Aim of the experiment

• Study the effect of solvent polarity and pH on the UV spectrum in term of λ max and absorption intensity and explain the results by electronic transition.

Experiment 5

Ultraviolet Spectroscopy - Effect of Solvent

on Imax

* Aim of the experiment

* الهن شالتجرية

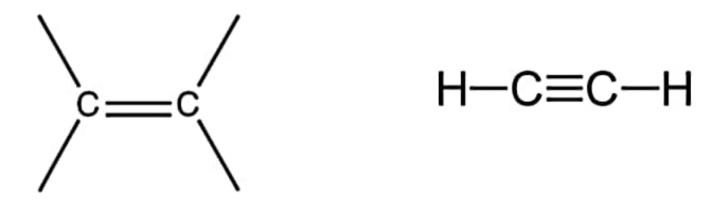
Study the effect of Solvent polarity and pl1 on the UV spectrum in term of I max and absorption intensity and explain the results by electronic Hansition.

على الم أو تأثيرهم على لم أو تأثيرهم على لم أو تأثيرهم على الم أو تأثيرهم الم أو

* Absorption intensity = molar absorbity

مع من ثم فق بتفسير هذا التغيير لتف ماد، وليحماد في

Chromophore


- The part of the molecule that responsible for imparting color to the to the molecule term chromophore.
- Chromophore is defined as any group which exhibits absorption of electromagnetic radiations in the visible or ultraviolet region.

(Chromophore)

يعبر سزد من الجزينات مسق وله عن إعطاء اللون لمناسب، مالإ منافة إلى ذلك

.UV and Visibile ان لع يعنها العلمته إرافي

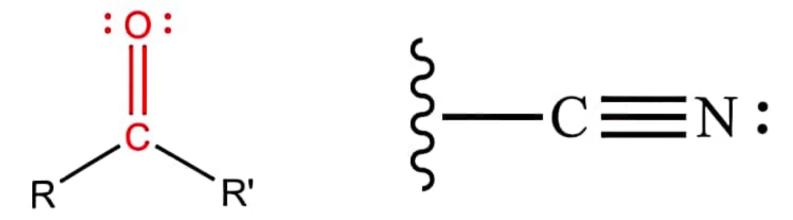
- Chromophores in which the group is having π electrons undergo $\pi \rightarrow \pi^*$ transitions.
- Ex: ethylens, acetylenes.

 $T \longrightarrow T^*$

Example 8 - Ethylens, acetylenes

$$C = C$$
 (E -hylens)

electromagneti المحتد المعادلة Telectrons في المحتدد المعاددة المحتددة المحتددة المعاددة الم


antibonding sonding sico Transition persuper Stage Stage

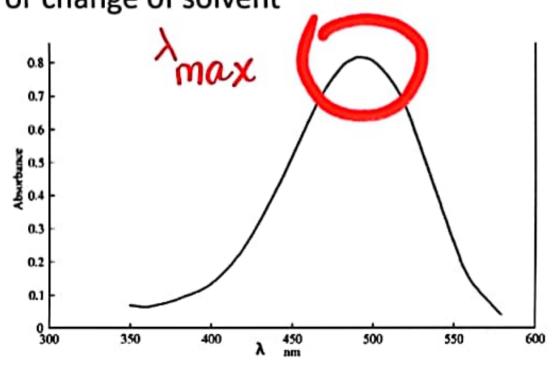
 $T \longrightarrow T^*$ circ

• Chromophores having both π electrons and n electrons undergo two types of transitions.

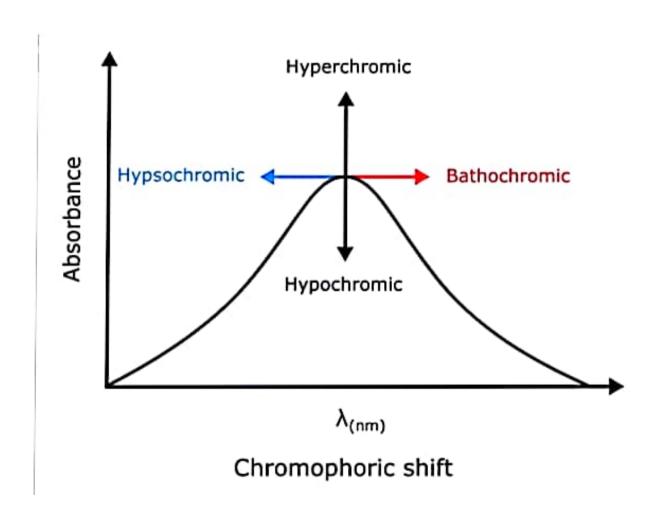
$$\pi \rightarrow \pi^*$$
 and $n \rightarrow \pi^*$

Ex: carbonyl, nitrile.

