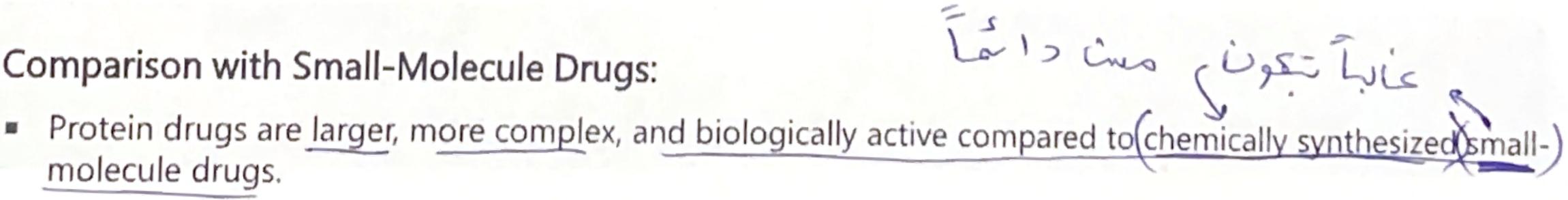
LEARNING OBJECTIVES

By the end of this presentation, students will be able to:

- 1. Understand the significance and types of protein drugs in pharmaceutical applications.
- 2. Explain the concept, development, and applications of monoclonal antibodies (mAbs).
- 3. Identify key challenges in the production and delivery of protein-based drugs.

DR ALA ABUHAMMAD, PHD


INTRODUCTION TO PROTEIN DRUGS

- Protein drugs are biologically-derived therapeutic molecules, such as hormones, enzymes, or monoclonal antibodies, designed to interact with specific targets in the body.
- Unlike small-molecule drugs, which are chemically synthesized and often have broad mechanisms of action, protein drugs are engineered to work with precision, mimicking natural biological processes.
- Comparison with Small-Molecule Drugs:

- Protein drugs have transformed the management of chronic and life-threatening diseases, offering innovative solutions for conditions that were previously untreatable or poorly managed.
- at the forefront of personalized medicine, as their development often considers genetic, molecular, or cellular variations in patients.

DIFFERENT TYPES OF PROTEIN THERAPEUTICS

Seem	
Enzy	mes

Monoclonal Antibodies (mAbs)

Type

Recombinant Hormones

Cytokines

Coagulation Factors

Fusion Proteins

Vaccines

Peptides

Dr Ala Abuhammad, PhD

Description

Catalyze chemical reactions to replace or augment deficient or abnormal enzymes in patients.

Target specific antigens, widely used in oncology, autoimmune diseases, and infections.

Replace or supplement naturally occurring hormones in cases of deficiency.

Modulate immune responses and stimulate or suppress cellular activity.

Address bleeding disorders by replacing missing or defective clotting proteins. Combine the functions of different proteins to

Protein-based immunogens that stimulate immune responses for disease prevention.

improve stability or extend half-life.

Short chains of amino acids used for signaling or therapeutic effects.

Examples

Alteplase (stroke), Pegaspargase (leukemia)

Rituximab, Trastuzumab, Adalimumab

Insulin, Growth Hormone, Erythropoletin

Interferons, Interleukins

Factor VIII (Hemophilia A), Factor IX

Etanercept (autoimmune diseases)

HPV vaccine, Hepatitis B vaccine

Glucagon-like peptide-1 (GLP-1) analogs

Blotechnological Technique / Approach

Recombinant DNA technology using bacterial or mammallan cell expression systems,

Hybridoma technology, recombinant DNA technology in mammalian cells (e.g., CHO cells).

Recombinant DNA technology in bacterial (e.g., E. coli) or mammalian cell lines.

Recombinant DNA technology in mammalian cell cultures.

Recombinant DNA technology in mammalian cells (e.g., CHO or BHK cells).

Recombinant DNA technology in mammalian cell lines.

Recombinant DNA technology in yeast (e.g., Saccharomyces cerevisiae) or mammalian cells.

Solid-phase peptide synthesis (SPPS) or recombinant technology in bacterial systems. Dec-24

biotech products ran Usp of or biotech - Live & recombinant DNA So hybridoma to Laio L'

ADVANTAGES OF PROTEIN DRUGS

Precision:

Protein drugs exhibit highly specific interactions with their targets, which is a key advantage over many small-molecule drugs. These precise interactions arise from the ability of proteins to recognize and bind to unique molecular structures on target cells or pathways. This specificity significantly reduces the likelihood of off-target effects, thereby minimizing adverse reactions and jest isan prezisiones in i isa [non

Protein drugs are generally better tolerated by patients because they often mimic the body's natural biological molecules and processes. Unlike some small-molecule drugs that may cause toxicity or disrupt unrelated pathways, protein drugs integrate more seamlessly with biological systems, leading to fewer and less severe side effects.

Therapeutic Versatility:

Protein drugs can perform a wide range of therapeutic roles. They can:

- Replace deficient or malfunctioning proteins in the body, such as insulin for diabetes,
- Act as modulators of immune responses, helping to enhance or suppress the immune system in conditions like autoimmune
- Serve as signaling molecules that regulate specific physiological processes, such as growth factors stimulating tissue
- Efficacy:

Protein drugs often surpass traditional therapies in effectiveness because they can closely mimic natural biological functions. For instance, monoclonal antibodies can specifically target cancer cells without harming healthy tissues. Their ability to bind strongly and selectively to their targets ensures high therapeutic impact, even at lower dosages compared to small-molecule Dr Ala Abuhammad, PhD

CHALLENGES OF PROTEIN DRUGS

- Stability Issues
- Sensitivity to Environmental Conditions: Protein drugs are highly sensitive to changes in temperature, pH, and enzymatic degradation. This makes handling, storage, and transportation difficult, requiring strict cold-chain logistics.
- Denaturation Risks: During formulation or exposure to unfavorable conditions, protein drugs may lose their functional structure, reducing efficacy.
- 2. High Manufacturing Costs more
- Complex Production Systems: The production of protein drugs involves sophisticated bioreactors and advanced technology, significantly Senshive
- Purification Requirements: Extensive downstream purification processes are essential to achieve high-purity protein drugs, adding to the

Susccipt 3. Immunogenicity

- Immune Reactions: Protein drugs may be recognized as foreign by the immune system, triggering adverse reactions.
- Mitigation Strategies: Developers must employ careful molecular design, including PEGylation or glycosylation, to minimize

damage. 4. Short Shelf Life (stable fuso)

- Degradation Over Time: Protein drugs often have limited stability over extended periods, leading to reduced therapeutic effectiveness. more.
 - Stringent Storage Needs: Specialized storage conditions, such as refrigeration, are mandatory to maintain drug integrity and potency.

than

Dr Ala Abuhammad, PhD

Small molecules

lailei l'ulo, auleu aussur (2 Dec-24

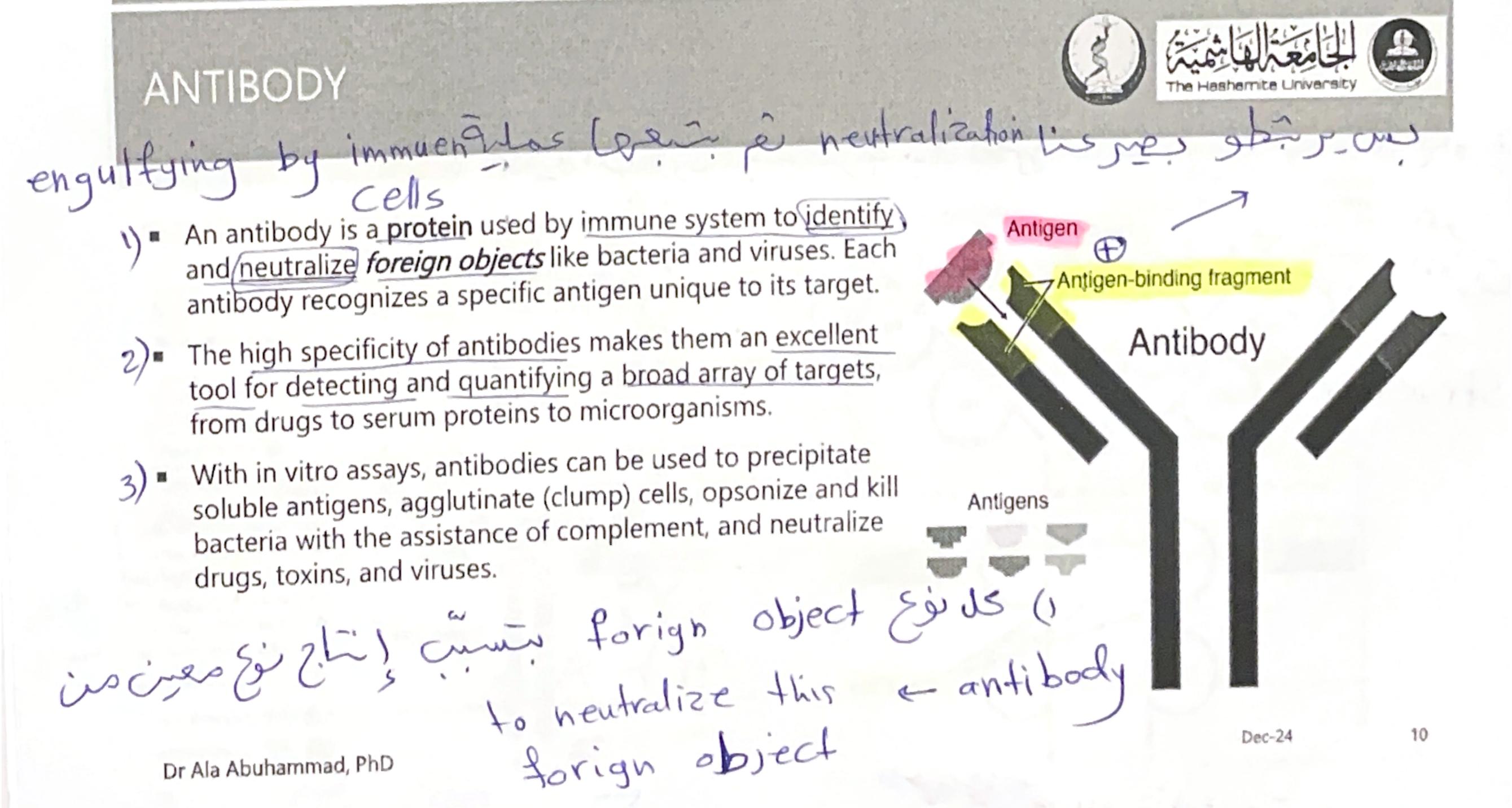
mé Émi is, îst ails moderale es

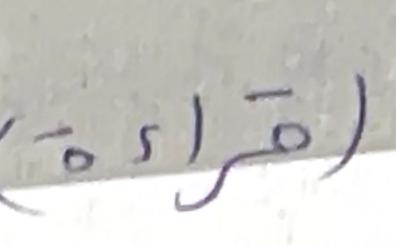
in Elpot peganier per is JSC 11 JSC = 1 mmuno (3 (ogéner p'/X SUI), (human /. 100) ojos la protein Jose WILL animal and bacteria

