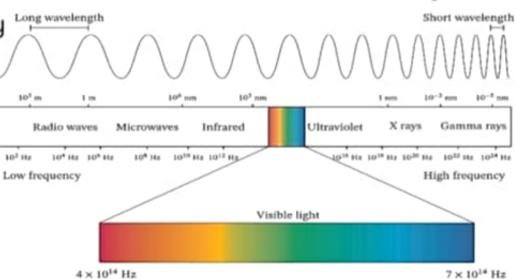


Artery Academy


Done by Hawazen

INTRODUCTION

Atomic spectroscopy is based on the absorption, emission, or fluorescence process of light by atoms or elementary ions. Information for atomic scale is obtained in two regions of the electromagnetic radiation (EMR) spectrum. These regions are UV/VIS and the X-ray.

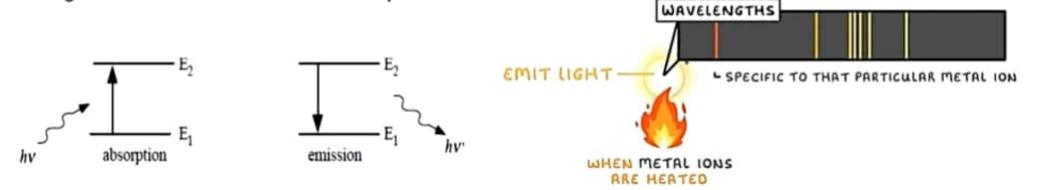
Atomic spectroscopy can be divided as:

- Absorption spectroscopy (UV-Vis)
- Emission spectroscopy (Flame photometry)
- Luminescence / fluorescence spectroscopy

Energy increases

Experiment 7 flame photometry

Introduction ..


مالمعلوماء يكي بعد وأحملها عن الد Atomic SpectroS النهامية في تعلقية في المعلوماء يكي المعلوماء المعلوماء

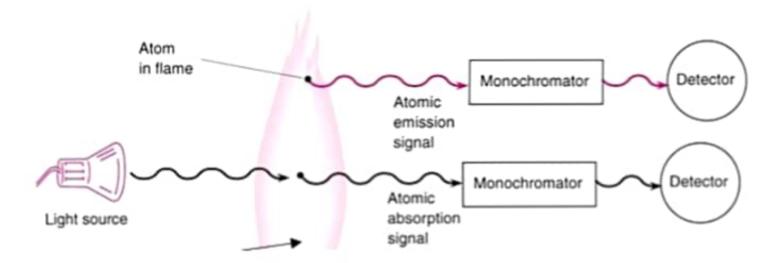
and X-ray

- 8 B! Que Atomic Maipis Spectrum & Atomich Cois
- 1) Absorption Spectroscopy (UV-Vis)
- 2 Emission spectroscopy (flame)=> Extension lie_may
- 3 Luminescence

When sample interacts with light, absorption process occurs. Ground state electrons of the sample atom tend to move to the excited states with the energy of absorbed light. This process can also be called excitation.

➤ Apart from light, heat can cause excitation. Since excited state is unstable, electrons want to return back to the ground state. When an excited electron turns back to its ground state a radiation is emitted that is equal to the energy difference between excited and ground states. The emitted light is monochromatic, and it has the same wavelength as the light absorbed in the excitation process

عالم العمرونات عن State إلى أخر يوتعب بالماقة بيلى مساوي العالمة على الماقة بيلى مساوي (E2 and E,) 2 State ا ريسة حقالما الماقة عليه وسادً عليه اللاكترون المحافظة المحافظة المنافقة المنافقة


فجود الاسكترون في Excite ون في المحال (عنه طاقة زالدة وبده ستخلف

energe I acops or zing ground I ap y ail hou delle Emission absorption ledle of Energe I (med ausling)

ے بقر (انیا اُعرف أو اُقیس الا metal کانسوف الموی الناتج عن المحتوام هذا اله معنالد به الناتج عن معتوام هذا اله معنالد المحتوام المحتوام

بالنالي راج يظهر عندي ألوان فتلفة لأيونات فتلفة (meral ion) وتكون حاهل فها بحست أميزها عن بافى اله علامه وتكون حاهل في

Depending on the excitation technique, absorbed or emitted light is measured. If excitation source is flame, emitted radiation is measured. On the other hand, absorption is measured when lamp is used for excitation. Both are directly proportional with the number of atoms in the sample.