 $T \longrightarrow T^*$ and $n \longrightarrow T^*$


U. Carbonyl

RIR


يمبع المؤننقال من يا * ١٦ ← ١١ أو * ٦ ← ١٦

Shifts and effect

 Position of the absorption maximum (λ max) and intensity of absorption can be modified in different ways by some structural changes or change of solvent

Shifts and effect

a. Bathochromic Shift or Red shift

The shift of an absorption maximum towards longer wavelength or lower energy is called as bathochromic shift. The red color has a longer wavelength than the other colors in the visible spectrum, therefore this effect is also known as red shift.

b. Hypsochromic Shift or Blue Shift

The shift of an absorption maximum towards the shorter wavelength or higher energy is called hypsochromic shift. The blue color has a lower wavelength than the other colors in the visible spectrum and hence this effect is also known as blue shift.

c. Hyperchromic Effect

It is an effect that results in increased absorption intensity. The introduction of an auxochrome usually causes hyperchromic shift.

d. Hypochromic Effect

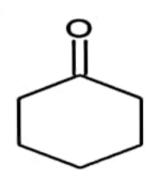
An effect that results in decreased absorption intensity is called hypochromic effect. This is caused by a group which distorts the geometry of the molecule

ع التعترائ الله عدية كا عومنح بالوسمة.

* Bothochromic Shift (Red Shift): Longer wavelength

* Hypsochromic Shift (Blue shift): Shorter wavelength

(التغيلي الخاصّة باله ٨)


* Hyperchromic effect: Increase in the intensity of absorption

* Hypochromic effect: Decrease in the intensity // //

(Absorption I)

Structural change

e.g. Acetone which has
$$\lambda_{max}=279$$
 nm CH_3 CH_3 and that cyclohexane has $\lambda_{max}=291$ nm.

When double bonds are conjugated in a compound λ_{max} is shifted to longer wavelength.

e.g. 1,5 - hexadiene has
$$\lambda_{max} = 178$$
 nm 2,4 - hexadiene has $\lambda_{max} = 227$ nm

Structural Change 112m عندی مرتبس نفس عدد الكولهاات و نفس كل مشيء ولكن المرتب و عموامد مشكله خطي المناسف والشائي سابيك هون تضرعندا المستركث واختلف عشك الطول الموجي حسي إنه السابك أكبر عن الاneal المنه عندي نفس المركبين بس في واحد Conjugated وواجد لأ! واكتد الد Conjugated أكس Single - Duble - Single - 0 (S Conjugated Live single \$ 1,4 dihexanol or 1,3 dihexanol depi apaclet all in 1,3 dihexanol Conjugated si'll

CHROMOPHORE

Conjugation of C=C and carbonyl group shifts the λ_{max} of both groups to longer wavelength. H₂C=CH₂

e.g. Ethylene has $\lambda_{max} = 171 \text{ nm}$ Acetone has $\lambda_{max} = 279 \text{ nm}$

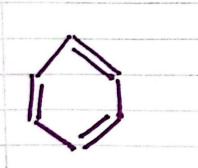
Crotonaldehyde has $\lambda_{max} = 290 \text{ nm}$

Chromophore Jigo cipy wavelength Ji wi y si in it is well as the company wavelength of the compa

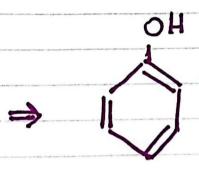
1 Aurantane

AUXOCHROME

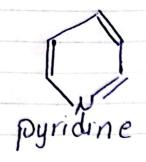
The functional groups attached to a chromophore which modifies the ability of the chromophore to absorb light, altering the wavelength or intensity of absorption.


OR

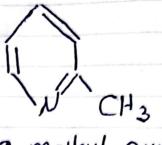
The functional group with non-bonding electrons that does not absorb radiation in near UV region but when attached to a chromophore alters the wavelength & intensity of absorption.