PRODUCTION OF PROTEIN DRUGS

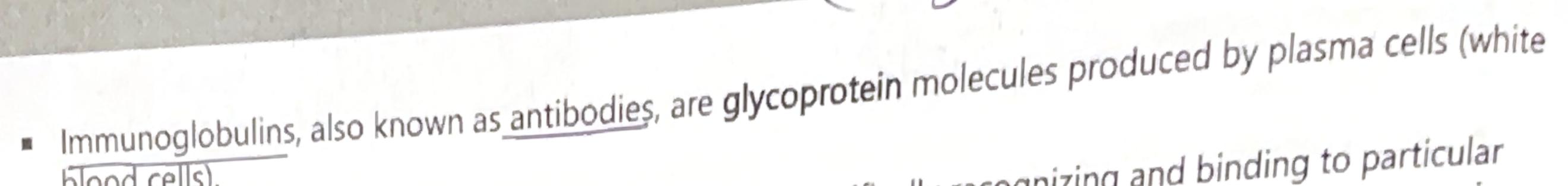
Host Systems:

- Bacteria (e.g., E. coli): Cost-effective but limited post-translational modifications.
- Yeast: Simple eukaryotic system with glycosylation capabilities.
- Mammalian Cells (e.g., CHO cells): Preferred for complex proteins requiring human-like modifications.
- Recombinant DNA Technology: Gene encoding the protein of interest is inserted into a vector for expression in the host system.
- technology Processes: Upstream (cell culture) and downstream (purification, formulation).

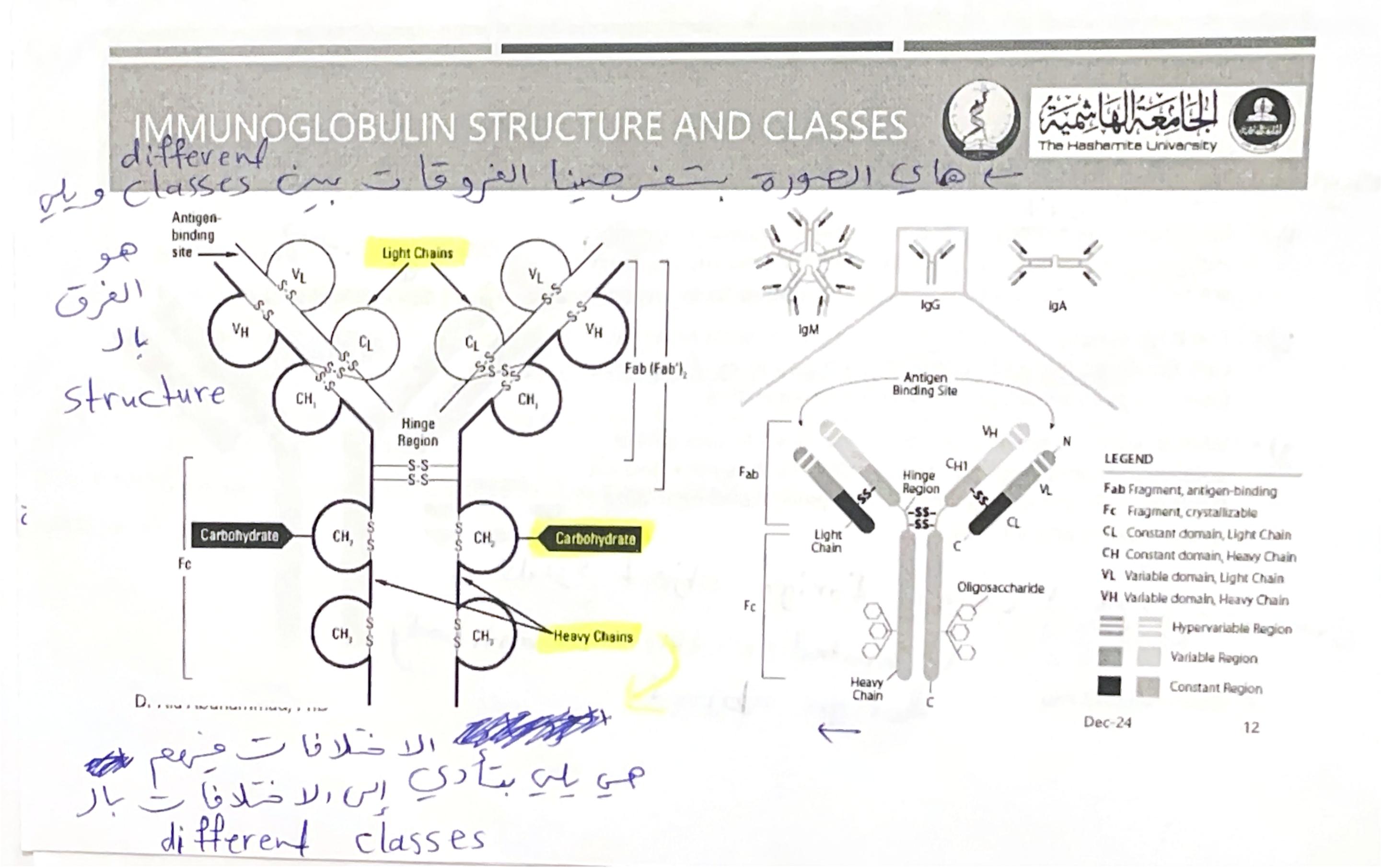

KEY APPLICATIONS OF PROTEIN DRUGS


- Replacement Therapies:
 - Insulin for diabetes.
 - Growth hormone for GH deficiency.
- Enzyme Therapies: E.g., agalsidase beta for Fabry disease.
- Immunotherapy: Interferons for viral infections and certain cancers.
- Targeted Therapy: E.g., rituximab for B-cell malignancies.

Dr Ala Abuhammad, PhD


Dec-24

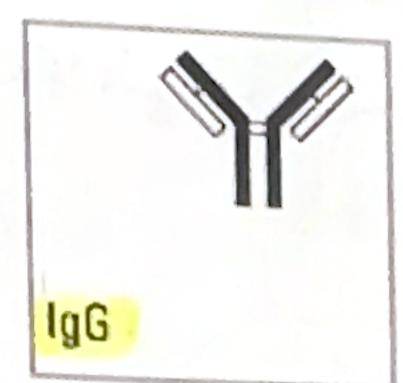
ANTIBODIES (IMMUNOGLOBULINS)

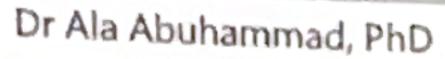


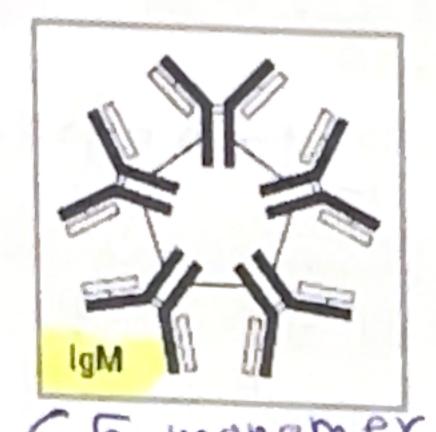
- They act as a critical part of the immune response by specifically recognizing and binding to particular antigens, such as bacteria or viruses, and aiding in their destruction. The antibody immune response is highly complex and exceedingly specific.
- The various immunoglobulin classes and subclasses (isotypes) differ in their biological features, structure, target specificity, and distribution. Hence, the assessment of the immunoglobulin isotype can provide useful insight into the complex humoral immune response. Assessment and knowledge of immunoglobulin structure and classes is also important for selection and preparation of antibodies as tools for immunoassays and other detection applications.

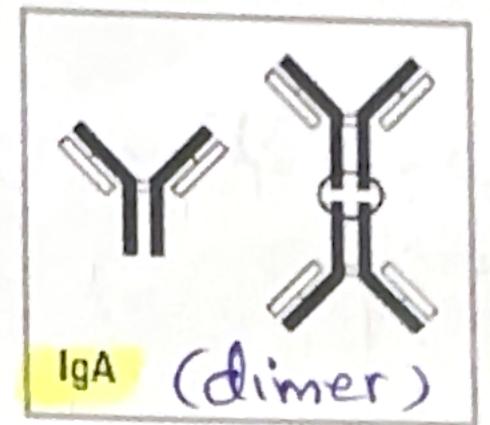
Dr Ala Abuhammad, PhD

Dec-24


11



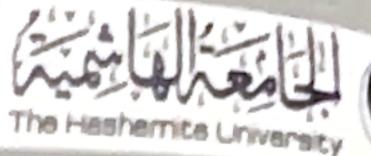

CLASSES OF IMMUNOGLOBULINS


- immunoglobulins classes are distinguished by the type of heavy chain found in the molecule.
- Differences in heavy chain polypeptides allow these immunoglobulins to function in different types of immune responses and at particular stages of the immune response.
- Antibody classes differ in valency as a result of different numbers of Y-like units (monomers) that join to form the complete protein. For example, in humans, functioning IgM antibodies have five Y-shaped units (pentamer) containing a total of ten light chains, ten heavy chains, and ten antigen-binding.