ع في ال الموعرّ فيناه لـ Atoms وجاد التقال الالعرّونات إجنانيقيس Source الـ Source مثل جهاذ الـ UV. Signal

ا و في طالحة با العام في المسلم الم المسلم الم المسلم ال

.ground state 1

todos :-

Sicemired Light الماذاد الإستماما كفاذاد ال الم المنافقة المنافق

DEFINITION

Flame photometry or flame emission spectroscopy is an atomic emission technique used for the determination of elements which can be easily excited to higher energy levels at flame temperature such as alkali (Cations) and alkaline earth metals. These metals are Na, K, Ca, Ba, Li.

This method is based upon the measurement of **intensity of radiation emitted**, in the **visible region**, when a metal atom is introduced into a flame. The wavelength of the radiation (or the color), emitted tells us what the element is (**qualitative**), and the intensity of the radiation tells us how much of the element is present (**quantitative**).

date

ا تعریف ہ۔ flame photomery or flame emission Is an atomic emission, techique used for the determination of elements.... alkali اوأ elementijo حبين عن الما الم ونيس عن (نيعا flame stools destackly and could can be easily du excited Alkali, alkaline earth metals - 3 cm lis (Na, K, Ca, Ba, Li) لے هاي الحدا من المان عرفهم لحوارة حيموني لون محسّ reliationer concolation (ibanice la proprio il ser proprio il ser la company (mixture of metals) intensity of 11 (min flame 11 radiation photometry emitted (flam emission) jestive (Color) qualitaties is so is featile (qualitative) !

Flame

A flame can be described as a steady state gas phase reaction which takes place with emission of light. It is produced by burning a mixture of **fuel** and **oxidant** in a burner. In flame photometry a variety of **fuels** can be used. O**xidant can g**enerally be air, oxygen or nitrous oxide (N_2O). The flame temperature depends on fuel to oxidant ratio.

The most commonly employed flames in flame photometry can be grouped into two types:

- Flames in which the fuel and oxidant as air or oxygen are well mixed before combustion, these are called pre-mix or laminar flames as they exhibit laminar flow.
- Flames in which the fuel gas and the oxidant are first mixed in the flame itself. They are
 called unpremix or turbulent flames since they exhibit turbulence

هوالاجتراده أو اللهب الناتع عن تناعل (gas phase) موالاجتراده أو اللهب الناتع عن تناعل (reaction
(mixture of fueland) (معداه على المعداه معداه المعداه معداه المعداه معداه المعداه ال

معالعادل المحفر للإجترام، عكن الحوار إما العطود (من على عن المعالمة على المعالمة على المعالمة وعكن المعالمة وعكن المعالمة المعا

الاسمسجس على المان مستوى الاسمسجس على المان المستوى الاسمسجس على المان المستوى الاسمسجس على المان على المان المان

burner si (303 flame photometall Jobs Combustionsi aute +

=> !lame photometry has two types:

(1) pre-mix be july oxidentle fuel il mixing lie pre si chi oxidentle fuel il mixing lie pre si pre

ع المسكل عدولي، وروس ومريد الكالمة المعالمة المعروم نفسها

Flame is formed by two components: fuel and oxidant.

Temperature of the flame changes depending on the <u>fuel and oxidant types and their proportions</u>. In flame photometer generally **natural gas is used as a fuel** and **air is the oxidant**. Table 1 lists the different types of fuel, oxidant, and the temperature of the flame.

