by TLC

Essential oils contain some highly volatile organic substances that can be isolated from odoriferous plants by various physical processes. The oils are usually concentrated in the seeds or flowers but may exist in other parts of the plants as well. Such oils were called essential because they were thought to represent the very essence of odor and flavor. Most essential oils are primarily composed of terpenes and their oxygenated derivatives (terpenoids).

other name to vobilite oils

- Chemical constituents of volatile oils can be divided into two broad classes:

 two pathway:
 - 1. Terpene derivatives formed via acetate mevalonic acid pathway.
 - 2. Aromatic compounds formed via shikimic acid phenyl propanoid route. Shikmate

Several points of differentiation exist between volatile oils and fixed oils.

Volatile oils can be distilled from their natural sources; they do not consist of glyceryl ester of fatty acids. Hence, they do not leave a permanent grease spot on paper and cannot be saponified with alkalies.

Volatile oils do not become rancid, as do fixed oils, but instead, on exposure to light and air, they oxidize and resinify. Unlike essential oil,

fixed oils are not volatile. Meaning, they do not evaporate rapidly even

Differences
Differences
Differences
Differences

volatile oils:

acetale malonate

1. Terpene derivatives formed via acetate mevalonic acid pathway.

2. Aromatic compounds formed via shikimic acid phenyl propanoid route.

Several points of differentiation exist between volatile oils and fixed oils.

Volatile oils can be distilled from their natural sources; they do not

Difference

permanent areas of fatty acids. Hence, they do not leave a 2 between

Permanent grease spot on paper and cannot be saponified with alkalies.

Volatile oils do not become rancid, as do fixed oils, but instead, on exposure to light and air, they oxidize and resinify. Unlike essential oil,

fixed oils and

volatile oils:

fixed oils are not volatile. Meaning, they do not evaporate rapidly even when under normal temperature or pressure. It acts as a carrier oil and diluent for essential oil to be easily absorbed.

Essential oils can be obtained from plants by a number of processes such as mechanical pressing and grinding, maceration, solvent extraction, distillation and concentration. In many cases a combination of processes is required for an efficient and effective isolation. The specific extraction method employed is dependentupon the plant material to be distilled and the desired end-product. Most essential oils are extracted by steam distillation.

process 11, 150, extraction del con col plant material comp *

[56] process steam distillation

(with volunte oil) steam distillation

when exposure to dight and a Volatileoil, is so of air soxidation s (they resinify) يعني يعيروا زي المعقبة

* Volatile oil evaporates on room tempreture *

unlike fixed oil at that do not evaporate even in high tempireture (a) is illerial of the logitue of the Steam distillation up and & (granding) leins is and objet let stills on one Condenser Jein consaint as volable oil Il Jose Steam ای یکون بعه ماء باردة لحق بنزل درجة حرارة ال steam العبدال volable oil + liquid water steams 11 FT oil & will aid to sell Estall eige builing point) قرح يتبخر على درجة حرارة أقل الجعلة لو أهنا فاجلين ال Seeds في # لطاهم و بس يتوعن ال سمعاد فرح تبخر للادرمة ولرة Condensed Volatik oil 220 seal Mein steam Il lose o , Joi Tundo asub

NOTBBOOK

per eni

ghly

olati

Seperation days Plack, about beaker - collection strip & mestigle of Codlection english early so while are the continue and the the constant of mise as well and and the lais lime organizophase on sing less to and all to organizophase on single the single of the single seperating funnel la ligos organic solventro aliquote 215 list Oganic II cépt (il citée (Ju) organic compused aquous il con aliquotes II est citée, lextraction of oust citée.

Volatile es dolo (s) organic solvent Volatile oil from water oil from water ciny of thistallate ou organic solventing or unt rollius organic solventic in aliquotes up 31 lies liote Shalling Share of Supercipinal of Shalling su color de aqueus layer co volatikal il US standstillate auchiep on Anise : organic lab , lower assill is Solvent 11 Ja

Sold (3) healing a organic phase Croplain & in heat lable GILIBI evaporator _ Less · pure oil us dos joi cho organisolventos colsi il لحس نكرف الخاص ملك عانه ا عانه .

chromotographic phases. The distribution of compound can be described in term of its technique is for distribution between any two phases, such as liquid/liquid, solid/liquid, or gas/liquid phases. This concept of the distribution coefficient is the basic principle of chromatography. Coefficient according to the principle of compand either to stahonary phase or mobile phase.

All chromatographic system consists of two phases. 1. The stationary phase (SP), which may be solid, liquid or mixture. 2. The mobile phase (MP), which may be liquid or gaseous and flows through the stationary phase. The choice of stationary or mobile phases is made so that the compounds to be separated have different distribution coefficients. This can be Il zono de la la stationary phreu asionary Daffinity lall all by · Stuck in stehonary phase des 200 mobile phase mobile 1 gol sie place mobilephare de 3 affinity. Isol 615 131 #

بحرن ميم فرافات

Thin layer chromatography (TLC)

It is an adsorption chromatographic technique in which the two phases are: a solid stationary phase and a liquid mobile phase. The solid stationary phase is a thin layer of finely divided solid, such as silica gel or alumina, supported on glass, plastic or aluminum, and the mobile phase is a solvent.

As the solvent moves past the sample spot that was applied on the solid phase, equilibrium is established for each component of the mixture. The more polar molecules, the higher the affinity it will have for the more polar silica plate and will therefore spend less time in the mobile phase.