5 monomer)

valency of a monomer Commers Jesus cre of 2 21 ch Eslévi isotype et subtype il ciobe

CLASSES OF IMMUNOGLOBULINS



Important properties of antibody isotypes.

	1gG	lgM	IgA	l-F	
Molecular weight	150,000	900,000	320,000 (secretory)	igE	lgD
Heavy chain: Type MW	γ 53,000	65,000	55,000	E	δ
concentration in serum approximate)	10-16mg/mL	0.5-2mg/mL	1-4mg/mL	73,000 0.00001-0.0004mg/mL	70,000 0-0.4mg/mL
Percent of total IgG	80	6	13		o ocumpant.
Carbohydrate (approximate)	3%	12%		0.002	0.2
Distribution	Introvocation		10%	12%	13%
	Intravascular and extravascular	Mostly intravascular	Intravascular and secretions	Basophils and mast cells in saliva and nasal secretions	Lymphocyte surface
Function	Secondary response	Primary response	Protect mucous membranes		
Structure		Y,	\/	Protect against parasites	Unknown
	Y	7/	Y	Y	Y

SUBCLASSES OF IMMUNOGLOBULINS

- In addition to the major immunoglobulin classes, several Ig subclasses exist in all members of a particular animal species. Antibodies are classified into subclasses based on minor differences in the heavy chain type of each Ig class. In humans there are four subclasses of IgG: IgG1, IgG2, IgG3, and IgG4 (numbered in order of decreasing concentration in serum).
- Variance among different subclasses is less than the variance among different classes. For example, IgG1 is more closely related to IgG2, IgG3 and IgG4 than to IgA, IgM, IgD, or IgE. Consequently, antibody-Tg G2)

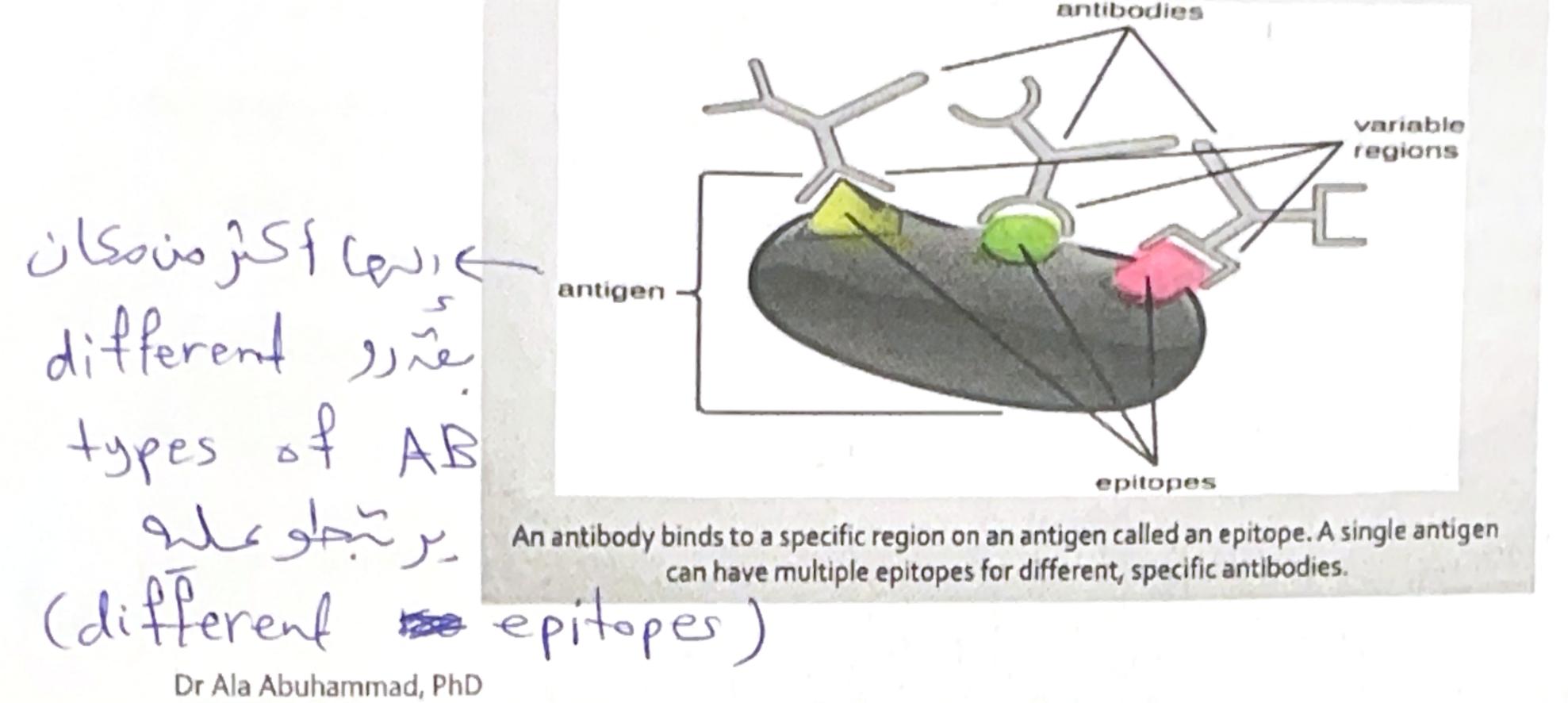
 Tg G2

 Tg G2 binding proteins (e.g., Protein A or Protein G) and most secondary antibodies used in immunodetection

Dr Ala Abuhammad, PhD

Dec-24

MONOCLONAL ANTIBODIES (mAbs): AN OVERVIEW



- Definition: Monoclonal antibodies (mAbs) are lab-engineered antibodies designed to target specific antigens with high precision.
- Historical Perspective: Developed using hybridoma technology (Milstein and Köhler, Nobel Prize, 1984).
- Applications: Used in oncology (e.g., rituximab), autoimmune disorders (e.g., infliximab), and infectious diseases.
- Examples:
 - Infliximab: Treats autoimmune diseases (e.g., rheumatoid arthritis, Crohn's disease).
 - Trastuzumab: Used for HER2-positive breast cancer.

MONOCLONAL ANTIBODIES (mAbs)

epitopes reason cioses); là
epitopes reason de la targeting des

Dec-24

MONOCLONAL ANTIBODIES (mAbs)

- Monoclonal antibodies are identical immunoglobulins, generated from a single B-cell clone. These antibodies recognize unique epitopes, or binding sites, on a single antigen. Derivation from a single Bcell clones and subsequent targeting of a single epitope is what differentiates monoclonal antibodies from polyclonal antibodies.
- Polyclonal antibodies are antibodies that are derived from different cell lines. They differ in amino acid sequences.

mono > identical in ¿ juis just passures poly cell lines so cricee games cell lines not identical is to selectivity and specificity in poly less than

Dr Ala Abuhammad, PhD

POLYCLONAL VS. MONOCLONAL ANTIBODIES

Feature	Polyclonal Antibodies	Monoclonal Antibodies	
Definition	Mixture of antibodies recognizing multiple epitopes on the same antigen.	Identical antibodies targeting a single epitope.	
Source	Produced by different B cell clones in an immunized animal's serum.	Produced by hybridoma cell lines (B lymphocyte fused with myeloma cells).	
Heterogeneity	Heterogeneous (varied antigen-binding specificities).	Homogeneous (single specificity).	
Applications	Secondary antibodies in immunoassays.	Primary antibodies for single-epitope specificity.	
Advantages	- Broad recognition of epitopes.	- High specificity.	
	- Cost-effective.	- Consistent supply.	
Production	Directly purified from serum.	Grown in cell culture or collected from ascites fluid.	

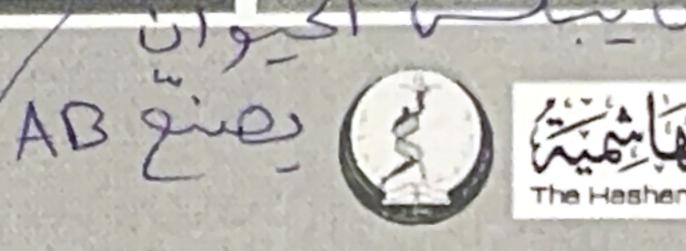
Dr Ala Abuhammad, PhD print mst selective le 1 La 59 cution provint mst cersi crule

