي جبن العدال بالمعاللة) 6392/1918 - 0.04 (-0.0133 So 3Br - 2AlBG 004 -X X=0 0067 mol ABG wt= #mol x Hut 0.0261 x 293.7 - 78339 gm

المادلة كازم تكون موزونة

2Al +3B/2 ->2AlBr3 7 Ratio ا عنا لعاد اله اله اله اله اله مش ا:۱

100

امر اشي: تغير توزيع العلامات

کل عملیت قیمیع ۲- دوا الع ۲- Report بجمع کل الفطواں

Grade Distribution		
Assessment	Grade	Date
1. Quiz	16' 10%	weekly کل اسبوعین می کوین
2. Midterm exam	30%	To be arranged
3. Report	10%	weekly
4. Evaluation	51. 10%	weekly
5. Final Examination	40%	To be arranged

النجرية عزعتها بناريغ عرف المرب على عزة بيوم وقف الحرب على عزة دعالكم العمر ربنا يجبر علوبهم ويرمم المنهداء