FUEL	OXIDANT	TEMPERATURE, °C
Natural Gas	Air	1700 -1900
Natural Gas	Oxygen	2700-2800
Hydrogen	Air	2000-2100
Hydrogen	Oxygen	2550-2700
Acetylene	Air	2100-2400
Acetylene	Oxygen	3050- 3150
Acetylene	Nitrous Oxide	2600-2800

⇒ most Common gas which used as fuel is natural gas and as oxidant is Air.

ع بوضّ المبدك ان المختلف س اللها والعمانين بال ratio بعن المعانين المعانين

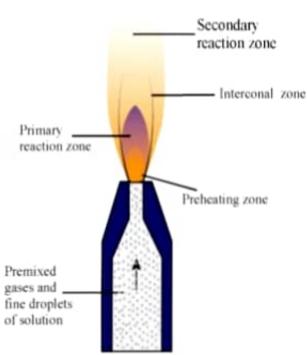
(العيم مش حفظ) (اعرف عس بعطى طرارة اعلى

1, 1, 1, 2, 100 pt. -2, 2, 11 pt. 12, 12 pt. 2 de 100 pt. 100

allower to high

andered the second second and a second

Jame photometry has two types :-

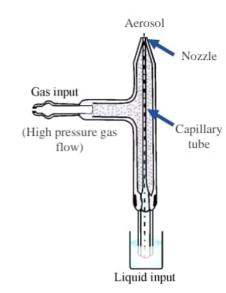

ment per series between the series

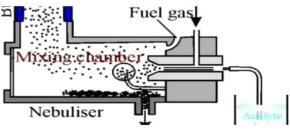
TO MODELLINE

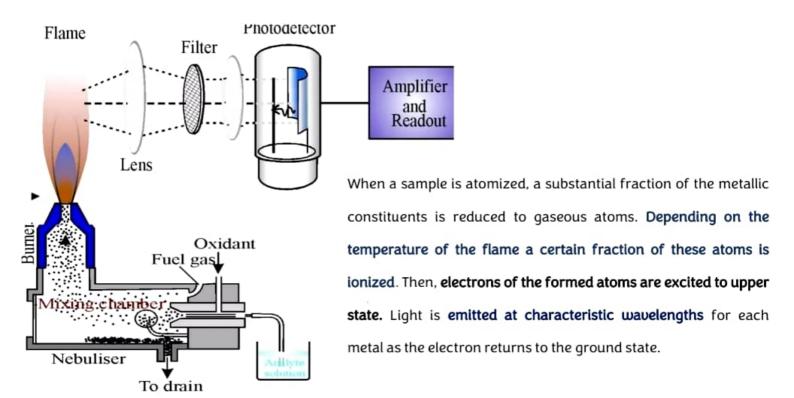
Flame Structure

Flame consists of four important regions that their appearance and relative sizes changes with the fuel-oxidant ratio. These are:

- preheating zone where the combustion mixture is heated to the ignition temperature by thermal conduction from the primary reaction zone.
- ii. The primary combustion zone of the flame is blue in color. In this region, the concentration of ions and free radicals is very high and there is no thermal equilibrium. Therefore, it is not used in flame spectroscopy.
- iii. The interconal region Where the maximum temperature is achieved just above the tip of the inner zone. It is rich in free atoms and is the most widely used region for flame spectroscopy.
- iv. The outer cone (secondary reaction zone) In this zone, the products of the combustion processes are burnt to stable molecular species by the surrounding air.




(1 Flame Structure 1)


- 1) Preheating Zone wixin lalupuldi aprilique is usulli, mixturell

TECHNIQUE

In this technique, first aerosols are formed from sample solution by a jet of compressed gas. This process is called **nebulization**. Then the flow of the gas carries the aerosols into a flame where atomization takes place. **Atomization** is the conversion of sample aerosols into an atomic vapor by flame.