YOMEN

ANTIBODY PRODUCTION

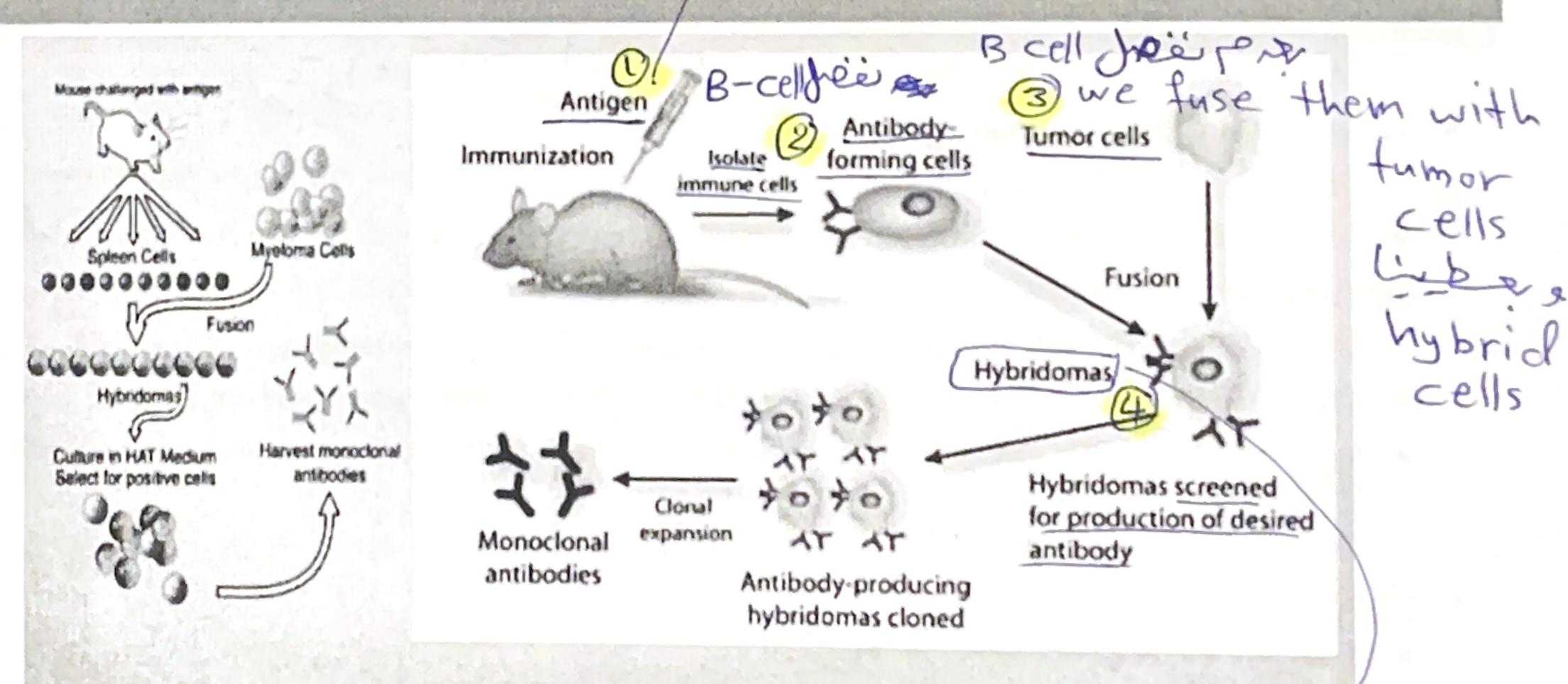
- Antibody production involves preparation of antigen samples and their safe injection into laboratory or farm animals so as to evoke high expression levels of antigen-specific antibodies in the serum, which can then be recovered from the animal.
- Polyclonal antibodies are recovered directly from serum (bleeds).
- Monoclonal antibodies are produced by fusing antibody-secreting spleen cells from immunized mice with immortal myeloma cell to create monoclonal hybridoma cell lines that express the specific antibody in cell culture supernatant.

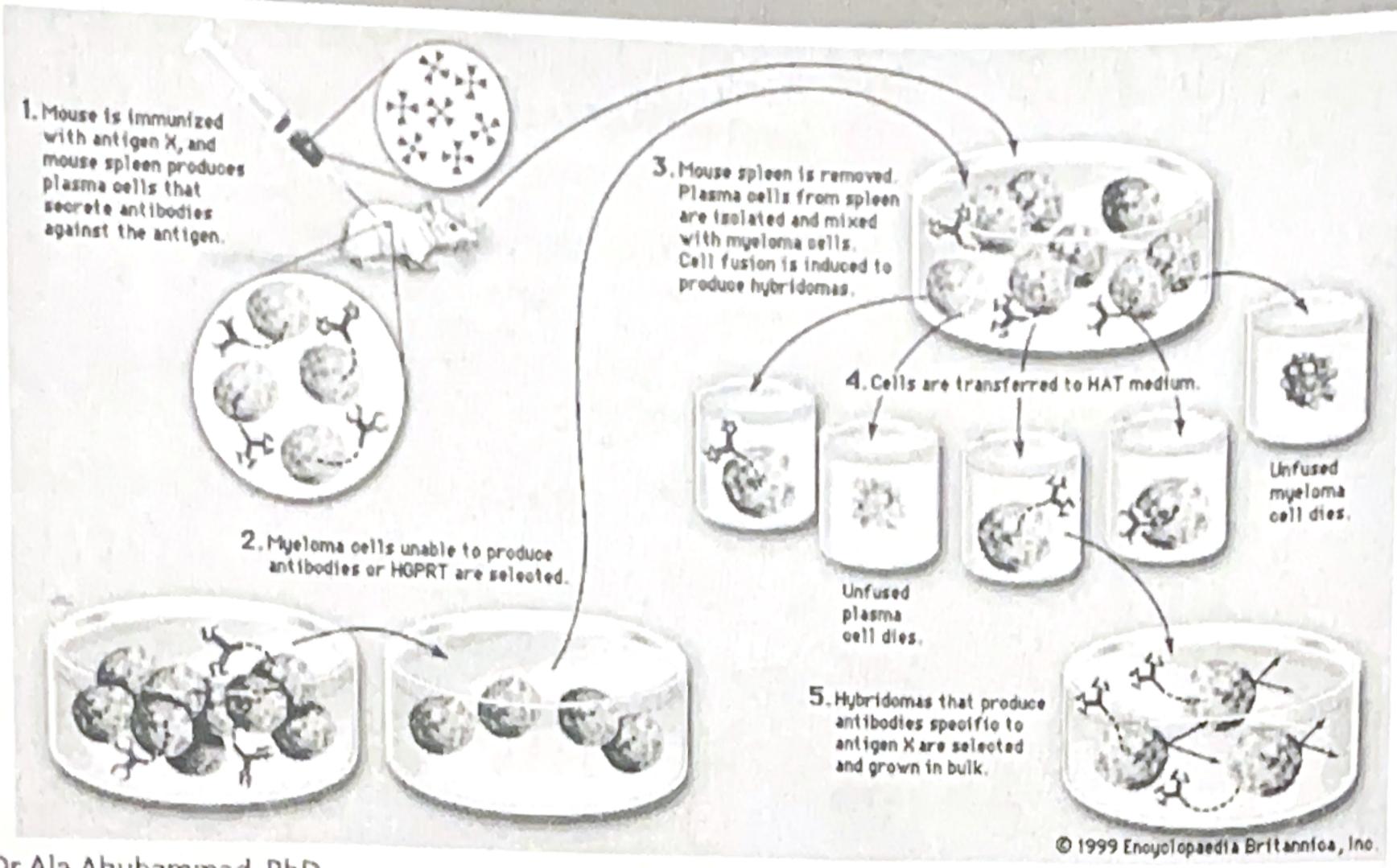
PRACTICAL STEPS FOR mAbs PRODUCTION


- 1. Immunize animal
- 2. Isolate spleen cells (containing antibody-producing B cell)
- 3. Fuse spleen cells with myeloma cell (using PEG)
- 4. Allow unfused B cell to die
- 5. Add aminopterin to culture and kill unfused myeloma cells
- 5. Clone remaining cells (place 1 cell/well and allow each cell to grow into a clones of cell)
- 7. Screen supernatant of each clone for presence of desired antibody
- 8. Grow chosen clone of cells in tissue culture indefinitely
- hybridama tumor + Bcell = cell culture 11 culos aill

Dr Ala Abuhammad, PhD Sr cas, Cishi pais mixture lie i gsi zi select Josq sie Wich oplishe hybrideman bee Lie pales Sie Wich oplishe hybrideman bee hybridoma N bas Zam media (SLD) spor (HAT) certain media, media cle Jame fumor, B-cell J19 survive leil

introduce a trigger (antigen)


to the animal



Preparation of Monoclonal Antibodies

Dr Ala Abuhammad, PhD Dec-24 (antibody of interest sine

PRACTICAL STEPS FOR PRODUCTION

Read more: why hyprodoma cells can survive the HAT medium?

Dr Ala Abuhammad, PhD

Dec-24 is just bie colo opene HAT is înstere fatel au opsul patha media

Hybridoma Technology: Revolutionizing Antibody Production!

What is Hybridoma Technology?

- Developed by Köhler and Milstein in the 1970s (Nobel prize).
- Fusion of B cells (antibody-producing) and myeloma cells (immortal).

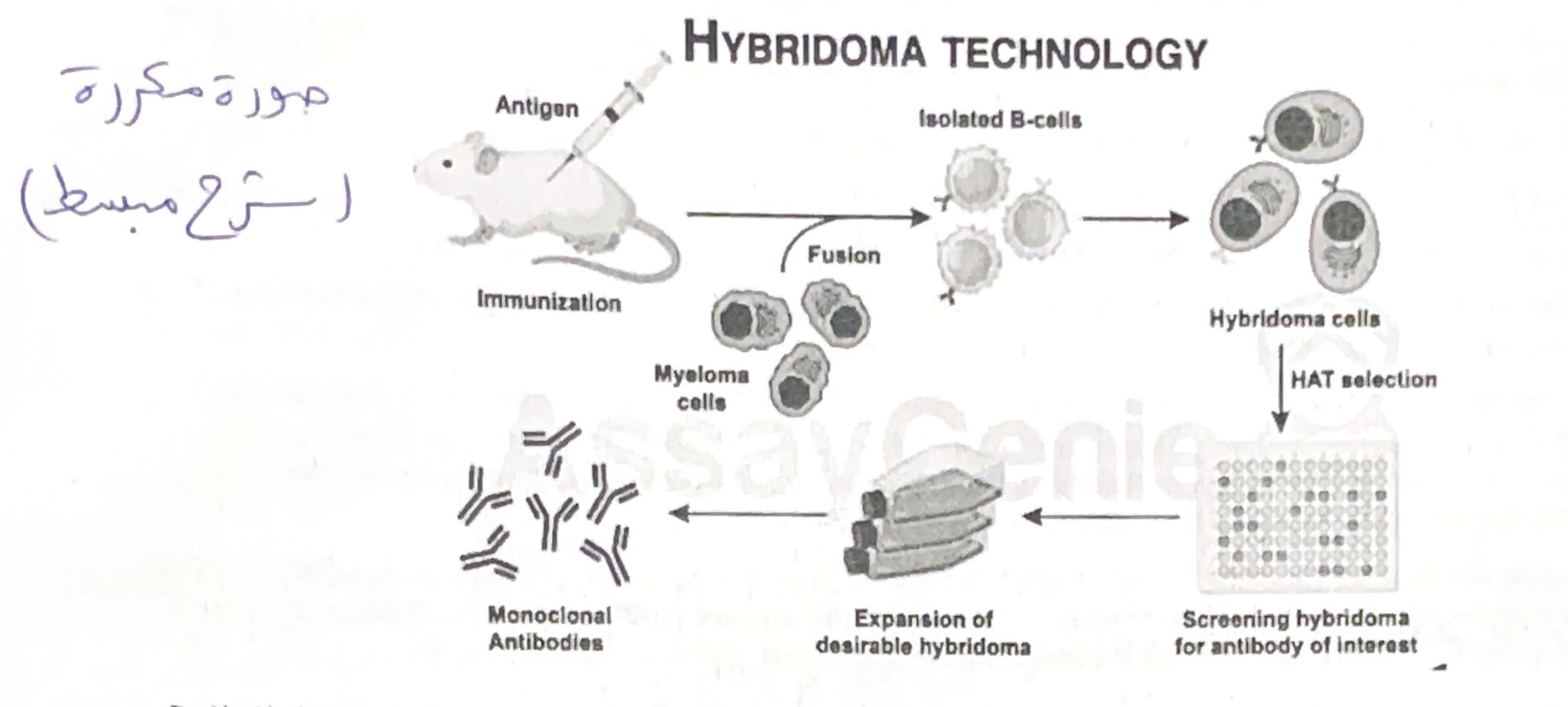
Key Steps in the Process:

- Immunization: Small mammal (e.g., mouse) is immunized with a specific antigen.
- Cell Fusion: B cells and myeloma cells are fused to form hybridomas.
- Selection & Screening: Hybridomas are cultured in selective media, and those producing desired antibodies are isolated.

Cloning: Ensures consistent and limitless monoclonal antibody supply.

Significance:

- Provides antibodies with identical specificity.
- Applications in diagnostics, therapeutics, and research.


Dr Ala Abuhammad, PhD

Dec-24

24

HYBRIDOMA TECHNOLOGY

Dr Ala Abuhammad, PhD

AB

Dec-24

Consistent specificityers Jord 21 Mono Sirpan,

- Antibody purification involves isolation of antibody from serum (polyclonal antibody), ascites fluid or culture supernatant of a hybridoma cell line (monoclonal antibody).
- Purification methods range from very crude to highly specific:
 - Crude—precipitation of a subset of total serum proteins that includes immunoglobulins
 - General—affinity purification of certain antibody classes (e.g., IgG) without regard to antigen specificity
 - Specific—affinity purification of only those antibodies in a sample that bind to a particular antigen molecule
 - Which level of purification is necessary to obtain usable antibody depends upon the intended application(s) for the antibody.

cirospesiAB de ration serum is Ecrude 796 Il This Tapsies (crude) in more specific e general
Dr Ala Abuhammad, PhD I 9629 I J 961 The are go ones certain purification method of; zlie specific or ist - specific or ist - specific or ist - specific or ist - specific علاق المحمد الم ANTIBODY CHARACTERIZATION money and quality aus surance production of the production

Antibody characterization involves three kinds of activities that are usually performed at various stages throughout an entire antibody production and purification. antibody production and purification project:

Screening—identifying antibody samples having antigen-binding specificity

Titering—measuring antibody concentration and functional assay titer

Isotyping—determining a monoclonal antibody class and subclass identity

Screening is first required during production to identify which animals and hybridoma clones are producing a high level of antigen-specific antibody. This is antigen-specific antibody. This is usually accomplished using ELISA techniques.

Antibody concentration can be estimated using either a general protein assay or a species- and immunoglobulin-specific method, such as with specialized microagglutination assay kits. Antibody titer is related to concentration but refers more specifically to the effective potency of a given antibody sample. Measuring titer usually means determining the functional dilution of an antibody sample necessary for detection in a given assay, such as ELISA.

Isotyping involves determining the class (e.g., IgG vs. IgM) and subclass (e.g., IgG1 vs. IgG2a) of a monoclonal antibody. This is a critical step in antibody production, as it is necessary for choosing an appropriate purification and modification method for the molecule. Isotyping is most easily accomplished with commercial, ready-to-use antibody isotyping kits.

mouse is instantation per air just in the screening de in the screening de in the screening de in the AB 12 [-113 of mouse of screening de of son of

ANTIBODY FRAGMENTATION

- Purified antibodies can be modified for particular uses by several methods including fragmentation into smaller antigen-binding units, conjugation with enzyme or other detectable markers, and immobilization to solid supports.
- Most often antibodies are used in whole-molecule form. However, the performance of some techniques and experiments can be improved by using antibodies whose nonessential portions have been removed.
- Antibody fragmentation refers to procedures for cleaving apart whole antibody molecules and removing portions that are not necessary for binding antigen. Fab and F(ab)'2 are antibody fragments of IgG that are most frequently created and utilized by researchers.

Fragment gland, his ort whole AB Passen Dr Ala Abuhammad, PhD application sled perds part 11 910 Louis

27

ANTIBODY LABELING AND IMMOBILIZATION

- Antibodies are produced and purified for use as antigen-specific probes. However, their utility in any given technique (ELISA, western blotting, cellular imaging, immunohistochemistry) depends upon having a mechanism to secondarily detect the antibody.
- Techniques that utilize antibodies for immunoprecipitation or other form of affinity purification depend upon mechanisms for attaching or immobilizing them to chromatography media (e.g., beaded agarose resin). Strategies for accomplishing this involve the same considerations and chemical methods as antibody labeling.

Jabelling de glizing sion, assay statione immobilitation

(labelling using radio) cres surface cre antigent immobilitation

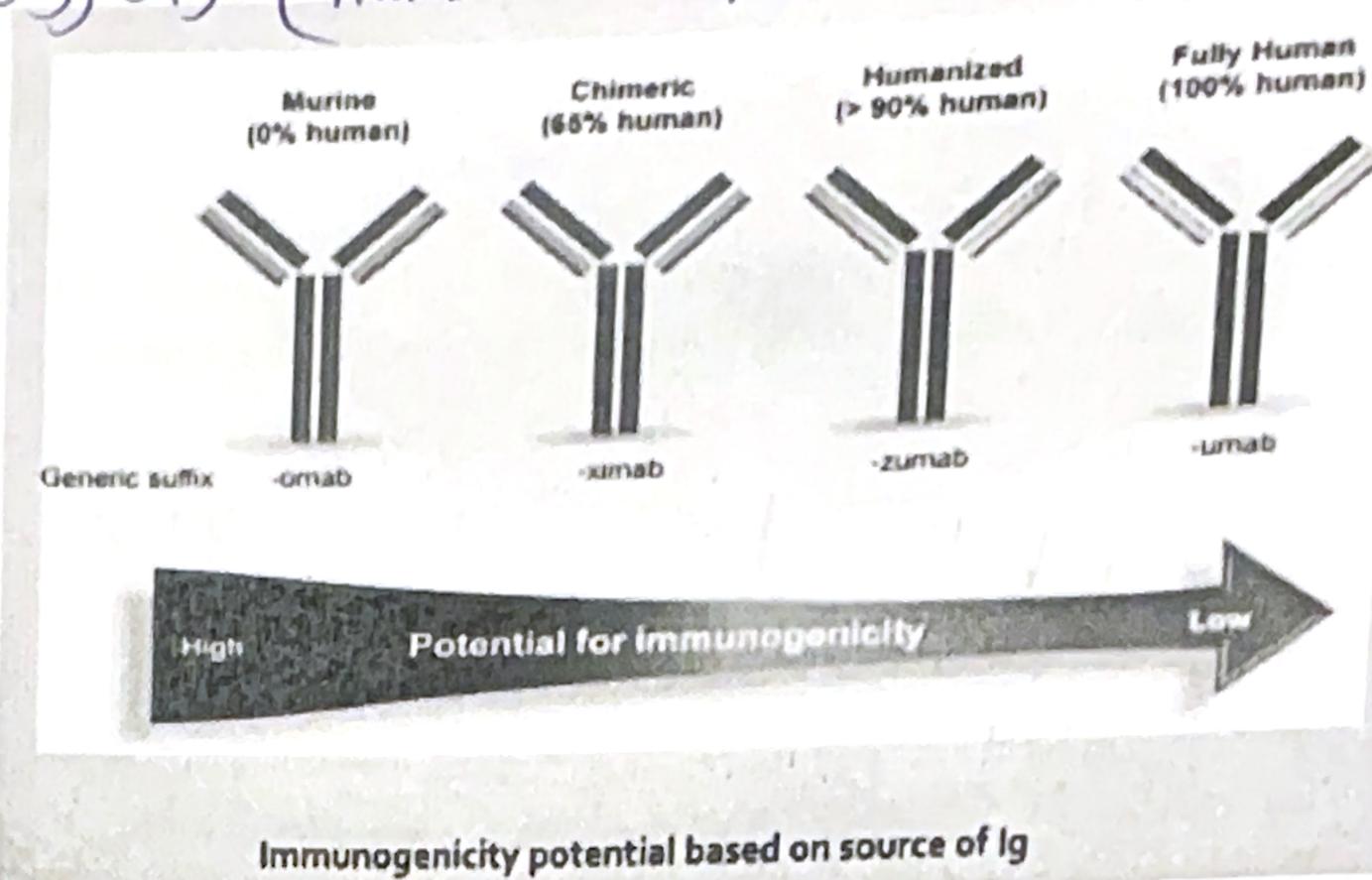
or flourcencent

Dr Ala Abuhammad, PhD cre

(fixed) immobilitie use of

elisa fro application.

Applications Of Antibodies:
Diagnostic, Therapeutic, And Research Tools


- Antibodies are indispensable tools in both research and clinical settings, owing to their ability to specifically bind to target antigens. Their applications include:
 - Diagnostic Tools: Antibodies are fundamental in assays such as ELISA and Western blotting, enabling the detection and quantification of specific proteins or antigens.
 - Therapeutic Agents: Monoclonal antibodies are employed in treating various diseases, including cancers and autoimmune disorders, by targeting specific cellular antigens.
 - Research Applications: In molecular and cellular biology, antibodies facilitate the study of protein expression, localization, and function through techniques like immunofluorescence and flow cytometry.
 - Custom Antibody Development: Tailored antibodies are generated to meet specific research needs, ensuring optimal performance in designated applications.