(Auxochrome)

Chromophoks de aije functional group in oste


يينيد من الإمتماما والطول الموجي.

$$\lambda = 255$$



مثالے یہ

max = 257

2 = 2750

2-methyl pyridune

ے زیادۃ

 $\lambda_{max} = 260$ $\xi = 3560$

شوالتغيريلي مالعدي بالإمتمال والي ألم في المناس المالية المالية المالية المالية المالية المالية المالية المالية

ضفنا مسيّال كروب (methly group)

الذي بعيني هو والهيد وكربون عن اله والمهام المعنى ولا و والهيد وكربون عن اله والمهام والهيد و و الهيد و الماري المي الكربون و فها عربه لم بوالم من مساهت مقال و ring المحادث و الماريد

الـ و الكورنائي الكورنائي المراكبة المراكبة المراكبة المراكبة الكورنادة المراكبة ال

بعني الكربونة الكرونا تها مسحونة الـ ring

علم شه شه ه

Shift de 19120 (OH, NH2) chè non-bonding zielip!

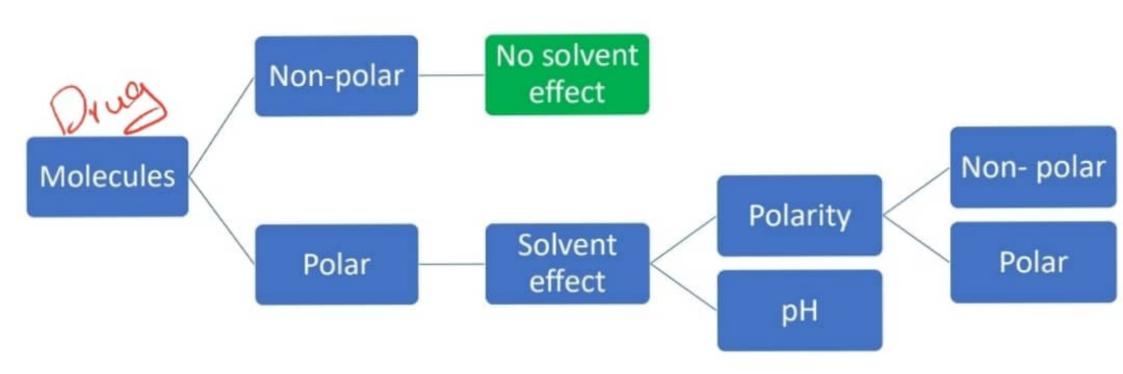
لامتمان (CH3 –) electron donating خنانه إليّا) والمتمامل groub

و تخل اله عذي نفنها

Solvent change

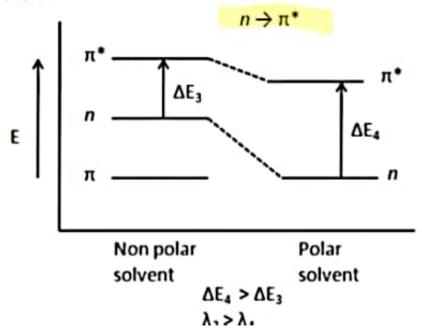
- Solvents play an important role in UV spectroscopy.
- The common solvents used are water, methanol, ethanol, dilute acids and dilute alkalies.
- The solvent for a sample should be selected in such a manner that it should neither absorb in the region of absorption nor affect the absorption of the sample.
- The solvent exerts a profound influence on the quality and shape of spectrum
- The absorption spectrum of pharmaceutical substance depends practically upon the solvent that has been employed to solubilize the substance.
- A drug may absorb a maximum radiation energy at particular wavelength in one solvent but shall absorb partially at the same wavelength in another solvent.
- Eg. Bromophenol blue in HCL $\rightarrow \lambda_{max}$ at 437 nm
- Bromophenol blue in distilled water $\rightarrow \lambda_{max}$ at 591 nm

النقطة رحم (3) 3- اختار أحد السولفنت الموحودات بالساليد النقطة رحم (3) 3- والانرم وكون عندي (+ Solven+) ملوَّن


النقطة رعم (٤١) :- عاياً ثر الح Solven على المنهايض عثل الله و الاحتجاص

(Solvent) vise vise vise (ismax)

=> Bromophenol blue in Hcl = 1 = 437 (Edicill Legis)

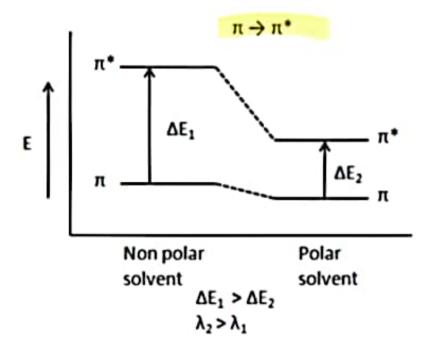

in water- 1 max = 591

المرطوافي المادكانت أعلى على المارك

Effect of the polarity of the solvent

• Polarity causes a pronounced effect on the position and intensity of absorption bands. This increase is due to the $n-\pi^*$ and $\pi-\pi^*$ transitions. In the presence of polar hydrolytic solvent (i.e. water) hydrogen bonds form with the lone pair of electrons of auxochrome. As a result, the auxochrome's energy lowers to an equal amount of the bond formation energy, and hence the energy gap between n and π^* increases, so, a hypsochromic shift is observed for $n-\pi^*$ transition.

