
GENES

 Genes are regions of DNA that control a discrete heritable characteristic, usually corresponding to a single protein or RNA.

In eukaryotic cells, genes are composed of coding regions, called exons, separated by non-coding regions, called introns.

Segment US ap Live Judes of Junction of air Jzgu

MUTATIONS

- A mutation is a <u>change</u> in the <u>DNA sequence</u> of an organism.
- Mutations can result from errors in DNA replication during cell division exposure to mutagens or a viral infection.
- Germline mutations (that occur in eggs and sperm) can be passed on to offspring, while somatic mutations (that occur in body cells) are not passed on.

5 mutations 11 charles * germline (Squa che Tho No is, como col che Thouse cells

Cells

Dr Ala Abuhammad, PhD Quesci Quesci

و بعرنی و تکاثر و نگون کل فلایا انجیم و بعرنی ر الطائر المعلق المعلق

mutation Cla The Hasherita Uriversty (Mutagenic Agents

- Mutations can be spontaneous of induced by mutagenic agents.
- The main mutagenic agents are:
 - 1. Chemical agents,
 - 2. Physical agents and
 - 3. Viruses

pairs in people of mena char Jose interlayer @ pairs interlayer @ mRNA CHAR SICO, errors de is con principal con presidentes de interlayer @ pairs de inte

CHEMICAL AGENTS olclar chemically

Chemical mutagens agents are chemical compounds that cause local changes in the nucleotide sequence.
The compound of the nucleotide sequence. They are classified according to their mode of action into:

1. Base analogues or tautomer of nitrogenous bases: These are isomers of nitrogenous bases that differ in the position of the functional group. They are incorporated into DNA during replication in place of the

corresponding base. For example, 5-bromouracil instead of thymine or 2-aminopurine instead of adenine.

2 Interlayer agents: These are flat molecules that insert between two base pairs of DNAs, separating them from each other. Division to the property of each other. During replication, they can cause insertions or deletions in DNA, leading to mutations by changing the reading pattern. Examples: acridine (acridine orange), benzopyrene, ethidium bromide and ب هدول ممكن تلاقبهم الجور بالككل ، بالدوية إيساميو

3. Modification of nitrogenous bases they remove or add groups to nitrogenous bases. For example introus acid causes the removal of the amino group from bases, and mustard gas adds methyl or ethyl groups to bases.

nitrogenous bases Et stimulianing + base analogues D Comparation of the part of the analogues of the second of

PHYSICAL AGENTS

Physical agents that cause mutations are radiation, both ionising and non-ionising, and heat.

(1)

(1) Ionising radiation, such as X-rays, gamma rays, alpha radiation, and beta radiation, cause the loss of electrons from some DNA atoms in the form of highly reactive ions. They can lead to base modifications and can also cause structural chromosomal alterations, such as chromosome breaks and translocations. Non-ionising radiation, mainly ultraviolet radiation, فن الماكن معيرة م causes point mutations.

Thermal fluctuations, such as exposure to temperatures above 37°C, cause point mutations in DNA, such as the loss of purine bases (depurination), or the loss of amino groups from bases

مر المرازي ال

الحالية بوطر من جزوع الـ DNA الكرونات فينكسر و بيس طاعته giel die l'Exective species) 2000 de

الكروسوسو Viruses are also mutagenic agents. In humans, infection with several viruses has been linked to the development of some types of cancer. They are referred to as ongeniq viruses of oncoviruses. There are six major families of oncogenic viruses, Five of these families are DNA viruses (Polyomavirus, Adenovirus, Hepatitis B, Herpesvirus-EBV and Papillomavirus); while the sixth family (Retroviruses) have RNA as their genetic material.

Retroviruses or RNA viruses can insert their genome at a place close to an oncogene, resulting in a change in its function.

DNA viruses promote cancer by producing proteins that hijack and inactivate tumor suppressor genes

Dr Ala Abuhammad, PhD

One of the controlling mutations) ilde grain of pain of paint of paint

TYPES OF MUTATIONS

- There are many ways to classify the types of mutations, such as by how they are produced, what they affect, the effect they produce, or by the amount of material affected.