TYPES OF MONOCLONAL ANTIBODIES

ansizul of host in ost immunogenicity (e.g., muromonab-CD3) limited

- Chimeric: Partly human (70%), reduced immunogenicity (e.g., infliximab).
- Humanized: ~90% human; engineered to retain antigen-binding specificity (e.g., trastuzumab).
- 4 = Fully Human: Developed using transgenic mice or phage display, minimizing immune responses (e.g., adalimumab).

genetic als gles, mice grap.

modetication

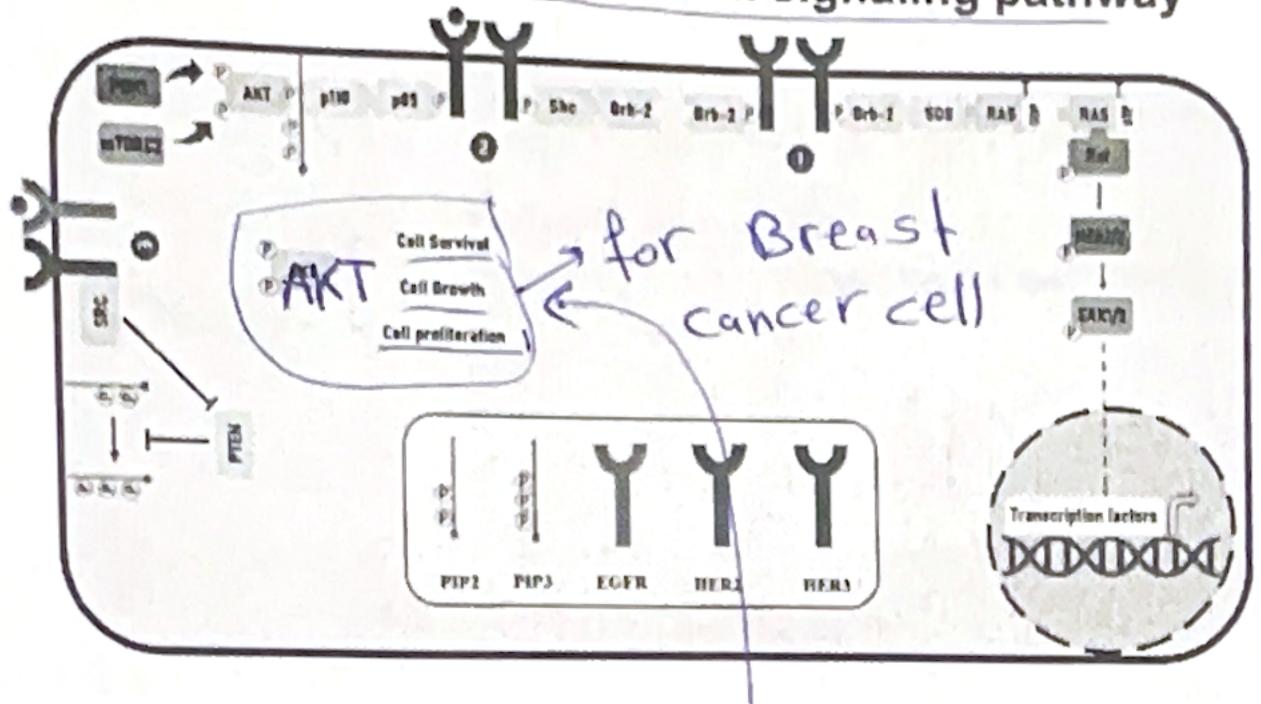
MONOCLONAL ANTIBODY PRODUCTION

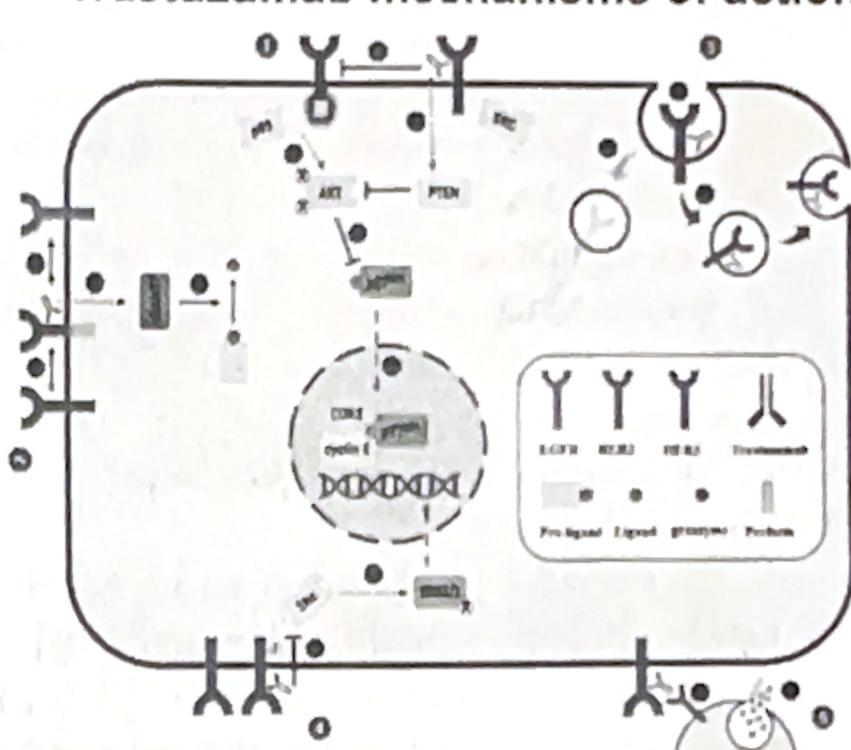
Dec-24

- Antigen Selection: Identify and purify the target antigen.
- Hybridoma Technology: Fuse antibody-producing B-cells with immortal myeloma cells to create hybridomas.
- Screening: Select hybridomas producing the desired antibody.
- Purification: Chromatographic techniques ensure high-purity mAbs.

31

APPLICATIONS OF MONOCLONAL ANTIBODIES)





- Cancer Therapy:
 - + block Herz recepter HER2-positive breast cancer (trastuzumab).

HER2-mediated downstream signaling pathway

Trastuzumab mechanisms of action

CASE STUDY: TRASTUZUMAB

- Target: HER2 receptor in breast cancer.
- Mechanism of Action:
 - Blocks HER2 signaling.
 - Mediates antibody-dependent cellular cytotoxicity.
- Challenges:

Resistance development.

Frastuzumby om go Cancer i à ossi Elgistossi

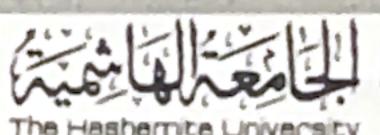
Strategies: Combination with pertuzumab and chemotherapy. (chemoagent > small molecules)

Dr Ala Abuhammad, PhD

Dec-24

Mechanisms Of Action Of Trastuzumab

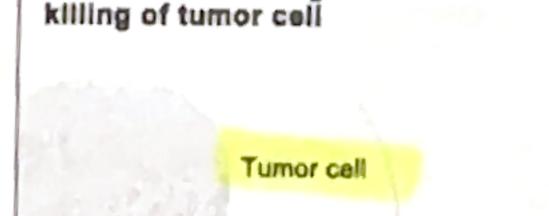
- Inhibition of HER2 Signaling:
- ما سترجبها ما ي الديد (استحاركم أحر آوها) Blocks ligand-independent HER2-HER3 heterodimer formation and HER3 phosphorylation.
 - Prevents PI3K-AKT signaling by:
 - Inhibiting PI3K complex formation.
 - Activating PTEN phosphatase, reducing AKT phosphorylation,
 - Reduces cell proliferation via p27KIP1 activation, which:
 - Enters the nucleus and suppresses CDK2/cyclin E activity, arresting the cell cycle.
- Increased HER2 Activity:
 - Promotes HER2 homodimer formation.
 - Enhances ADAM17 expression, increasing HER-specific ligand production and HER2 heterodimer formation.
- HER2 Internalization and Fate:
 - Induces HER2 internalization, leading to:
 - Degradation or recycling to the cell membrane.
- Inhibition of ERK Pathway:
 - Dissociates Shc from HER2 homodimers, reducing ERK1/2 phosphorylation (via unknown mechanisms).
- Antibody-Dependent Cellular Cytotoxicity (ADCC):
 - Fc region binds to FcyRs on immune effector cells (e.g., NK cells).
 - Activates immune cells to release perforin and granzymes, inducing tumor cell apoptosis.