نتيبة تغيرات في ρ ما المنابع ρ ما المنابع المناب


على المتونوب ت المحاول مثل المحل المحت تاعي أولو المتونوب مثل المحال المحل المحال المحال المحال المحال المحال المحل المحال المحال المحل المحال المحل المحال المحال

 $(T \rightarrow \mathring{T})$

* في ال Polar والا يعسر لله "T الأعطيه في Polar عمير عندي المحال الا المحلية المحال المحال المحال المحال المحال في المحال المحال في المحال ال

to democratical and and interpretation of the same of

• While for π - π * transition the π * orbital is more polar than π orbital therefore it is stabilized to a greater extent in the presence of a polar solvent. This will cause a bathochromic shift because the energy gap between π - π * is reduced due to the stability of the π * orbital.

Table 4. Effect of solvent on the electronic transitions

Solvent	$\pi \to \pi^*$		$n \to \pi^*$		
Solvent	λ	ε	λ	ε	
Hexane	230	12,600	327	98	
Ethanol	237	12,600	315	78	
Water	245	10,000	305	60	

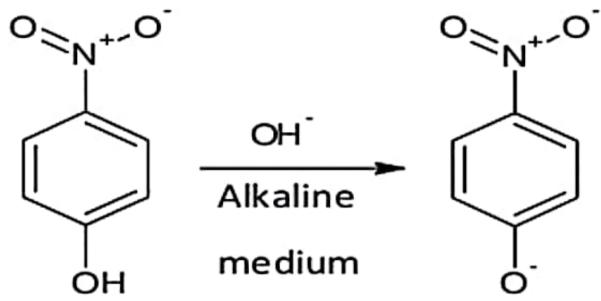
Phenoxide Il J 339 (base OHT) (such abus 3 aixps phenol JI anion

negative اوتظل شتوك هاي negative اويمسر عسو Charge

Experience to the second party and the second party

Contract to the second of the

Effect of pH


- The pH of the sample solution can also have a significant effect on absorption spectra.
- The absorption spectra of certain aromatic compounds such as phenols and anilines change on changing the pH of the solution.
- Phenols and substituted phenols are acidic and display sudden changes in their absorptions maxima upon the addition of a base.
- After the removal of the phenolic proton, we get phenoxide ion. In the phenoxide ion lone pairs on the oxygen is delocalized over the π-system of the aromatic ring and increases the conjugation of the same.
- Extended conjugation leads to a decrease in the energy difference between π-π* orbitals, which results in red or bathochromic shift (to longer wavelength), along with an increase in the intensity of the absorption.

Neutral Basic

 $\lambda_{\text{max}} = 210 (6200)$ 235 (9400)

270 (1450) 287 (2600)

 In alkaline medium, p-nitrophenol shows red shift.

p-nitrophenol

$$\lambda_{max} = 255 \text{ nm}$$
 $\lambda_{max} = 265 \text{ nm}$

 Similarly, an aromatic amine gets protonated in an acidic medium which disturb the conjugation between the lone pair on nitrogen atom and the aromatic π-system. As a result, blue shift or hypsochromic shift (to shorter wavelength) is observed along with a decrease in intensity

NH₂
resonance
Aniline
NH₂
resonance
Acidic
NH₃
Protonated form

Neutral
Acidic
$$\lambda_{max} = 230 (8600)$$

$$203 (7500)$$

$$280 (1430)$$

$$254 (169)$$

acid group in- amine group de (sois ्रेम्बे ट्रांट क्रांट क्रांट क्रांट क्रांट क्रांट क्रांट क्रांट क्रांट क्रा
(Aniline) يعداة بترسي يل (يفوفس) acid med (غلهه
POSITIVE العيد الموسات فالماد عدي عدي المعالى المعالى المعالى المعالى عدي المعالى عدي المعالى عدي المعالى الم
اونها معرف المعرف الد (-) على طون الد المعرف المعرفة
في والله علي المولات من الله الله الله الله الله الله الله الل
وإلهم فيتقلوا طاخل ل ring
(ixin
Lower wovelength Congencertal, clishil, - ous cal system intensity! - intensity!
intensity! cirps 21)
~ Hawazen Abdallah ~