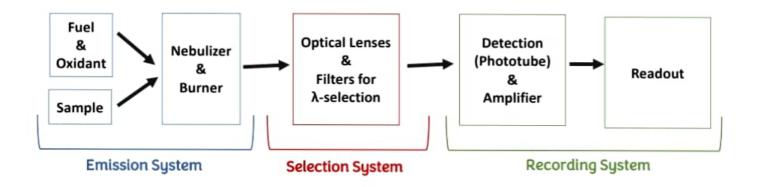
ميد اعل الحواد ٥-

Nebulization :-

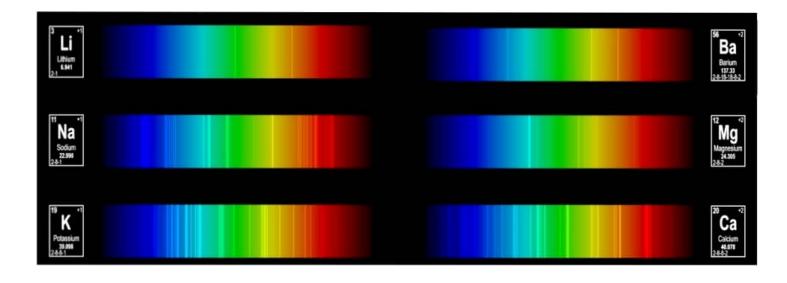
هي سيم فيه قويل لافار

Atomization عبا العرب على العصوار على العصور عندي علية المخال على العصور على العصور المحال العرب على العرب المرب المرب

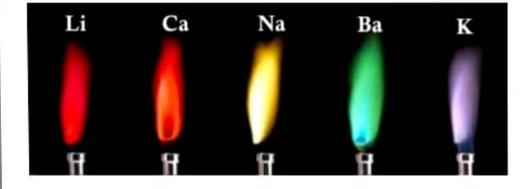
a June Dunchine M


emission وند ميووان flame اون لين الله ملك ملك المام المعدسة والع تلقطه المعدسة (lens) وتوديه على المام المعدسة والع تلقطه المعدسة (lens)

في مواد بالهواد المحرف بالله ساق راج تلقطهم (مواد دخيلة) عن عن عندي فلتر يلي راج بعزلي أي شيء عير البه المالية المي يدي ياه.

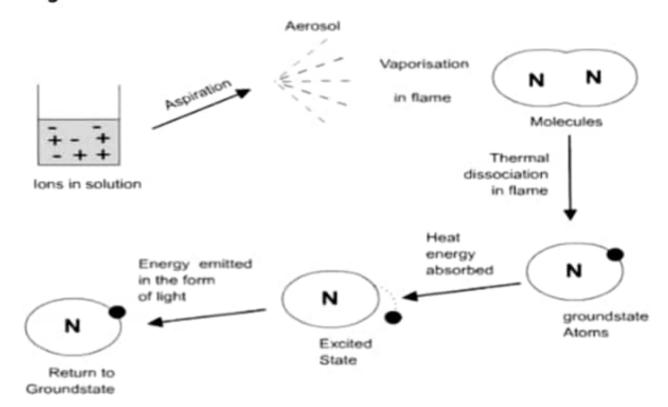

نادها حيكون عندي عدسة ثانية تجمّع المهود بالد لفائرة وتوديد الحهاز، وراح تنعولي أخري لقراءة.

Flame Photometer Systems


In flame photometer there are three fundamental systems which are **emission**, λ -selection, and recording systems.

1) Emission System: This consists of the flame, which is the source of emission.

Element	Emitted wavelength	Flame colour
Potassium (K)	766 nm	Violet
Lithium (Li)	670 nm	Red
Calcium (Ca)	622 nm	Orange
Sodium (Na)	589 nm	Yellow
Barium (Ba)	554 nm	Lime green



- 2) λ -Selection System: This includes the <u>whole optical system</u> of <u>wavelength selection</u>. In flame photometer the wavelength selector is a **filter**.
- The radiation emitted by the excited atoms is selected by using a filter which transmits
 an emission line of one of the elements while absorbing the others.
- There are two types of filters. These are absorption and interference filters. Absorption
 filters are restricted to visible region of the spectrum, but interference filters are used in
 UV, VIS and IR regions of the spectrum.