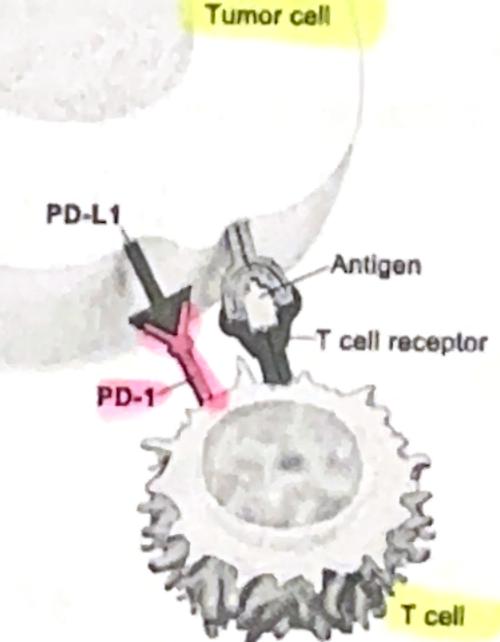

Dr Ala Abuhammad, PhD

Dec-24

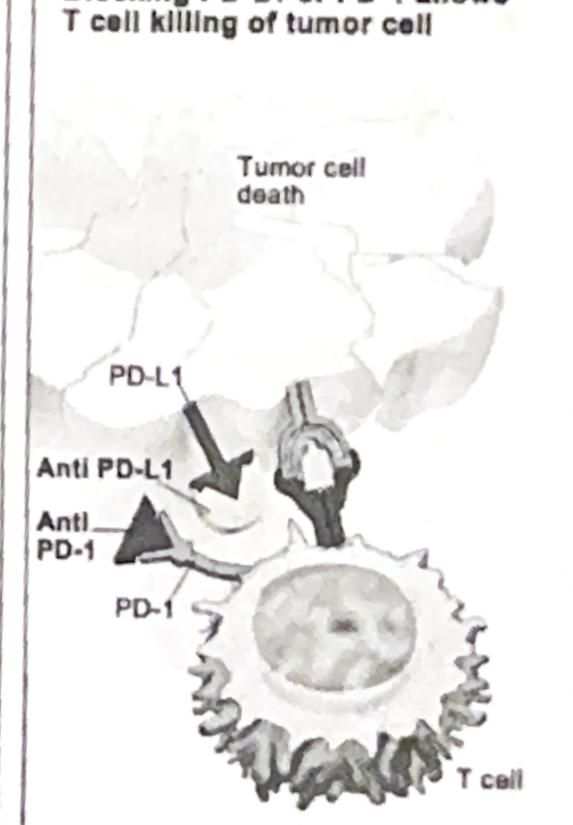
antibody in cines Eis gipt immuno therapy ("in intustos e 215 (Killing of tumor cell using immune)

APPLICATIONS OF MONOCLONAL ANTIBODIES





Cancer Therapy:


- Immune checkpoint inhibitors (e.g., pembrolizumab).
 - Immunotherapy drugs called immune checkpoint inhibitors work by blocking checkpoint proteins from binding with their partner proteins. This prevents the "off" signal from being sent, allowing the T cells to kill cancer cells.
 - Immune checkpoints are a normal part of the immune system. Their role is to prevent an immune response from being so strong that it destroys healthy cells in the body.
 - The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab).

PD-L1/PD-1 binding inhibits T cell

Blocking PD-L1 or PD-1 allows T cell killing of tumor cell

Dr Ala Abuhammad, PhD grave mono AB Jone jul Ple JS2 pagiste [T cell instruct Ladio in Shawin is to op immure check point it will not identified = tumor cell cs; ait aioure définition

Sine 2565 (و و منح) (هم عباره عن بروت ان موجوده فی atland pétit piem asliciperçe and interpretabilitations Checkpoints * معنى الحمل منها النها على توازن سن العقباء على مسببار الأمرا عن والأورام مع والحفاظ على الانعة السلمة ، Atécolation di la la complé in cypel (immune check) Chini-in III

agsspele et EN'N, celitibles!

(immune check point) blew csle bis inhibitors لاستعارة فرزة الحيمازاعناي عاياللغرف (Long long ai le 11 bild 1 cre

IMMUNE CHECKPOINTS

Immune checkpoints are a normal part of the immune system. Their role is to prevent an immune response from being so strong that it destroys healthy cells in th body.

Dendritic cell Stirmulatory signal Inhibitory signal Click the molecule name to slew product details

Pathways of Immune Checkpoint

Dr Ala Abuhammad, PhD

https://www.acrobiosystems.com/A974-Immune-Checkpoint-Proteins.html

ستغر مبكع العبورة كيف الحلايا ستعرفوعاى بعض من الحرك كيف الحلايا الجم التانوة (يكون عن سنوع كيف من الحون عن سنوع في سنوع من التواجل من جال shints (mmune check points)

APPLICATIONS OF MONOCLONAL ANTIBODIES

(05/2 la 1/2)

- Autoimmune Diseases:
 - Rheumatoid arthritis (adalimumab).
 - Psoriasis (secukinumab).
- Infectious Diseases:
 - Respiratory syncytial virus (palivizumab).

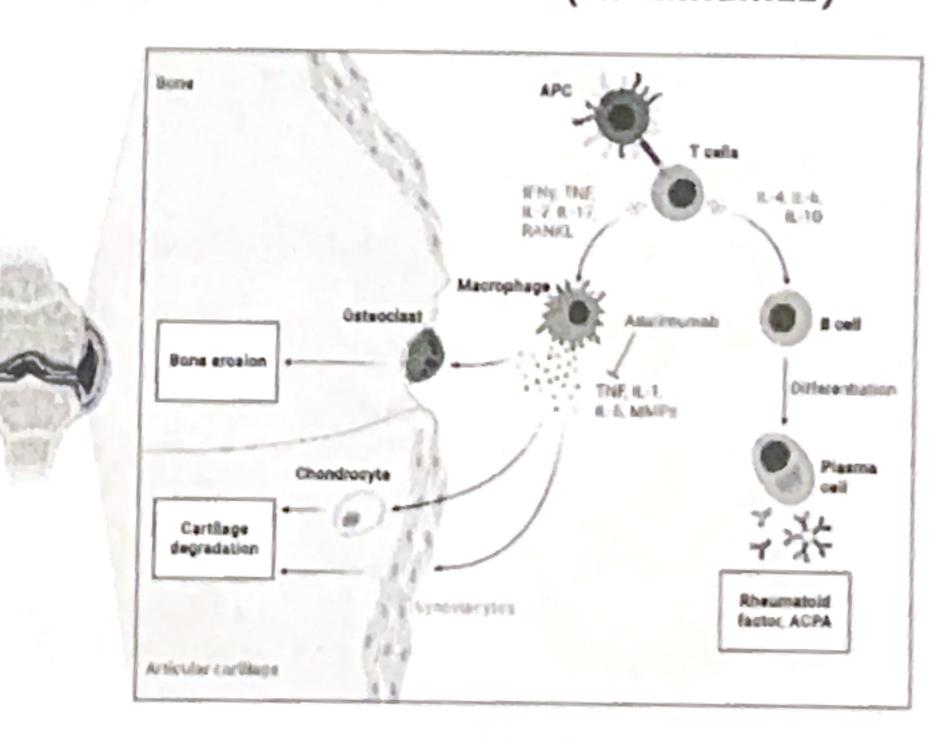
Diagnostics: Imaging and detection (e.g., radiolabeled antibodies).

HUMIRA B -> product approved

Pathogenesis of Rheumatoid Arthritis

inflammatory factors and a active green active grant of active grant of active grant of active control of active control of active control of active macrophosis of active macrophosis. RANK ligand activates Cytokines induce MMP osteoclasts and MMP and RANK ligand destroys tissue, resulting in production by fibroblasts attracting leukocytes into Cartilagest cursos goisse inflammatory cytokine joint destruction the tissue RANK ligand w Osteoclast IL-17, TNF-a T cell Macrophage

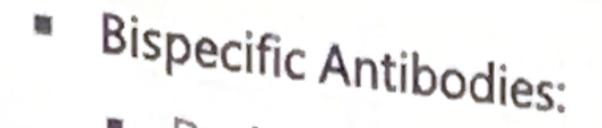
Dr Ala Abuhammad, PhD


inflamatory) John block de proccess colo de pisto l'us factors ilso je edit prévil is (--- TNF, IL-1 & IL-6 est esteoclastoin d'hir aller cler bût der ada limumals

Healthy joint Rheumatoid arthritis Bone erosion Bone Synovial inflamed synovial membrane membrane Cartilage Cartilage degradation Reduced joint space

Affected joints

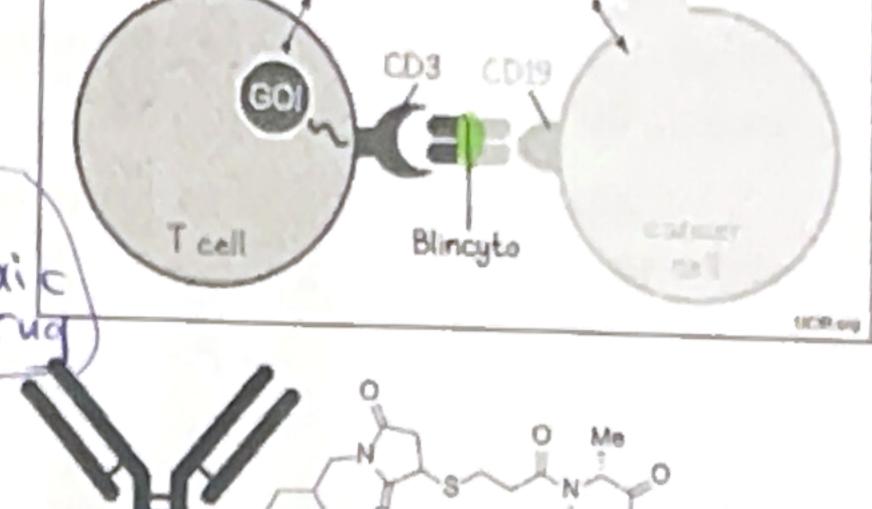
Site of Action of Humira (Adalimumab)



Dr Ala Abuhammad, PhD

Dec-24

BISPECIFIC ANTIBODIES AND ADCS


Dual specificity to two antigens (e.g., blinatumomab for acute

Mechanism: Bring immune cells closer to target cancer cells –

Antibody-Drug Conjugates (ADCs): effect cimed cytotoxic

Combine cytotoxic drugs with antibodies (e.g., trastuzumab

Targeted cancer treatment, minimizing systemic toxicity.