 (1) According to their production method (Spontaneous vs. Induced by a mutagenic agent)
- 2) According to which genetic material they affect (Structural chromosomal mutations vs. Gene mutations)
 - * Structural chromosomal mutations: these affect fragments of the chromosomes. Translocations, duplications, inversions, insertions and deletions can occur.
 - ★ Gene mutations; may or may not cause a change in the reading pattern of genes. They can be substitutions, insertions, or deletions.
 - Insertions, or deletions generally cause a change in the reading frame of the gene, resulting in the generation of a different polypeptide chain from the insertion point.
 - The substitutions are replacements of one nucleotide for another, which can lead to a change in the amino acid they encode The substitutions that do not result in amino acid changes are called synonymous substitutions.

, dols of I view with met yes, perso jo deletions/ insertion (Dr Ala Abuhammad, PhD n / I whim per supsition of Substitution of 160 acres

TYPES OF MUTATIONS

- 3. According to their effect
 - Not all nucleotide sequence changes lead to changes in the amino acid sequence or function of the proteins encoded by the affected genes.
 - Silent Mutations the nucleotide sequence change does not result in an amino acid change in the protein.
 - Missense mutations cause a change of one amino acid to another.
 - nonsense mutations cause a change from a coding codon to a stop codon.

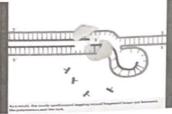
re translation / sule lune e nonsense mutations initiation elongation termination -

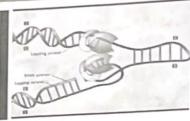
(Jaker function) Je les) TYPES OF MUTATIONS

*

(4). According to the affected cells

- Mutations that are located only in the DNA of somatic cells are called somatic mutations. Somatic mutations usually occur in tumour cells and may be associated with tumour aggressiveness or response to a particular therapy.
- A mutation can also originate randomly in germline cells of an individual. It can therefore be passed on to descendants. Thus, this inherited mutation will be present in all cells of the individual's body. These types of mutations are called germline mutations. Germline mutations can predispose a carrier individual to the development of cancer.


Dr Ala Abuhammad, PhD


هاد اعومنوع مااله ریکورد در بساکید شرعه

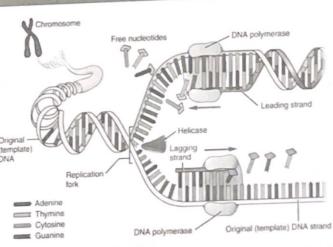
DNA Replication

https://www.youtube.com/watch?v=TEQMeP9GG6M&t=40s

https://youtu.be/WCliyl4 cM

https://youtu.be/2 -jSoSaaTA

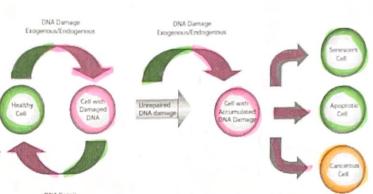
Dr Ala Abuhammad, PhD


00034

20

DNA Replication

- Replication Process: The duplication of the DNA molecule before cell division
- Carried out by a series of enzymes
- Directionality: Replication is always in the 5' to 3' direction, with leading and lagging strand synthesis.
- because the two strands are anti-parallel (they run in opposite directions) the two new strands are synthesised in opposite directions.
- The point where the two strands are split is called the *replication fork*.


الا من المالالالال المراكوم و معم لانه المراكوم و المركوم و المراكوم و المراكوم و المركوم و المراكوم و المراكوم و المراكوم و المراكوم و المراك

DNA is constantly exposed to damage (UV light, chemicals, replication errors). Repair is essential to maintain genome stability.

 To compensate for the degree and types of DNA damage that occur, cells have developed multiple repair processes.

 Cells may have evolved to proceed into apoptosis or senescence if overwhelming damage occurs rather than expend energy to effectively repair the damage.

 The rate at which a cell is able to make repairs is contingent on factors including cell type and cell age.

الم على الكورة الحلية السبحا به لهاي الخواة المكروة الحساب معالمة المحالية المحالية

CeDNA Repair

Signal Lyip Cings (O Signal Lyip Cings (O) Signal Lyip Comas Lindahl, Paul Modrich and Aziz

Tomas Lindahl, Paul Modrich and Aziz Sancar were awarded the Nobel Prize in Chemistry 2015 for having mapped and explained how the cell repairs its DNA and safeguards the genetic information.