- Absorption filters are less expensive than the interference filters and they have been
 widely used for band selection in the visible region. These filters function by absorbing
 certain portions of the spectrum and transmitting the band of wavelengths belonging to
 the analyte element. The most common type consists of colored glasses.
- Interference filters rely on optical interference to provide relatively narrow bands of radiation. They consist of a transparent dielectric layer (CaF2 or MgF2) that occupies the space between two semi-transparent metallic films. This array is sandwiched between two plates of glass.

3) Recording System: This part consists of all the means of detection (phototubes or photomultiplier tubes), the electronic devices of amplifying and electrical apparatus for measuring and direct recording.

Flame Photometry process

(rame of city So dies) (System) a die i m cire

الد المعام و المحام و الله المحام ال

(حفظ اللوام والتناهر والطول لوجم))

21- Selection System

السافليل المالية الما

عدي نهون صالفلر

(UV, VIS) interference

THE

السفاءعسى عدى مثل الساندوسيس

apredensbix gis.

3 Recording System

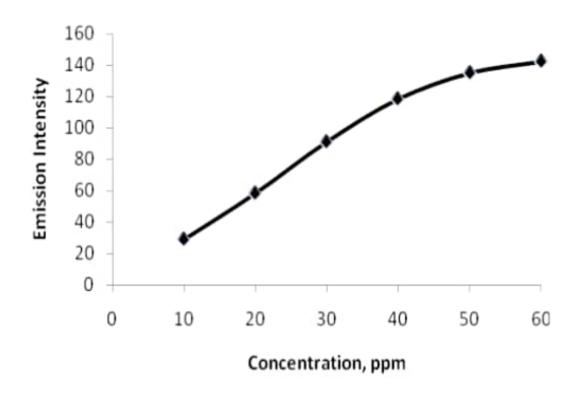
Phototubes de cons

-all bi intenste Limi up reducations i us

و تطلع عدى حن حن لفترادة على الشاشة

The BWB XP Flame Photometer Instrument

The instrument that is used in this experiment is a BWB XP model, a five-channel digital flame photometer which is a low temperature, designed for the routine determinations of Na, K, Ca, Li, Ba. It is a direct reading digital instrument designed for use in clinical, industrial, and educational applications



الجهان المستحدم داهل الحيان وهو لفع عن أنواع أجهزة العسما } ويقيس عس انواع من الإلمنت Na, K, Ca, Li, Ba P سَوَّن من لوحه تحكم، وسياسة تطلّع القراء العالمة فح المعنافة ﴿ ed unitais si esto (mag) Calibrations lir de bini els ville

Calibration Curve

In flame photometry emitted light intensity from the flame is directly proportional to the concentration of the species being aspirated. The graph below shows that the direct relationship between **the emission** and **concentration** is true only at relatively low concentrations of mg/L level (up to 50 mg/L) \rightarrow (ppm).

- If the samples being analyzed lie on the linear part of the curve, then user can take direct concentration readings from the digital display. However, if the concentration of sample is above the linear part, then user must dilute sample so that it lies on the linear part of the curve.
- A calibration curve is obtained by using standard solutions containing known concentrations of the elements to be determined.
- The concentration range covered by the calibration curve depends on the expected concentration so that the sample readings fall somewhere inside the calibration curve.
- Once the calibration curve has been plotted, the scale reading for the sample solution is compared with the curve to find the concentration.
- It is important to emphasize that each element has its own characteristic curve and separate curves must be constructed.

Calibration Curve :-

ع السّراكيز مالانم تزيد على 1000) للزم يكون أقل