- As a result, it will move up the plate more slowly. Conversely, a less polar molecule will spend more time in the mobile phase and will therefore move up theplate more quickly. The speed at which the molecules will move up the plate thus depends on the polarity of the solute, solvent, and adsorbent.
- The difference each molecule travels along the adsorbent in relation to how far the mobile phase has traveled is called the **Retention factor (Rf)** and can be used to identify molecules, as the value is molecule specific. The retention factor for any given molecule will vary depending on the mobile and stationary phases used.

 No bike & Stationary phases used.

TLC is a simple, quick, and inexpensive procedure that commonly used in the separation of substances from mixture, identification of a compound by

> fine powder Framell particle)

(Large surface area)

Sitter Hast

mobile wester

by capillary reaction

الماري المراكب الم

phe sign

(5)

المناوم والما

> The difference each molecule travels along the adsorbent in relation to how potarity of the solute, solvent, and adsorbent. far the mobile phase has traveled is called the Retention factor (Rf) and can by capillary be used to identify molecules, as the value is molecule specific. The retention reaction factor for any given molecule will vary depending on the mobile and 4) was 11 -1092 stationary phases used. Mobile & Stationary phase On partitioning lames 2 854 وتختلف شكاك والخزى مستصرمة TLC is a simple, quick, and inexpensive procedure that commonly used in the 131 separation of substances from mixture, identification of a compound by comparingit with known substances, checking the purity, and in following the progress of a chemical reaction. Solvent front ight of usolvent 1 wide $R_{f} = \frac{\textit{Distance from baseline traveled by solute}}{\textit{Distance from baseline traveled by solvent (solvent front)}}$ بجد تنبطع اله ١٦ وبوسم base begolvent princes rishel يقلم رصاحا لحد ماوصل أ solid cupport & aliminum Jank 4/2 of Baseline Lyon 1 - Lys Y Sul's + POTTC JI Q 15* لازا کور عج بیس لنغرو نشعل Unreacted starting Sample material or known by-Product (if available) product for reference Stationary NStruck lesiosis leter (highly adsorped) 5,141 1's also phase Silica, a luminary phase Silica, a luminary 1 not nightly adsorped on stationary phase stack believed inois boarity into (not stuck)

phase

✓ How to Run a TLC Plate:

Step 1: Prepare the developing container

The developing container for TLC can be a specially designed chamber, a jar with a lid, or a beaker with a watch glass on the top (the latter is used in the undergrad labs at CU). Pour solvent into the chamber to a depth of just less than baselines apostosomeds I evel vapors, you can line part of the inside of the beaker with filter paper. Cover the beaker with a watch glass, swirl it gently, and allow it to stand while you prepare your TLC plate. atmospher in beaker with mobile phase otherwise; inconsentant

TLC plates are usually 5 cm x 20 cm sheets. Each large sheet is cut horizontally into plates which are 5 cm tall by various widths; the more samples you plan to run on a plate, the wider it needs to be.

Handle the plates carefully so that you do not disturb the coating of adsorbent or get them dirty. Measure 0.5 cm from the bottom of the plate. Using a pencil, draw a line across the plate at the 0.5 cm mark. This is the origin: the line on which you will spot the plate.

Take care not to press so hard with the pencil that you disturb the adsorbent. Under the line, mark lightly the name of the samples you will spot on the plate, or mark numbers for time points. Leave enough space between the samples so that they do not

Inconsestance We Solvent Go مل طالعها عام

Dip the capillary tube into the solution and then gently touch the end of it onto the origin line location on the TLC plate. Don't allow the spot

- if necessary, you can touch it to the plate, lift it off and blow on the spot. After each spot is dry, you will repeat the entire process 2 more time, so that each solution has been spotted 3 times.

Step 4: Develop the plate : Re المساكا كامادانه و المناه كامادانه المادانه المادانه

Place the prepared TLC plate in the developing beaker, cover the beaker with the watch glass, and leave it undisturbed on your bench top. The solvent will rise up the TLC plate by capillary action. Make sure the solvent does not cover the spot.

Allow the plate to develop until the solvent is about half a centimeter below the top of the plate. Remove the plate from the beaker and immediately mark the solvent front with a pencil. Allow the plate to dry.

Step 5: Visualize the spots

If there are any colored spots, circle them lightly with a pencil. Most samples are not colored and need to be visualized with a UV lamp / s paring reaged spots.

immediately mark the solvent front with a pencil. Allow the plate to dry.

If there are any colored spots, circle them lightly with a pencil. Most samples are not colored and need to be visualized with a UV lamp /s paring reaged after spraying.

Notes: Staining material Staining material of the foodileted Cillis Concentration USI Find prisming material of the TLC plate runs samples, which are too concentrated, the spots will be streaked and/or run together. (tailing) spotting

If this happens, you will have to start over with a more dilute sample to spot and run on a TLC plate.

*Visualize system in this lab is iodine champer.

2. TLC:

Solvent system:

(Should be place in the chamber before plate preparation to allow the

- Toluene: Ethyl acetate (93:7), prepare 100ml. non polar * mobile phase is nonpolar system

* Stationary phase is polar system

Spraying reagent:

Vanillin / Sulfuric acid

Procedure:

- Prepare your TLC plate as instructed and develop in the solvent system.
- 2. After the solvent had reached 10 cm, dry your TLC and spray it with the spraying reagent.
- 3. Analyze your results and calculate the Rf values.