MCC linker

Blincyto: how it works

Bispecific a aml mono AB Ji iso Esi (
Jest) vien gland proce (dual specificity)

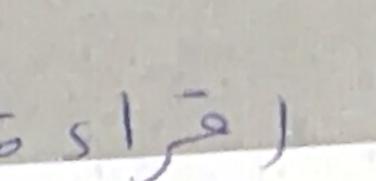
Cancer cell of IL AB done stir, cincing)
Trastuzumab

(Cancer cell of IL AB done stir, cincing)

(Sancer cell II tag ster peoils or; Cancer cell selen T- cell orenie, Usa l'A crie

عالم عن الحالي الخلايا , ليانا م الحالية بعربية معربية Certia observations la six

FEW COMMERCIALLY AVAILABLE mAbs APPROVED BY FDA



Dec-24

Name	Trade name	Target	Use
Abciximab	ReoPro	CD41 (integrin alpha-IIb)	Platelet aggregation Inhibitor
Adalimubab	Humira	TNF-alpha	Rheumatoid arthritis, Crohn's Disease, Plaque psoriaris, psoriatic Arthritis
Alirocumab	Praluent	PCSK9	Hypercholesterolemia
Avilumab	Bavencio	PD-L1	Cancer
Benralizumab	Facenra	CD125	Asthma
Daclizumab	Zenapax	CD25	Organ transplant rejection
Daratumubab	Darzalex	CD-38	Multiple Myeloma

EVALUATION OF mAbs

- "Guidelines on evaluation of monoclonal antibodies as similar biotherapeutic products", WHO, 1st March, 2016
- "Guideline on development, production, characterisation and specification for monoclonal antibodies
 and related and the second and related products", EMA, 21st July, 2016

Dr Ala Abuhammad, PhD

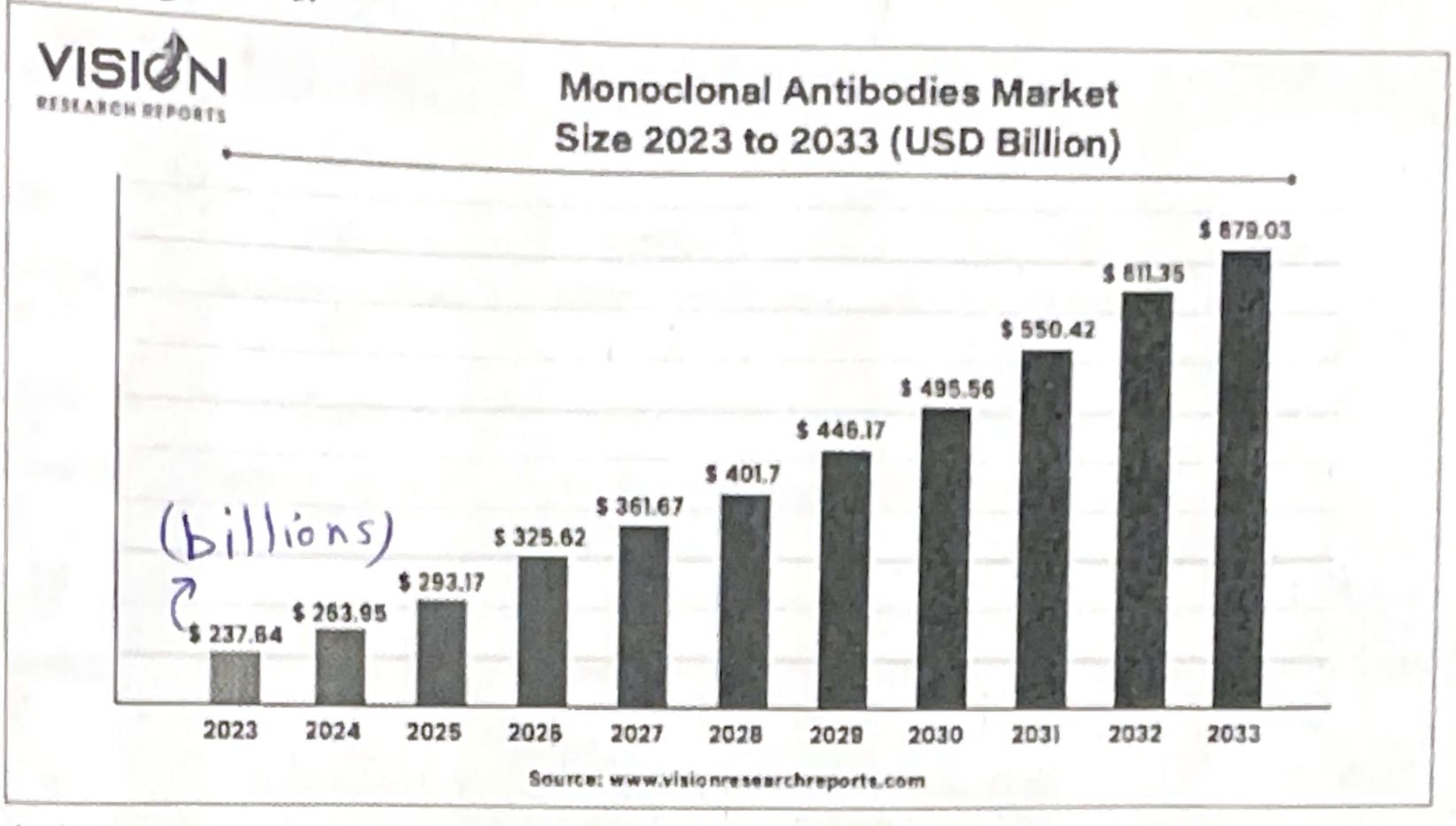
Dec-24

EVALUATION OF mAbs

Characterisation of monoclonal antibodies

- Physicochemical characterisation
- Immunological properties
- Biological activity
- Purity, impurity and contaminants
- Quantity

Specifications


- Identity
- Purity and impurities
- Potency
- Quantity

General tests) on one of the first on of the plication of AB So

GROWTH OF mAbs MARKET


Vast growing number of approved product in the market will increase the incidence of monoclonal

Dr Ala Abuhammad, PhD

Dec-24

MARKET TRENDS FOR PROTEIN DRUGS AND MARS

- Global Growth: Biologics dominate the pharmaceutical market, with sales exceeding \$300 billion annually.
- Top Products: Adalimumab (autoimmune diseases), pembrolizumab (cancer immunotherapy).
- Future Trends: Personalized medicine, biosimilars, and gene-edited antibodies.

mAbs MARKET

47

TOP 20 MONOCLONAL ANTIBODIES BASED ON 2022 TOTAL REVENUE

The Pharma Shots Incisive news in 3 shots

KEYTRUDA OCREVUS HEMUBRA

*ACTEMRA

tocilizomah

Stelara **TEntyvio** vedolikumali SOLIRIS 18

DUPIXENT Skyrizi sizeLaggi-CR 14 TECENTRIQ" RESERVED AND ADDRESS. 19 * IMFINZI*

OPDIVO. 10 **Cosentyx prolia 20 Tremfya

Dr Ala Abuhammad, PhD

XEANDAA

mAbs MARKET

PharmaShots
Incisive news in 3 shots

Johnson Johnson AstraZeneca (Incyte)

Pastellas

TOP 20 IMMUNOLOGY COMPANIES

sanofi 8 Takeda Pfizer 18 argenx

AMGEN Biogen 19 MERCK

NOVARTIS 10 Ull Bristol Myers Squibb 15 GSK 20

中ORGANON

BIOSIMILARS

- Definition: Biologic medical products highly similar to reference biologics.
- Importance:
 - Cost-effective alternatives.
 - Increase access to lifesaving therapies.
- E.g. Trastuzumab-dkst, infliximab-dyyb.
- Regulatory Pathways:
 - Require robust analytical, preclinical, and clinical data.

Dr Ala Abuhammad, PhD

Feature	Trastuzumab	
Туре		Trastuzumab-dkst
Brand Name	Original biologic drug	Biosimilar of trastuzumab
Developer	Herceptin ®	Ogivri ®
cveloper	Genentech/Roche	Mylan & Biocon
Approval Basis	Full clinical trials to demonstrate safety and efficacy	Demonstrated high similarity to trastuzumab with no clinically meaningful differences
Cost	Higher (innovator drug)	Lower (biosimilar option)
Manufacturing	Proprietary process with original cell lines and detailed process optimization	Independent reverse engineering to match structure, function, and glycosylation patterns
Production Method	Produced using genetically engineered mammalian cells (CHO cells)	·
Structure and Function	Identical HER2 receptor targeting	Highly similar targeting and mechanisms
Indications	HER2-positive breast and gastric cancers	Same as trastuzumab
Market Availability	Longer market history	Approved as a cost-effective alternative
Regulatory Pathway	Biologics license application (BLA)	Biosimilar approval pathway

originator generic ossimilar biologic

Dio similars

Dio s

INNOVATIONS IN DELIVERY SYSTEMS

500n Phal (estas) lets

- Nanoparticles: Protect proteins from enzymatic degradation and enable targeted delivery.
- Microneedles: Painless delivery system for vaccines and biologics.
- Liposomes: Encapsulation enhances bioavailability and stability.
- PEGylation: Increases half-life and reduces immunogenicity.

product Il License Gourdolots emase Men product Il License Gourse oi i 1500 le Mes Mes o per est de la company con le company de la company de

ETHICAL CONSIDERATIONS

brotech nological Usas, e

Accessibility: High costs limit availability in low-income regions.

Equity:

Balancing innovation with affordability.

Ensuring global distribution of biologics.

Sustainability: Environmental impact of large-scale biologics manufacturing.

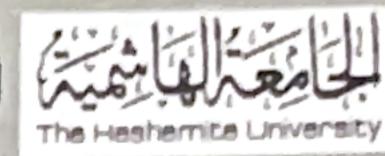
José José + large scale : a sins f, se, as the servenue colosí

Dr Ala Abuhammad, PhD

Dec-24

51

REGULATORY AND QUALITY ASSURANCE



- Regulatory Oversight:
 - FDA and EMA guidelines for biologics.
- Quality Control: Stability, potency, and absence of contaminants.
- Risk Management: Identifying and mitigating immunogenicity risks.

FUTURE DIRECTIONS IN PROTEIN THERAPEUTICS

- Advances in Engineering: Next-gen mAbs (bispecific, trispecific antibodies).
- Personalized Medicine: Tailored therapies based on patient genetics.
- Al Integration: Enhancing biologics discovery and optimizing manufacturing.
- Sustainability: Innovations to reduce environmental footprint in production.

Dec-24

53

Dr Ala Abuhammad, PhD