The Nobel Prize in Chemistry 2015

The same and all reserves

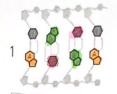
Aziz Sancar

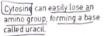
The Nobel Prize in Chemistry 2015 was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar "for mechanistic studies of DNA repair"

The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage - PubMed (nih.gov)

The Nobel Prize in Chemistry 2015 - Popular information - Nobel Prize org

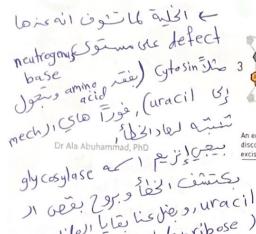
DNA Repair Mechanisms

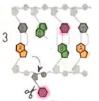


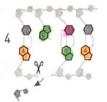

1. Base Excision Repair (BER):

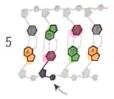
- Repairs small, non-helixdistorting base lesions.
- Damaged base removal and replacement.

Base excision repair


Base excision repairs DNA when a base of a nucleotide is damaged, for example cytosine






Uracil cannot form a base pair with guanine.

Another couple of enzymes remove the rest of the nucleotide from the DNA strand.

DNA polymerase fills in the gap and the DNA strand is sealed by DNA ligase.

nucleotide), lie lie die o, uracil nucleotide (phosphate+ ribose)

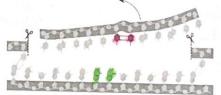
DNA Repair Mechanisms

2. Nucleotide Excision Repair (NER):

induced thymine dimers. Removes bulky lesions, such as UV-

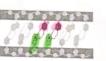
Example: Xeroderma pigmentosum (a genetic disorder caused by NER defects).

JILL mechanismolics to * repair 11360 and of error (DNA) Ala Abuhammad, PhD UV radiations


Nucleotide excision repair

Nucleotide excision repairs DNA-injuries caused by UV radiation or carcinogenic substances like those found in cigarette smoke.

UV radiation 10.700

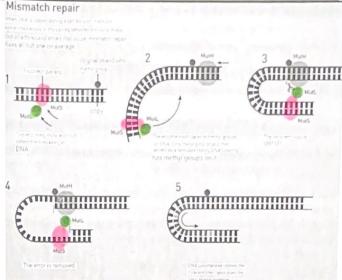

the transfer

thymines bind to each other

The enzyme exinuclease finds the damage and cuts the DNA strand Twelve nucleotides are

that induce interaction between two (Test als por chase and position of the color of the col

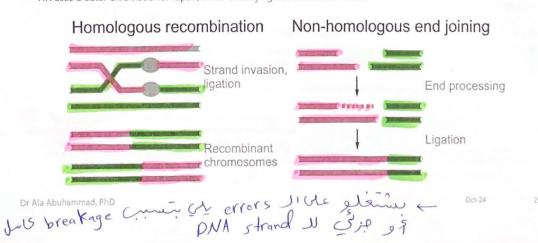
DNA Repair Mechanisms



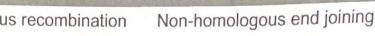
3. Mismatch Repair (MMR):

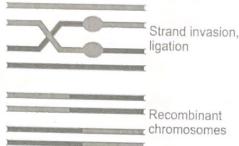
- Fixes replication errors, such as misincorporated bases.

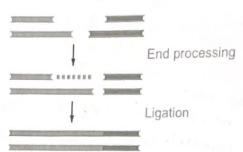
ch two neoclotide I just e Those; mismatch ciex chie , adenine chie cytosin issu Il cutting Law ald 129m. region around mismatch


refrence point is ignatch
refrence point is ignatch group in cook
is methyl group in cook
which wis interest in the arrows mismatch
which who are a given methyl is is
mismatch of the property in the cook
mismatch of the property is in the cook
mismatch of the property in the cook
mismatch of the property is in the cook
mismatch of the property in the cook
mismatch of the property is in the cook
mismatch of the property in the cook
mismatch of the

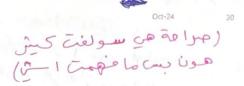
DNA Repair Mechanisms


- 4. Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ):
 - Repair of double-strand breaks.
 - HR uses a sister chromatid for repair; NHEJ directly ligates the broken ends.




DNA Repair Mechanisms -(HR) and (NHEJ):

Homologous recombination



- Uses a sister chromatid (a similar or identical DNA strand) as a template to accurately repair the break.
- This method is precise because it copies the correct sequence from the undamaged DNA strand.
- Directly joins the broken ends of DNA without using a template.
 - Faster but can be more error-prone because it sometimes leads to small insertions or deletions at the repair site.

replication of stopping stop strand i inemin brackge ilere me of strand i inemin (identical or similar) sister Ile strand i so a template ile so sui se so il se so i Dr Ala Abuhammad, PhD

Defects In The Repair Systems Cause Cancer

- Besides base excision repair, nucleotide excision repair, and mismatch repair, there are several other mechanisms that maintain our DNA.
- Every day, they fix thousands of occurrences of DNA damage caused by the sun, cigarette smoke or other genotoxic substances; they continuously counteract spontaneous alterations to DNA and, for each cell division, mismatch repair corrects some thousand mismatches.
- Our genome would collapse without these repair mechanisms. If just one component fails, the genetic information changes rapidly and the risk of cancer increases.
- Congenital damage to the nucleotide excision repair process causes the disease xeroderma pigmentosum; individuals who suffer from this disease are extremely sensitive to UV radiation and develop skin cancer after exposure to the sun.
- Defects in DNA mismatch repair increase the risk of developing hereditary colon cancer, for instance.
- In fact, in many forms of cancer, one or more of these repair systems have been entirely or partially switched off. This makes the cancer cells' DNA unstable, which is one reason why cancer cells often mutate and become resistant to chemotherapy. At the same time, these sick cells are even more dependent on the repair systems that are still functioning; without these, their DNA will become too damaged and the cells will die. Researchers are attempting to utilise this weakness in the development of new cancer drugs. Inhibiting a remaining repair system allows them to slow down or completely stop the growth of the cancer.
- One example of a pharmaceutical that inhibits a repair system in cancer cells is olaparib (PARP inhibitor).

DNA Repair – Pharmaceutical Applications

Significance in Drug Development

- Cancer Treatment: Many cancer therapies (e.g., radiation, chemotherapy) work by inducing DNA damage. Understanding repair mechanisms allows for the development of drugs that inhibit these processes in cancer cells.
 - Example: PARP Inhibitors for BRCA-mutated cancers (affecting DNA repair via homologous recombination).
- Targeting DNA Repair Pathways:
 - Drugs that block repair pathways (e.g., Mismatch Repair) increase the efficacy of treatments that induce DNA damage.
 - Example: Tumor cells with defective MMR are more sensitive to immunotherapy.

Dr Ala Abuhammad, PhD

Oct-24

32

Personalized Medicine And DNA Repair

- Pharmacogenomics: Tailoring treatments based on a patient's DNA repair capacity.
- Pharmacogenomics involves designing treatments based on an individual's genetic makeup, particularly their ability to repair DNA damage. Some people may have mutations in genes involved in DNA repair, such as BRCA1 or BRCA2, which affect how their cells respond to DNA damage.
- BRCA1 and BRCA2 are breast cancer genes that play a key role in repairing damaged DNA, specifically through Homologous Recombination (HR). These genes help prevent mutations that could lead to cancer.
- Genetic mutations in DNA repair genes (like BRCA1/BRCA2) inform the selection of therapies, particularly in oncology.
- For example, mutations in BRCA1/BRCA2 are associated with defective HR repair, making those patients more vulnerable to certain cancers (e.g., breast or ovarian cancer). Treatments like PARP (Poly (ADP-ribose) Polymerase) inhibitors are designed for patients with these mutations because they block alternative repair mechanisms, forcing cancer cells to die when they cannot repair their DNA. Understanding whether a patient's cancer involves defective HR or reliance on NHEJ helps oncologists choose therapies that specifically exploit these weaknesses in cancer cells.

tnese weaknesses in cancer cells.

Dr Ala Abuhammad, PhD ciscof province repair mechanismai line pes produce (constitution of the province aggressive justicity of the province aggressive aggressi